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Abstract. For a ring R, an endomorphism σ of R and δ a σ -derivation of R, we introduce a weak (σ ,δ )-rigid ring,

which generalizes the notion of (σ ,δ )-rigid rings and investigate its properties. Moreover, we state and prove a

necessary and sufficient condition for a weak (σ ,δ )-rigid ring to be a (σ ,δ )-rigid ring. We prove that a (σ ,δ )-ring

is a weak (σ ,δ )-rigid ring and conversely that the prime radical of a weak(σ ,δ )-rigid ring is a (σ ,δ )-ring. We also

find a relation between minimal prime ideals and completely prime ideals of a ring R, where R is a (σ ,δ )-ring and

R is a 2-primal weak (σ ,δ )-rigid ring.

Keywords: minimal prime ideals, completely prime ideals, (σ ,δ )-rings, weak (σ ,δ )-rigid rings, 2-primal rings.

2010 AMS Subject Classification: 16S36, 16N40, 16P40.

1. Introduction

A ring R always means an associative ring with identity 1 6= 0, unless otherwise stated. The

prime radical and the set of nilpotent elements of R are denoted by P(R) and N(R) respectively.

The ring of integers is denoted by Z, the field of real numbers is denoted by R, the field of

rational numbers is denoted by Q and the field of complex numbers is denoted by C, unless

otherwise stated. The set of minimal prime ideals of R is denoted by Min.Spec(R).

∗ Corresponding author

Received March 28, 2014
1



2 M. ABROL, V. K. BHAT

Let R be a ring, σ an endomorphism of R and δ a σ -derivation of R, which is defined as an

additive map from R→ R such that

δ (ab) = δ (a)σ(b)+aδ (b), for all a,b ∈ R.

Example 1.1. Let R = Z[
√

2]. Then σ : R→ R defined as

σ(a+b
√

2) = (a−b
√

2) for a+b
√

2 ∈ R.

is an endomorphism of R. For any s ∈ R. Define δs : R→ R by

δs(a+b
√

2) = (a+b
√

2)s− sσ(a+b
√

2) for a+b
√

2 ∈ R.

Then δs is a σ -derivation of R.

According to Krempa [14], an endomorphism σ of a ring R is said to be rigid if aσ(a) = 0

implies that a = 0, for all a ∈ R. A ring R is said to be σ -rigid if there exists a rigid endo-

morphism σ of R. We recall that σ -rigid rings are reduced rings by Hong et. al. [12]. Recall

that ring R is reduced if R has no non-zero nilpotent elements. Observe that reduced rings are

abelian. Properties of σ -rigid rings have been studied in Krempa [14], Hong [12] and Hirano

[10]. Also Kwak [13] defined σ(∗)-ring. Let R be a ring and σ an endomorphism of R. Then

R is said to be σ(∗)-ring if aσ(a) ∈ P(R) implies that a ∈ P(R) for a ∈ R. Note that we say

a ring R with an endomorphism σ is weak σ -rigid if aσ(a) ∈ N(R) implies and is implied by

a ∈ N(R) for a ∈ R. Clearly this notion of a weak σ -rigid ring generalizes that of a σ -rigid ring.

For further details on weak σ -rings refer to [12, 14, 17, 19].

Completely prime ideals:

Completely prime ideals are a special type of prime ideals that play a key role in the notions

introduced in this paper. Recall that an ideal P of a ring R is said to be completely prime if ab∈P

implies that a ∈ P or b ∈ P for a,b ∈ R (Chapter 3 of [9]). In commutative sense completely

prime and prime have the same meaning. We also note that a completely prime ideal of a ring

R is a prime ideal, but the converse need not be true. The following example shows that a prime

ideal need not be a completely prime ideal.
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Example 1.2. (Example 1.1 of Bhat [3]): Let R =

 Z Z

Z Z

= M2(Z). If p is a prime number,

then the ideal P = M2(pZ) is a prime ideal of R. But is not completely prime.

There are examples of rings (non-commutative) in which prime ideals are completely prime.

Example 1.3. (Example 1.2 of Bhat [3]): Let R =

 Z Z

0 Z

. Then P1 =

 Z Z

0 0

, P2 = 0 Z

0 Z

 and P3 =

 0 Z

0 0

 are prime ideals of R. Now all these are completely prime

also.

Minimal prime ideals:

A minimal prime ideal in a ring R is any prime ideal of R that does not properly contain

any other prime ideal. In example 1.2 of Bhat [3] (discussed above), P3 =

 0 Z

0 0

 is a

minimal prime ideal. Further more there are examples of rings in which minimal prime ideals

are completely prime. For example a reduced ring. Regarding minimal prime ideals we have

the following:

Proposition 3.3 of [9]: Any prime ideal U in a ring R contains a minimal prime ideal.

Theorem 3.4 of [9]: In a right Noetherian ring R, there exists only finitely many minimal prime

ideals, and there is a finite product of minimal prime ideals (repetition allowed) that equals zero.

Note that a considerable work has been done in the investigation of prime ideals in particular

minimal prime ideals refer to [1, 2, 8, 9, 16, 18].

2-Primal rings:

Another area of interest since recent past has been the study of 2-primal rings. This involves

the notion of prime radicals and the set of nilpotent elements of a ring. Further the concept of

completely prime ideals and completely semi-prime ideals are also studied in this area. Due to

Birkenmeier et al. [4], a ring R is called 2-primal if P(R) = N(R). Note that every reduced ring

is a 2-primal ring and a commutative ring is also 2-primal. Part of the attraction of 2-primal

rings in addition to their being a common generalization of commutative rings and rings without

nilpotent elements lies in the structure of their prime ideals. Shin showed in ([20], proposition
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1.11) that a ring R is 2-primal if and only if every minimal prime ideal P ⊂ R is completely

prime (i.e. R/P is a domain). Other properties and examples of 2-primal can be found in

[5, 6, 7, 11, 13, 15, 20].

δ -Rings:

Bhat [2] has defined a δ -ring as : Let R be a ring. Let σ be an automorphism of R and δ a

σ -derivation of R. Then R is a δ -ring if aδ (a) ∈ P(R) implies that a ∈ P(R). Note that a δ -ring

is without identity, 1 6= 0 as 1.δ (1) = 0, but 1 6= 0.

Example 1.4. Let S be a ring without identity and R = S×S with P(R) = {0} (for example we

take S = 2Z). Then σ : R→ R is an endomorphism defined by

σ((a,b)) = (b,a).

δr : R→ R, for any r ∈ R defined by

δr((a,b)) = (a,b)r− rσ((a,b)) for (a,b) ∈ R.

is a σ -derivation. Let (a,b)δr((a,b)) ∈ P(R).

Then (a,b){(a,b)r− rσ((a,b))} ∈ P(R)

or (a,b){(a,b)r− r(b,a)} ∈ P(R)

i.e. (a,b)(ar− rb,br− ra) ∈ P(R).

Therefore, (a(ar− rb),b(br− ra)) ∈ P(R) = {0} which implies that a = 0,b = 0

i.e. (a,b) = (0,0) ∈ P(R).

Thus R is a δ -ring.

2. Preliminaries

We begin with the following:

Definition 2.1. Let R be a ring. Let σ be an endomorphism of R and δ a σ -derivation of R.

Then R is said to be a (σ ,δ )-ring if a(σ(a)+δ (a)) ∈ P(R) implies that a ∈ P(R) for a ∈ R.

Example 2.2. Let R =

 F F

0 F

. Then P(R) =

 0 F

0 0

.

Let σ : R→ R be defined by

σ

( a b

0 c

)=
 a 0

0 c

.
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Then it can be seen that σ is an endomorphism of R.

For any s ∈ R. Define δs : R→ R by

δs(a) = as− sσ(a) for a ∈ R.

Clearly, δs is a σ -derivation of R.

Now let A =

 a b

0 c

 ,s =

 p q

0 r

.

Further A[σ(A)+δ (A)] ∈ P(R) implies that a b

0 c

{σ

( a b

0 c

)+As− sσ(A)
}
∈ P(R)

or

 a b

0 c

{ a 0

0 c

+

 a b

0 c

 p q

0 r

−
 p q

0 r

σ

( a b

0 c

)} ∈ P(R)

or

 a2 a2q+abr+bc−acq

0 c2

 ∈ P(R) =

 0 F

0 0

 which implies that

a2 = 0,c2 = 0 i.e. a = 0,c = 0.

Therefore, A =

 a b

0 c

=

 0 b

0 0

 ∈ P(R).

Hence R is a (σ ,δ )-ring.

Remark 2.3. :

(1) If δ (a) = 0, then (σ ,δ )-ring is a σ(∗)-ring.

(2) If σ(a) = 0, then (σ ,δ )-ring is a δ -ring.

Definition 2.4. Let R be a ring. Let σ be an endomorphism of R and δ a σ -derivation of R.

Then R is said to be a (σ ,δ )-rigid ring if

a(σ(a)+δ (a)) = 0 implies that a = 0 for a ∈ R.
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Example 2.5. Let R = C and σ : R→ R be defined by

σ(a+ ib) = a− ib, for all a,b ∈ R.

Then σ is an endomorphism of R.

Define δ : R→ R by

δ (α) = α−σ(α) for α ∈ R.

Then δ is a σ -derivation of R. Now it can be easily seen that R is a (σ ,δ )-rigid ring.

Ouyang [19] introduced weak σ -rigid rings, where σ is an endomorphism of R. This ring is

related to 2-primal rings. In this note we generalize the (σ ,δ )-rigid ring by introducing weak

(σ ,δ )-rigid ring and prove relations involving the concepts discussed above. We begin with the

following definition:

Definition 2.6. Let R be a ring. Let σ an endomorphism of R and δ a σ -derivation of R. Then

R is said to be a weak (σ ,δ )-rigid ring if a(σ(a)+ δ (a)) ∈ N(R) implies and is implied by

a ∈ N(R) for a ∈ R.

Example 2.7. Let σ be an endomorphism of R and δ a σ -derivation of R. Let R be a (σ ,δ )-rigid

ring. Let

R3 =
{

a b c

0 a d

0 0 a

 : a,b,c,d ∈ R
}

be a subring of T3(R). The endomorphism σ of R can be extended to the endomorphism σ :

R3→ R3 defined by

σ((ai j)) = (σ(ai j))

and δ a σ -derivation of R can be extended to δ : R3→ R3 by

δ ((ai j)) = (δ (ai j)).

Let 
a b c

0 a d

0 0 a

{σ


a b c

0 a d

0 0 a

+δ


a b c

0 a d

0 0 a

} ∈ N(R).

Then there is some positive integer n such that
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[
a b c

0 a d

0 0 a

{


σ(a) σ(b) σ(c)

0 σ(a) σ(d)

0 0 σ(a)

+


δ (a) δ (b) δ (c)

0 δ (a) δ (d)

0 0 δ (a)

}]n
= 0,

which implies that

[
a b c

0 a d

0 0 a




σ(a)+δ (a) σ(b)+δ (b) σ(c)+δ (c)

0 σ(a)+δ (a) σ(d)+δ (d)

0 0 σ(a)+δ (a)

]n
= 0


a(σ(a)+δ (a)) a(σ(b)+δ (b))+b(σ(a)+δ (a)) a(σ(c)+δ (c))+b(σ(d)+δ (d))+ c(σ(a)+δ (a))

0 a(σ(a)+δ (a)) a(σ(d)+δ (d))+d(σ(a)+δ (a))

0 0 a(σ(a)+δ (a))


n

= 0, which gives

a(σ(a)+δ (a)) ∈ N(R).

Since R is reduced, we have

a(σ(a)+δ (a)) = 0

which implies that a = 0, since R is a (σ ,δ )-rigid ring.

Hence 
a b c

0 a d

0 0 a

=


0 b c

0 0 d

0 0 0

 ∈ N(R).

Conversely, assume that 
a b c

0 a d

0 0 a

 ∈ N(R).

Then there is some positive integer n such that
a b c

0 a d

0 0 a


n

=


an ∗ ∗

0 an ∗

0 0 an

= 0

which implies that a = 0, because R is reduced. (Here ∗ are non-zero terms involving summa-

tion of powers of some or all of a, b, c, d.)

So
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a b c

0 a d

0 0 a

{σ


a b c

0 a d

0 0 a

+δ


a b c

0 a d

0 0 a

}

=


0 b c

0 0 d

0 0 0

{


0 σ(b) σ(c)

0 0 σ(d)

0 0 0

+


0 δ (b) δ (c)

0 0 δ (d)

0 0 0

}

=


0 b c

0 0 d

0 0 0

{


0 σ(b)+δ (b) σ(c)+δ (c)

0 0 σ(d)+δ (d)

0 0 0

}

=


0 0 b(σ(d)+δ (d))

0 0 0

0 0 0

 ∈ N(R).

Therefore, R3 is a weak (σ ,δ )-rigid ring.

With this we prove the following result.

Theorem A. Let R be a Noetherian integral domain which is also an algebra over Q. Let σ be

an automorphism of R and δ a σ -derivation of R. Then R is a (σ ,δ )-rigid ring if and only if R

is weak (σ ,δ )-rigid ring and reduced. (This has been proved in Theorem (3.7)).

Theorem B. Let R be a Noetherian integral domain which is also an algebra over Q. Let σ be

an automorphism of R and δ a σ -derivation of R such that R is a (σ ,δ )-ring. Then R is a weak

(σ ,δ )-rigid ring. Conversely a 2-primal weak (σ ,δ )-rigid ring is a (σ ,δ )-ring. (This has been

proved in Theorem (3.8)).

Theorem C. Let R be a Noetherian ring. Let σ be an automorphism of R and δ a σ -derivation

of R such that σ(U) = U and δ (U) ⊆U where U ∈ Min.Spec(R). Then R is a (σ ,δ ) -ring if

and only if for each U ∈ Min.Spec(R), σ(U)+δ (U) =U and U is a completely prime ideal of

R. (This has been proved in Theorem (3.9)).

Theorem D. Let R be a Noetherian ring which is Q-algebra. Let σ be an automorphism of

R and δ a σ -derivation of R such that σ(U) = U and δ (U) ⊆ U where U ∈ Min.Spec(R).
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Then R is a 2-primal weak (σ ,δ )-rigid ring if and only if for each minimal prime U of R,

σ(U)+δ (U) =U and U is a completely prime ideal of R. (This has been proved in Theorem

(3.10)).

3. Proof of Main Results

For the proof of the main result, we need the following:

Proposition 3.1. Let R be a ring, σ an automorphism of R and δ a σ -derivation of R. Then for

u 6= 0, σ(u)+δ (u) 6= 0.

Proof. Let 0 6= u ∈ R, we show that σ(u)+ δ (u) 6= 0. Let for 0 6= u, σ(u)+ δ (u) = 0 which

implies that

(3.1) δ (u) =−σ(u).

We know that for 0 6= a,0 6= b ∈ R, δ (ab) = δ (a)σ(b)+aδ (b). By using (3.1), this implies that

δ (ab) =−σ(a)σ(b)+a(−σ(b)) or−σ(ab) =−[σ(a)+a]σ(b). Since σ is an endomorphism

of R, this gives −σ(a)σ(b) =−[σ(a)+a]σ(b) i.e. σ(a) = σ(a)+a. Therefore, a = 0, which

is not possible. Hence the result. �

Theorem 3.2. Let R be a Noetherian integral domain which is also an algebra over Q. Let σ

be an automorphism of R and δ a σ -derivation of R. If R is a (σ ,δ )-ring, then R is 2-primal.

Proof. R is a (σ ,δ )-ring. We know that a reduced ring is 2-primal. We use the principle of

Mathematical induction to prove that R is a reduced ring.

Let for x ∈ R, xn = 0. We use induction on n and show that x = 0. Result is trivially true for

n = 1, as xn = x1 = a(σ(a)+ δ (a)) = 0. Now Proposition (3.1), implies that a = 0. Hence

x = 0. Therefore, the result is true for n = 1. Let us assume that the result is true for n = k, i.e.

xk = 0 which implies that x = 0. Let n = k+1. Then xk+1 = 0 which implies that

ak+1(σ(a)+δ (a))k+1 = 0.

Again by Proposition (3.1), we get a = 0. Hence x = 0. Therefore, the result is true for n = k+1

also. Thus the result is true for all n. �

The converse of the above is not true.
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Example 3.3. Let R = F(x), the field of rational polynomials in one variable, x. Then R is

2-primal with P(R) = {0}.

Let σ : R→ R be an endomorphism defined by

σ( f (x)) = f (0).

For r ∈ R, δr : R→ R is a σ -derivation defined as

δr(a) = ar− rσ(a) for a ∈ R.

Then R is not a (σ ,δ )-ring. For take f (x) = xa+b,r = −b
xa .

Towards the proof of the next Theorem, we require the following:

J. Krempa [14] has investigated the relation between minimal prime ideals and completely prime

ideals of a ring R. With this he proved the following:

Theorem 3.4. For a ring R the following conditions are equivalent:

(1) R is reduced.

(2) R is semiprime and all minimal prime ideals of R are completely prime.

(3) R is a subdirect product of domains.

Theorem 3.5. Let R be a Noetherian integral domain which is also an algebra over Q. Let σ be

an automorphism of R and δ a σ -derivation of R. If R is a (σ ,δ )-ring, then P(R) is completely

semi-prime.

Proof. As proved in Theorem (3.2), R is a reduced ring and by using Theorem (3.4), the result

follows. �

The converse of the above is not true.

Example 3.6. Let F be a field, R = F×F. Let σ : R→ R be an automorphism defined as

σ((a,b)) = (b,a), for all a,b ∈ F.

Here P(R) is a completely semi-prime ring, as R is a reduced ring.

For r ∈ F. Define δr : R→ R by

δr((a,b)) = (a,b)r− rσ((a,b)) for a,b ∈ F.
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Then δr is a σ -derivation of R. Also R is not a (σ ,δ )-ring. For take A = (1,−1),r = 1
2 .

We now state and prove the main results of this paper in the form of the following Theorems:

Theorem 3.7. Let R be a Noetherian integral domain which is also an algebra over Q. Let σ

be an automorphism of R and δ a σ -derivation of R. Then R is a (σ ,δ )-rigid ring if and only if

R is weak (σ ,δ )-rigid ring and reduced.

Proof. Let R be a (σ ,δ )-rigid ring, then R is reduced as in the proof of Theorem (3.2). We

will show that R is a weak (σ ,δ )-rigid ring. Suppose a ∈ N(R) then an = 0, for some positive

integer n, which implies that a = 0. Hence a(σ(a)+ δ (a)) = 0 ∈ N(R), by Proposition (3.1),

since (σ(a)+δ (a)) 6= 0.

If a(σ(a)+δ (a)) ∈ N(R) for a ∈ R, then a(σ(a)+δ (a)) = 0 and so a ∈ N(R), because R is a

(σ ,δ )-rigid ring. Thus R is a weak (σ ,δ )-rigid ring.

Conversely, suppose that R is a weak (σ ,δ )-rigid ring and reduced.

Let a(σ(a)+ δ (a)) = 0 for a ∈ R, then a ∈ N(R), since R is a weak (σ ,δ )-rigid ring. Thus

a = 0. Hence R is a (σ ,δ )-rigid ring. �

Theorem 3.8. Let R be a Noetherian integral domain which is also an algebra over Q. Let σ

be an automorphism of R and δ a σ -derivation of R such that R is a (σ ,δ )-ring. Then R is a

weak (σ ,δ )-rigid ring. Conversely a 2-primal weak (σ ,δ )-rigid ring is a (σ ,δ )-ring.

Proof. Let R be a (σ ,δ )-ring, then by Theorem (3.5), R is completely semi-prime and therefore

2-primal, which implies that N(R) = P(R) and therefore a(σ(a)+δ (a)) ∈ N(R) = P(R). Since

R is a (σ ,δ )-ring, therefore a ∈ P(R) = N(R). Hence R is a weak (σ ,δ )-rigid ring.

Conversely, let R be 2-primal and weak (σ ,δ )-rigid ring. Then N(R) = P(R) and so a(σ(a)+

δ (a)) ∈ P(R) which implies that a(σ(a)+ δ (a)) ∈ N(R). Since R is a weak (σ ,δ )-rigid ring,

therefore a ∈ N(R) which implies that a ∈ P(R). Hence R is a (σ ,δ )-ring.

�

Theorem 3.9. Let R be a Noetherian ring. Let σ be an automorphism of R and δ a σ -derivation

of R such that σ(U) =U and δ (U)⊆U where U ∈Min.Spec(R). Then R is a (σ ,δ )-ring if and

only if for each U ∈Min.Spec(R), σ(U)+δ (U) =U and U is a completely prime ideal of R.
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Proof. Let R be a Noetherian ring such that for each minimal prime U of R, σ(U)+δ (U) =U

and U is a completely prime ideal of R. Let a∈R be such that a(σ(a)+δ (a))∈P(R) =
⋂n

i=1Ui,

where Ui are the minimal primes of R. Now for each i, a ∈Ui or σ(a)+ δ (a) ∈Ui and Ui is

completely prime. Now σ(a)+δ (a) ∈Ui = σ(Ui)+δ (Ui) which implies that a ∈Ui and hence

a ∈ P(R). Thus R is a (σ ,δ )-ring.

Conversely, suppose that R is a (σ ,δ )-ring and let U = U1 be a minimal prime ideal of R.

Then by Theorem (3.5), P(R) is completely semi-prime. Let U2,U3, ..,Un be the other minimal

primes of R. Suppose that σ(U)+δ (U) 6=U . Then σ(U)+δ (U) is also a minimal prime ideal

of R. Renumber so that σ(U)+δ (U) =Un. Let a ∈
⋂n−1

i=1 Ui. Then σ(a)+ δ (a) ∈Un, and so

a(σ(a)+δ (a)) ∈
⋂n

i=1Ui = P(R) and therefore a ∈ P(R) and thus
⋂n−1

i=1 Ui ⊆Un which implies

that Ui ⊆Un for some i 6= n, which is impossible. Hence σ(U)+δ (U) =U .

Now suppose that U =U1 is not completely prime. Then there exists a,b ∈ R/U with ab ∈U .

Let c be any element of b(U2
⋂

U3
⋂
...
⋂

Un)a. Then c2 ∈
⋂n

i=1Ui = P(R). So c∈ P(R) and thus

b(U2
⋂

U3
⋂
...
⋂

Un)a⊆U . Therefore bR(U2
⋂

U3
⋂
...
⋂

Un)Ra⊆U and as U is prime, a ∈U ,

Ui ⊆U for some i 6= 1 or b ∈U . None of these can occur, so U is completely prime. �

Theorem 3.10. Let R be a Noetherian ring which is Q-algebra. Let σ be an automorphism

of R and δ a σ -derivation of R such that σ(U) = U and δ (U) ⊆U where U ∈ Min.Spec(R).

Then R is a 2-primal weak (σ ,δ )-rigid ring if and only if for each minimal prime U of R,

σ(U)+δ (U) =U and U is completely prime ideal of R.

Proof. It follows by Theorems (3.8) and (3.9). �
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