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Abstract: In this study we give simple different properties of generalized weakly δ-supplemented modules that 

characterized in [7]. And we also define generalized δ-coclosed submodule of a module 𝑀 as a generalization of δ-

coclosed submodules that introduced in [1] and show some basic characterizations. 
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1. Introduction  

Throughout this article, all rings are associative with identity and all modules are unitary left 𝑅-

modules. A submodule 𝐿 of a module 𝑀 is called small in 𝑀 (denoted by 𝐿 ≪ 𝑀), if for every 

proper submodule 𝐾 of 𝑀, 𝐿 + 𝐾 ≠ 𝑀. 𝐿 ≤ 𝑀, is said to be essential in 𝑀, denoted by 𝐿 ⊴ 𝑀, if 

𝐿 ∩ 𝐾 ≠ 0 for each nonzero submodule 𝐾 ≤ 𝑀. A module 𝑀 is said to be singular if 𝑀 ≅ 𝑁
𝐿⁄  

for some module 𝑁 and a submodule 𝐿 ≤ 𝑁 with 𝐿 ⊴ 𝑁. For two submodules 𝑁 and 𝐾 of 𝑀, 𝑁 

is called a supplement of 𝐾 in 𝑀 if 𝑁 is minimal with the property 𝑀 = 𝐾 + 𝑁; equivalently 

𝑀 = 𝐾 + 𝑁 and 𝑁 ∩ 𝐿 ≪ 𝑁. A module 𝑀 is called supplemented if every submodule of 𝑀 has a 

supplement in 𝑀. If 𝑁 + 𝐾 = 𝑀 and 𝑁 ∩ 𝐾 ≪ 𝑀, then 𝐾 is called a weak supplement of 𝑁 in 𝑀. 

𝑀 is weakly supplemented module if every submodule of 𝑀 has a weak supplement in 𝑀. The 

sum of small submodules of a module 𝑀 is denoted by 𝑅𝑎𝑑(𝑀). Let 𝑀 be an 𝑅-module and 

𝑁, 𝐾 be any submodules of 𝑀 with 𝑀 = 𝑁 + 𝐾. If 𝑁 ∩ 𝐾 ≤ 𝑅𝑎𝑑(𝐾) (𝑁 ∩ 𝐾 ≤ 𝑅𝑎𝑑(𝑀)) then 

𝐾  is called a generalized (weak) supplement of 𝑁  in 𝑀.  And 𝑀  is called generalized 

supplemented module if every submodule 𝑁 of 𝑀 has a generalized supplement 𝐾 in 𝑀. In [8], 
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an 𝑅-module 𝑀 is called generalized weakly supplemented if every submodule 𝐾 of 𝑀  has a 

generalized weak supplement 𝑁 in 𝑀. For characterization of these modules we refer to [6] and 

[8]. 

By Zhou [9], a submodule 𝐿  of 𝑀  is called 𝛿 -small in 𝑀  (denoted by 𝐿 ≪𝛿 𝑀)  if for any 

submodule 𝑁 of 𝑀 with 𝑀 𝑁⁄  singular, 𝑀 = 𝑁 + 𝐿 implies that 𝑀 = 𝑁. Let ℘ be the class of all 

singular simple 𝑅-modules. For a module 𝑀, as in [9], let 𝛿(𝑀) = ⋂{𝑁 ≤ 𝑀 | 𝑀 𝑁⁄ ∈ ℘ }. The 

sum of 𝛿-small submodules of a module 𝑀 is denoted by 𝛿(𝑀). It is easy to see that every small 

submodule of a module 𝑀 is 𝛿-small in 𝑀 so 𝑅𝑎𝑑(𝑀) ⊆ 𝛿(𝑀).  

Let 𝐾, 𝑁  be submodules of module 𝑀 , then 𝑁  is called a 𝛿 -supplement of 𝐾  in 𝑀  if                  

𝑀 = 𝑁 + 𝐾 and 𝑁 ∩ 𝐾 ≪𝛿 𝐾. 𝑁  is called a weak 𝛿-supplement of 𝐾  in 𝑀  if 𝑀 = 𝑁 + 𝐾  and 

𝑁 ∩ 𝐾 ≪𝛿 𝑀.  A module 𝑀  is called 𝛿 -supplemented if every submodule of 𝑀  has a                   

𝛿-supplement in 𝑀. Also 𝑀  is called weakly δ-supplemented if every submodule of 𝑀  has a 

weak 𝛿-supplement in 𝑀. 

A module 𝑀 is said to be 𝛿-local if 𝛿(𝑀) ≪𝛿 𝑀 and 𝛿(𝑀) is a maximal submodule of 𝑀. [1] 

Let 𝑀 be an 𝑅-module and 𝑁 ≤ 𝑀. We call 𝑁 a 𝛿-coclosed submodule of 𝑀 if 𝑁 𝑋⁄  is singular 

and 𝑁 𝑋⁄ ≪𝛿
𝑀

𝑋⁄  for some 𝑋 ≤ 𝑁, then 𝑋 = 𝑁. [1] 

In this paper we define  generalized δ-coclosed submodule of a module and give some basic 

properties of generalized weakly δ-supplemented modules.  

 

2. Preliminaries 

We give basic properties of δ-small submodules in the following lemma which is contained in 

[9]. 

Lemma 2.1: Let 𝑀 be a module. Then we have the following.  

1) If 𝑁  is δ -small in 𝑀  and 𝑀 = 𝑋 + 𝑁 , then 𝑀 = 𝑋 ⊕ 𝑌  for a projective semisimple 

submodule 𝑌 with 𝑌 ⊆ 𝑁. 

2) If 𝐾 is δ-small in 𝑀 and 𝑓: 𝑀 ⟶ 𝑁 is a homomorphism, then 𝑓(𝐾) is δ-small in 𝑁. In 

particular, if 𝐾 is δ-small in 𝑀 ⊆ 𝑁, then 𝐾 is 𝛿-small in 𝑁. 

3) Let 𝐾1 ⊆ 𝑀1 ⊆ 𝑀, 𝐾2 ⊆ 𝑀2 ⊆ 𝑀 and 𝑀 = 𝑀1 ⊕ 𝑀2. Then 𝐾1 ⊕ 𝐾2 is δ-small in 𝑀1 ⊕

𝑀2 if and only if  𝐾1 is δ-small in 𝑀1 and 𝐾2 is δ-small in 𝑀2. 
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4) Let 𝑁, 𝐾 be submodules of 𝑀 with 𝐾 δ-small in 𝑀 and 𝑁 ≤ 𝐾. Then 𝑁 is also δ-small in 

𝑀. 

 

Definition 2.2: Let 𝑀  be a module and 𝑈, 𝑉  be submodules of 𝑀. 𝑉  is called a generalized          

𝛿-supplement of 𝑈 in 𝑀 if 𝑀 = 𝑈 + 𝑉 and 𝑈 ∩ 𝑉 ≤ 𝛿(𝑉). 

A module 𝑀 is called generalized 𝛿-supplemented if every submodule of 𝑀 has a generalized 𝛿-

supplement in 𝑀. 

We refer to [7], for more detailed discussion about these modules. 

 

3. Main Results 

Theorem 3.1: Let M be a module and 𝑈, 𝑉 be submodules of 𝑀. 𝑉 is a generalized                δ-

supplement of 𝑈 if and only if 𝑈 + 𝑉 = 𝑀 and 𝑅𝑚 ≪𝛿 𝑉 for all 𝑚 ∈ 𝑈 ∩ 𝑉. 

Proof: Let 𝑉 be a generalized δ-supplement of 𝑈. Then, 𝑈 + 𝑉 = 𝑀 and 𝑈 ∩ 𝑉 ⊆ 𝛿(𝑉). Since 

𝛿(𝑉) is the sum of all 𝛿-small submodules of 𝑉, there exists elements 𝑚𝑖 ∈ 𝑉 for every 1 ≤ 𝑖 ≤

𝑘  such that 𝑚 = 𝑚𝑖1
+ 𝑚𝑖2

+ ⋯ + 𝑚𝑖𝑘
 and 𝑅𝑚𝑖 ≪𝛿 𝑉  for some 𝑘 ∈ 𝑁.  Following this, 

𝑅𝑚 ≪𝛿 𝑉 is obtained since the sum is finitely and 𝑅𝑚 ⊆ 𝑅𝑚1 + 𝑅𝑚2 + ⋯ + 𝑅𝑚𝑘. Conversely, 

assume that 𝑈 + 𝑉 = 𝑀  and 𝑅𝑚 ≪𝛿 𝑉  for all 𝑚 ∈ 𝑈 ∩ 𝑉.  Then 𝑅𝑚 ⊆ 𝛿(𝑉)  since 𝛿(𝑉) =

∑ 𝐿.𝐿≪𝛿𝑉  Hence, 𝑈 ∩ 𝑉 ≤ 𝛿(𝑉). 

 

Definition 3.2: Let 𝑀 be a module and 𝑈, 𝑉 be submodules of  𝑀. 𝑉 is called a generalized weak 

𝛿-supplement of 𝑈 in 𝑀 if 𝑀 = 𝑈 + 𝑉 and 𝑈 ∩ 𝑉 ≤ 𝛿(𝑀). 

A module 𝑀 is called generalized weakly δ-supplemented if every submodule of 𝑀  has a 

generalized weak δ-supplement in 𝑀. 

By definition it is clear that any generalized δ-supplemented module and weakly                           

δ-supplemented module is generalized weakly δ-supplemented. 

 

Theorem 3.3: Let 𝑀  be a generalized weakly δ-supplemented module and δ(M) be δ-small 

submodule of 𝑀. Then 𝑀 is weakly δ-supplemented. 

Proof: Let 𝑈 be an arbitrary submodule of 𝑀. Since 𝑀 is generalized weakly δ-supplemented 

then 𝑈 + 𝑉 = 𝑀 and 𝑈 ∩ 𝑉 ≤ 𝛿(𝑀) for 𝑉 ≤ 𝑀. By hypothesis, 𝑈 ∩ 𝑉 ≪𝛿 𝑀 is obtained. 
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Theorem 3.4: Let 𝑀 be a module and 𝑉 be a generalized weak 𝛿-supplement of 𝑈 in 𝑀. Then 𝑈 

is a generalized weak 𝛿-supplement of 𝑉 in 𝑀. 

Proof: Since 𝑉  is a generalized weak 𝛿 -supplement of 𝑈  in 𝑀  then 𝑉 + 𝑈 = 𝑀  and 𝑉 ∩ 𝑈 ≤

𝛿(𝑀). Therefore it is clear that 𝑈 is also a generalized weak δ-supplement of 𝑉 in 𝑀. 

 

Theorem 3.5: Let M be a module and 𝑈, 𝑉  be submodules of 𝑀.  𝑉  is a generalized weak              

δ-supplement of 𝑈 if and only if 𝑈 + 𝑉 = 𝑀 and 𝑅𝑚 ≪𝛿 𝑀 for all 𝑚 ∈ 𝑈 ∩ 𝑉. 

Proof: Let 𝑉 be a generalized weak δ-supplement of 𝑈. Then, 𝑈 + 𝑉 = 𝑀 and 𝑈 ∩ 𝑉 ⊆ 𝛿(𝑀). 

Since 𝛿(𝑀) is the sum of all 𝛿-small submodules of 𝑀, there exists elements 𝑚𝑖 ∈ 𝑀 for every 

1 ≤ 𝑖 ≤ 𝑘 such that 𝑚 = 𝑚𝑖1
+ 𝑚𝑖2

+ ⋯ + 𝑚𝑖𝑘
 and 𝑅𝑚𝑖 ≪𝛿 𝑀 for some 𝑘 ∈ 𝑁. Following this, 

𝑅𝑚 ≪𝛿 𝑀 is obtained since the sum is finitely and  𝑅𝑚 ⊆ 𝑅𝑚1 + 𝑅𝑚2 + ⋯ + 𝑅𝑚𝑘. Conversely, 

assume that 𝑈 + 𝑉 = 𝑀  and 𝑅𝑚 ≪𝛿 𝑀  for all 𝑚 ∈ 𝑈 ∩ 𝑉.  Then 𝑅𝑚 ⊆ 𝛿(𝑀)  since 𝛿(𝑀) =

∑ 𝐿.𝐿≪𝛿𝑀  Hence, 𝑈 ∩ 𝑉 ≤ 𝛿(𝑀). 

 

Theorem 3.6: Let 𝑀 be a δ-local module and 𝑉 be a generalized weak δ-supplement of 𝑈. Then 

𝑉 is weak δ-supplement of 𝑈. 

Proof: If 𝑉 is a generalized 𝛿-supplement of 𝑈, then 𝑈 + 𝑉 = 𝑀 and 𝑈 ∩ 𝑉 ≤ 𝛿(𝑀). Since 𝑀is 

δ-local, 𝛿(𝑀) ≪𝛿 𝑀 and so 𝑈 ∩ 𝑉 ≪𝛿 𝑀. Hence, 𝑉 is weak δ-supplement of 𝑈. 

 

Theorem 3.7: Let 𝑀 be a module and 𝐾 ≤ 𝐿 ≤ 𝑀 for submodules 𝐾, 𝐿 of 𝑀. Then 𝐿 ≤ 𝛿(𝑀) if 

and only if 𝐾 ≤ 𝛿(𝑀) and 𝐿 𝐾⁄ ≤ 𝛿(𝑀
𝐾⁄ ). 

Proof: Assume that 𝐿 ≤ 𝛿(𝑀).  Clearly 𝐾 ≤ 𝛿(𝑀).  Now let take into account natural 

epimorphism 𝑝: 𝑀 ⟶ 𝑀
𝐾⁄ .  Since 𝑝(𝛿(𝑀)) ⊆ 𝛿(𝑝(𝑀)) = 𝛿(𝑀

𝐾⁄ ),  then                              

𝐿
𝐾⁄ = 𝑝(𝐿) ⊆ 𝑝(𝛿(𝑀)) ≤ 𝛿(𝑀

𝐾⁄ ) is obtained. For the converse assume that 𝐾 ≤ 𝛿(𝑀) and 

𝐿
𝐾⁄ ≤ 𝛿(𝑀

𝐾⁄ ). Now we show that 𝐿 ≤ 𝛿(𝑀). For this suppose that 𝐿 ≰ 𝛿(𝑀). Then there is a 

maximal submodule 𝑋 of 𝑀 such that 𝑀 𝑋⁄  singular and 𝐿 ≰ 𝑋. Namely, there is an element 𝑚 in 

𝐿 with 𝑚 ∉ 𝑋. Then 𝑋 + 𝑅𝑚 = 𝑀 since 𝑋 is maximal in 𝑀  and so 𝑋 𝐾⁄ + 𝑅𝑚 + 𝐾
𝐾⁄ = 𝑀

𝐾⁄ . 

Since 𝐿 𝐾⁄ ≤ 𝛿(𝑀
𝐾⁄ ) and 𝑀 𝑋⁄  is singular then 𝑅𝑚 + 𝐾

𝐾⁄ ≪𝛿
𝑀

𝐾⁄ . Therefore, 𝑋 𝐾⁄ = 𝑀
𝐾⁄  

and so 𝑋 = 𝑀 is obtained but this fact contradicts with the maximality of 𝑋. Hence, 𝐿 ≤ 𝛿(𝑀). 
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Theorem 3.8: Let 𝑀  be a module and 𝑁 ≤ 𝛿(𝑀).  If 𝑀
𝑁⁄  is generalized weakly                           

δ-supplemented then 𝑀 is also generalized weakly 𝛿-supplemented. 

Proof: Let 𝑈  be an arbitrary submodule of 𝑀.  Since 𝑀
𝑁⁄  is generalized weakly                           

δ-supplemented module there is a generalized weak δ-supplement 𝑋 𝑁⁄  of  𝑈 + 𝑁
𝑁⁄  in 𝑀 𝑁⁄ . So, 

(𝑁 + 𝑈)
𝑁⁄ + 𝑋

𝑁⁄ = 𝑀
𝑁⁄   and 

(𝑁 + 𝑈)
𝑁⁄ ∩ 𝑋

𝑁⁄ =
𝑁 + (𝑈 ∩ 𝑋)

𝑁⁄ ⊆ 𝛿(𝑀
𝑁⁄ ). Here it is not 

difficult to see that 𝑈 + 𝑋 = 𝑀.  By the previous theorem 𝑈 ∩ 𝑋 ⊆  𝛿(𝑀).  Hence 𝑋  is a 

generalized weak δ-supplement of 𝑈 in 𝑀. 

 

Corollary: Any δ-small cover of a generalized weakly δ-supplemented module is generalized 

weakly δ-supplemeneted. 

 

Definition 3.9: Let 𝑀  be an 𝑅 -module and 𝑁 ≤ 𝑀.  We call 𝑁  a generalized δ-coclosed 

submodule of 𝑀 if 𝑁 𝑋⁄  is singular and 𝑁 𝑋⁄ ⊆ 𝛿(𝑀
𝑋⁄ ) for some 𝑋 ≤ 𝑁, then 𝑋 = 𝑁. 

It is clear that every δ-coclosed submodule is generalized δ-coclosed. 

 

Theorem 3.10: Let 𝑀  be a module and 𝐾 ≤ 𝐿 ≤ 𝑀. If 𝐿  is generalized δ-coclosed and 𝐾 ≤

𝛿(𝑀) then 𝐾 ≤ 𝛿(𝐿). Additionally, 𝛿(𝐿) = 𝐿 ∩ 𝛿(𝑀). 

Proof: Assume that 𝐾 ≰ 𝛿(𝐿). Then there is a submodule 𝑋 of 𝐿 with 𝐿 𝑋⁄  singular simple that is 

not containing 𝐾. So there is an element 𝑚 in 𝐾 such that 𝑚 ∉ 𝑋. Since 𝐿 𝑋⁄  is simple 𝑋 is also a 

maximal submodule of 𝐿. Hence it can be seen easily that 𝑋 + 𝑅𝑚 = 𝐿. Now by taking into 

account the natural homomorphism 𝑝: 𝑀 ⟶ 𝑀
𝑋⁄ , 𝑝(𝑅𝑚) =

(𝑅𝑚 + 𝑋)
𝑋⁄ = 𝐿

𝑋⁄ ≪𝛿
𝑀

𝑋⁄  is 

obtained since 𝑅𝑚 ≪𝛿 𝑀. This contradicts with the fact that 𝐿 is generalized δ-coclosed. Finally, 

𝐾 ≤ 𝛿(𝐿) must be true. 

Additionally it is clear that 𝛿(𝐿) ≤ 𝐿 ∩ 𝛿(𝑀). Suppose that 𝑚 be an arbitrary element in 𝐿 ∩

𝛿(𝑀).  Then 𝑚 ∈ 𝛿(𝑀)  and 𝑅𝑚 ≪𝛿 𝑀  therefore 𝑅𝑚 ⊆ 𝛿(𝑀).  And so 𝑅𝑚 ⊆ 𝛿(𝐿)  since 𝐿  is 

generalized δ-coclosed. From this reason, 𝛿(𝐿) = 𝐿 ∩ 𝛿(𝑀) is obtained. 
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Theorem 3.11: Let 𝑀 be a module and 𝐾 ≤ 𝐿 ≤ 𝑀. If 𝐿 is generalized δ-coclosed then 𝐿 𝐾⁄  is 

also generalized 𝛿-coclosed in 𝑀 𝐾⁄ . 

Proof: Let assume that there is a submodule of 𝑋 𝐾⁄  of  𝐿 𝐾⁄  with 𝐿 𝑋⁄  singular and 
𝐿

𝐾⁄
𝑋

𝐾⁄
⁄ ⊆

𝛿 (
𝑀

𝐾⁄
𝑋

𝐾⁄
⁄ ). Then 𝐿 𝑋⁄ ⊆ 𝛿(𝑀

𝑋⁄ ) and this contradicts with the fact that 𝐿 is generalized δ-

coclosed submodule of 𝑀. So, 𝐿 𝐾⁄  is a generalized 𝛿-coclosed submodule of 𝑀 𝐾⁄ . 

 

Theorem 3.12: Let 𝑀 be a generalized weakly δ-supplemented module. If a submodule 𝐿 of  𝑀 

is generalized δ-coclosed then so is 𝐿. 

Proof: Let 𝑈  be an arbitrary submodule of 𝐿.  Since 𝑈 ≤ 𝑀  and 𝑀  is generalized weakly               

δ-supplemented then there is a submodule 𝑉  of 𝑀 such that 𝑈 + 𝑉 = 𝑀  and 𝑈 ∩ 𝑉 ≤ 𝛿(𝑀). 

Following this (𝑈 + 𝑉) ∩ 𝐿 = 𝑈 + (𝑉 ∩ 𝐿) = 𝐿 and 𝑈 ∩ (𝑉 ∩ 𝐿) = (𝑈 ∩ 𝑉) ∩ 𝐿 ≤ 𝛿(𝑀) ∩ 𝐿 =

𝛿(𝐿) by theorem 3.10. Hence, 𝑉 ∩ 𝐿 is a generalized weakly δ-supplement of  𝑈 in 𝐿. 

 

Theorem 3.13: Let 0 ⟶ 𝐿 ⟶ 𝑀 ⟶ 𝑁 ⟶ 0  be a short exact sequence. If 𝐿  and 𝑁  are 

generalized weakly δ-supplemented modules and 𝐿 is a generalized weakly δ-supplement in 𝑀 

then 𝑀 is also generalized weakly δ-supplemented. Conversely, if 𝐿 is generalized δ-coclosed 

and 𝑀  is  generalized weakly δ-supplemented then 𝐿  and 𝑁  are generalized weakly δ-

supplemented modules. 

Proof: Let 𝐿  be a generalized δ-supplement of 𝑋  in 𝑀.  So, 𝑀 = 𝐿 + 𝑋  and 𝐿 ∩ 𝑋 ≤ 𝛿(𝑀). 

Following this, 𝑀 𝐿 ∩ 𝑋⁄ = 𝐿
𝐿 ∩ 𝑋⁄ ⊕ 𝑋

𝐿 ∩ 𝑋⁄  can be written. Since 𝐿 is generalized weakly                      

δ-supplemented 𝐿
𝐿 ∩ 𝑋⁄  is weakly generalized δ-supplemented. By using the isomorphisms 

𝑋
𝐿 ∩ 𝑋⁄ ≅ 𝑋 + 𝐿

𝐿⁄ = 𝑀
𝐿⁄ ≅ 𝑁 , 𝑋

𝐿 ∩ 𝑋⁄  is generalized weakly δ-supplemented since 𝑁  is 

generalized weakly δ-supplemented. So 𝑀
𝐿 ∩ 𝑋⁄  is generalized weakly δ-supplemented. 

Additionally 𝑀 is also generalized weakly δ-supplemented since 𝐿 ∩ 𝑋 ≤ 𝛿(𝑀). Conversely, let 

assume that 𝑀 is generalized weakly δ-supplemented. Then 𝑀 𝐿⁄ ≅ 𝑁 is generalized weakly δ-

supplemented and 𝐿 is also generalized weakly δ-supplemented since 𝐿 is generalized δ-coclosed. 
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