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Abstract. Let I, a be two ideals of a Noetherian ring R. Let M be an R-module. There exists a systematic study of

the formal cohomology modules lim←−n∈N Hi
I (M/anM), 0≤ i ∈ Z. It is what will be done in this paper.
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1. Introduction

Throughout this paper, R is a commutative ring with non-zero identity. The theory of local

cohomology has developed for six decades after its introduction by Grothendieck. There exists

a relation between local cohomology and formal local cohomology. We study here this latter

module.

2. Preliminaries
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Let I be an ideal of R, and let M be an R-module. In [1], the ith local cohomology module

Hi
I (M) of M with respect to I is defined by

Hi
I (M) = lim−→

t∈N
ExtiR

(
R/It ,M

)
,

for all 0≤ i ∈ Z. Now, for a other ideal of R, consider the family of local cohomology modules

given by
{

Hi
I (M/anM)

}
n∈N. According to [4], for every n ∈ N, we have that there exists a

natural homomorphism

φn+1,n : Hi
I
(
M/an+1M

)
→ Hi

I (M/anM) .

These families form an inverse system. Their inverse limit that is given by lim←−n∈NHi
I (M/anM)

is called, according to [4], the ith formal local cohomology module of M with respect to a, and

will be denoted by Fi
a,I (M). Moreover, for a Noetherian local ring (R,m) and M an R-module

we have the Matlis dual module D(M)=HomR (M,E) of M, where E =E(R/m) is the injective

envelope of the residue field R/m.

The next definition will be used in the sequence of the paper.

Definition 2.1. Let (R,m,k) and (S,n, l) be two local rings. A ring homomorphism (R,m,k)→

(S,n, l) is a local homomorphism if mS⊂ n.

In the next section, the following remark will be used.

Remark 2.2.([4, Remark 4.6]) Note that, the short exact sequence

0→ anM/an+1M→M/an+1M→M/anM→ 0

induces an epimorphism Hi
I
(
M/an+1M

)
→ Hi

I (M/anM)→ 0, of non-zero R-modules for all

n ∈ N. Hence, the inverse limit lim←−n∈NHi
I (M/anM) is not zero.

The following definition will be used in the next section.

Definition 2.3.([2, Definition 3.1]) Let R be a Noetherian ring. Let I be an ideal of R and let M

be an R-module. The ith local homology module HI
i (M) of M with respect to I is defined by,

HI
i (M) := lim←−t∈NTorR

i (R/It ,M).
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3. Main Results

In this section, we have a result on formal local cohomology modules.

Theorem 3.1. Let (R,m,k) be a Noetherian local ring. Let (R,m,k)→ (S,n, l) be a local

homomorphism of local rings, with S a Noetherian ring, and let a be an ideal of R. Suppose

that M is a finitely generated S-module. If Fi
a,m (M) = 0, for each i ≥ 1, then D(M/anM) is a

flat R-module, for some n ∈ N.

Proof. By the hypothesis, for all i≥ 1, we have that:

Fi
a,m (M) := lim←−

n∈N
Hi
m (M/anM) = 0.

By the Remark , we have that there exists n ∈ N such that the local cohomology module

Hi
m (M/anM) = 0. Therefore, it follows, as given in prerequisites, that we have:

lim−→
t∈N

ExtiR
(
R/mt ,M/anM

)
= 0. (∗)

Thus, applying the Matlis dual module D(•) (see prerequisites) to (∗) we obtain that D
(

lim−→t∈NExtiR (R/m
t ,M/anM)

)
=

0. Now, by [3, Theorem 2.27], it follows that D
(

lim−→t∈NExtiR (R/m
t ,M/anM)

)
, which is equal

to

HomR

(
lim−→
t∈N

ExtiR
(
R/mt ,M/anM

)
,E(R/m)

)
,

is isomorphic to lim←−t∈NHomR
(
ExtiR (R/m

t ,M/anM) ,E(R/m)
)
, which in turn is equal to lim←−t∈ND

(
ExtiR (R/m

t ,M/anM)
)
.

By [5, Proposition 3.4.14(ii)], we have that:

D
(
ExtiR

(
R/mt ,M/anM

))∼= TorR
i
(
R/mt ,D(M/anM)

)
.

Therefore, by the Definition , we have that

Hm
i (D(M/anM)) = lim←−

t∈N
TorR

i
(
R/mt ,D(M/anM)

)
= 0.

By Remark , it follows that there exists t ∈ N such that

TorR
i
(
R/mt ,D(M/anM)

)
= 0, for all i≥ 1.

Thus, also we have TorR
i (R/m,D(M/anM)) = 0, for all i≥ 1 (∗∗).
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To end the theorem, it suffices to prove that TorR
i (N,D(M/anM)) = 0 for each finitely gen-

erated R-module N, and i≥ 1. This we achieve by an induction on dim(N).

When dim(N) = 0, let’s induce on the length of N. If lR (N) = 1, then N ∼= R/m, so the

desired result is the mentioned in (∗∗). When lR (N) ≥ 2, one can get an exact sequence of

R-modules 0→ R/m→ N→ N
′ → 0. Applying •⊗R D(M/anM) yields an exact sequence

TorR
i (R/m,D(M/anM))→ TorR

i (N,D(M/anM))→ TorR
i

(
N
′
,D(M/anM)

)
.

Since lR

(
N
′
)
= lR (N)−1, the induction hypothesis yields the vanishing.

Let d ≥ 1 be an integer such that for i ≥ 1 we have that the functor TorR
i (•,D(M/anM))

vanishes on finitely generated R-modules of dimension up to d−1. Let N be a finitely generated

R-module of dimension d. Consider the exact sequence of R-modules

0→ Γm (N)→ N→ N
′
→ 0,

and the induced exact sequence on TorR
i (•,D(M/anM)). Since lR (Γm (N)) is finite, it suffices

to verify the vanishing for N
′
. Thus, replacing N by N

′
, one may assume that depth(N) ≥ 1.

Let x in R be an N-regular element; then dim(N/(x)N) = dim(N)−1. In view of the induction

hypothesis, the exact sequence 0→ N x·→ N→ N/(x)N→ 0 induces an exact sequence

TorR
i
(
N,D

(
M̃
)) x·→ TorR

i
(
N,D

(
M̃
))
→ TorR

i
(
N/(x)N,D

(
M̃
))

= 0

for i≥ 1, where M̃ =M/anM. As an S-module TorR
i (N,D(M/anM)) is finitely generated:compute

it using a resolution of N by finitely generated free R-modules. Since, by Definition , xS is in the

maximal ideal of S, the exact sequence above implies TorR
i (N,D(M/anM)) = 0 by Nakayamas

lemma, for all i≥ 1. This completes the induction step.
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