

ON SOME PROPERTIES OF AB-ALGEBRAS

AREEJ TAWFEEQ HAMEED* AND BANEEN NAJAH ABBAS

Department of Mathematics, College of Education for Girls, University of Kufa, Iraq
Copyright © 2017 Hameed and Abbas. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: We introduce the notion of fuzzy AB-ideal of AB-algebra, several theorems and properties are stated and proved. The fuzzy relations on AB -algebras are also studied as homomorphic, isomorphic and normal.

Keywords: t-derivation on AB-algebras; characterized Kerd by t-derivations; weak fuzzy AB-subalgebras; weak fuzzy AB-ideal.

2010 Mathematics Subject Classification: 06F35, 03G25, 03B52.

1.Introduction:

The notion of BCC-algebras was proposed by W.A. Dudek in ([6], [8]). S.S. Ahn and H.S. Kim have introduced the notion of QS-algebras. A.T. Hameed and et al [3] introduced the notions of QS-ideal and fuzzy QS-ideal of QS-algebra. A.T. Hameed introduce new of abstract algebras: is called KUS-algebras and define its ideals as KUS-algebras in ([4]). In 2017, A.T. Hameed and B.N. Abbas. introduced the notion of AB-ideals in AB-algebras and described connections between such ideal and congruences [1]. A.T. Hameed and B.N. Abbas., considered the fuzzification of AB -ideals in

AB -algebras [2]. In this paper, we introduce the notion of t-derivation on AB-algebras and obtain some of related properties and we characterized Kerd by t-derivations

2 Basic definitions of AB-algebra:

We review some definitions and properties that will be useful in our results.
Definition 2.1 ([1]) Let X be a set with a binary operation "*" and a constant 0.Then(X, *, 0)

[^0]is called an AB-algebra if the following axioms satisfied for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$:
(i) $((\mathrm{x} * \mathrm{y}) *(\mathrm{z} * \mathrm{y})) *(\mathrm{x} * \mathrm{z})=0$,
(ii) $0 * \mathrm{x}=0$,
(iii) $\mathrm{x} * 0=\mathrm{x}$,

Note that: Define a binary relation (\leq) on X by letting $x * y=0$ if and only if, $x \leq y$.
Then (X, \leq) is a partially ordered set.
Proposition 2.2 ([1]) In any AB-algebra X, for all $x, y, z \in X$, the following properties hold:
(1) $(\mathrm{x} * \mathrm{y}) * \mathrm{x}=0$.
(2) $x \leq y$ implies $x * z \leq y * z$.
(3) $x \leq y$ implies $z * y \leq z * x$.

Remark2.3([1]) An AB-algebra is satisfies for all $x, y, z \in X$
(2) $(x *(x * y)) * y=0$.

Definition 2.4 ([1]) A nonempty subset S of anAB-algebra X is called $A B$-subalgebras of X if $x * y \in S$ whenever $x, y \in S$.

Definition 2.5([1]) Let X be an $A B$-algebra and $\varphi=I \subseteq X$. I is called an AB-ideal of X if it satisfies the following conditions:
(i) $0 \in I$,
(ii) $(x * y) * z \in I$ and $y \in I$ imply $x * z \in I$.

Definition 2.6 For an $A B-$ algebra X, we denote $x \wedge y=y *(y * x)$, for all $x, y \in X, x \wedge y \leq x, y$.
Definition 2.7 An AB-algebra is said to be commutative if and only if, satisfies for all x, y $\in X, x *(x * y)=y *(y * x)$, i.e, $x \wedge y=y \wedge x$.

Definition 2.8LetX be an AB-algebra. A map d: $\mathrm{X} \rightarrow \mathrm{X}$ is a left-right derivation (briefly,(1,r)-derivation) of X,
if it satisfies theidentityd $(x * y)=(d(x) * y) \wedge(x * d(y))$, for all $x, y \in X$,
if d satisfies the identityd $(x * y)=(x * d(y)) \wedge(d(x) * y)$, for all $x, y \in X$.
Then d is a right-left derivation (briefly, (r, l)-derivation) of X .
Moreover, if d is both a $(1, \mathrm{r})$ and (r, l)-derivation, then d is a derivation of X .
Example 2.9. Let $X=\{0,1,2,3\}$ be an $A B$-algebra in which the operation (*) is defined as follows:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	3	3	1	0

Define a map $\mathrm{d}: \mathrm{G} \rightarrow \mathrm{G} \operatorname{byd}(x)= \begin{cases}0 & \text { if } x=0,1,3, \\ 2 & \text { if } x=2 .\end{cases}$
And define a map $\mathrm{d}^{*}: \mathrm{G} \rightarrow \mathrm{G}$ byd $d^{*}(x) \begin{cases}0 & \text { if } x=0,1, \\ 2 & \text { if } x=2,3 .\end{cases}$
Then it is easily checked that d is both a (l, r) and (r, l)-derivation of G and d^{*} is a (r, l) - derivation but not a (1,r)-derivation of G.

Definition2.10 A derivation of a AB -algebra is said to be regular if $\mathrm{d}(0)=0$.

3.Main results

3.1. Basic definitions of weak $A B$-algebra:

We review the definition of weak AB -algebra and study some properties of it.
Definition 3.1.1 An algebra $(G ; *, 0)$ of type $(2,0)$ with a relation defined by (1) is a weak ABalgebra if and only if, for all $x, y, z \in G$ the following conditions are satisfied:
$\left(\mathrm{i}^{\prime}\right)((\mathrm{x} * \mathrm{y}) *(\mathrm{z} * \mathrm{y})) \leq(\mathrm{x} * \mathrm{z})$,
(ii') $\mathrm{x} \leq \mathrm{x}$,
(iii') $\mathrm{x} * 0=\mathrm{x}$,
From (i^{\prime}) it follows that in weak AB-algebras implications
(1) $x \leq y \Rightarrow x * z \leq y * z$
(2) $x \leq y \Rightarrow z^{*} y \leq z^{*} x$ are valid, for all $x, y, z \in G$.

Definition 3.1.2. Let $(G ; *, 0)$ be a weak AB-algebras, a subset A weak AB-algebra is called a AB-ideal if
a) $0 \in \mathrm{~A}$,
b) For all $\mathrm{y} \in \mathrm{A},(\mathrm{x} * \mathrm{y})^{*} \mathrm{z} \in \mathrm{A}$ implies $\mathrm{x} * \mathrm{z} \in \mathrm{A}$.

Note that: A special case of an $A B-i d e a l$ is an $A B$-ideal, i.e., a subset A such that $0 \in A$, and y,
$x * y \in A$ imply $x \in A$.
The main properties of this map are collected in the following theorem proved.
Remark 3.1.3. In the investigations of algebras connected with various types of logics an important role plays the self map $\phi(x)=0 * x$, for all $x \in G$.

Theorem 3.1.4. Let G be a weak $A B$-algebra. Then for all $x, y \in G$.
(1) $\phi^{2}(x) \leq x$,
(2) $x \leq y \Rightarrow \phi(x)=\phi(y)$,
(3) $\phi^{3}(x)=\phi(x)$,
(4) $\phi^{2}(x * y)=\phi^{2}(x)^{*} \phi^{2}(y)$

Definition 3.1.5. A weak $A B$-algebra in which $\operatorname{Ker} \phi(x)=\{0\}$ is called group-like or antigrouped.

Remark 3.1.6.

1- A weak AB-algebra $(\mathrm{G} ; \cdot, 0)$ is group-like if and only if, there exists a group $(\mathrm{G} ; *, 0)$ such that $x . y=x * y^{-1}$.
2- The set of all minimal (with respect to \leq) elements of G will be denoted by $\mathrm{I}(\mathrm{G})$. It is a AB-subalgebras of G. Moreover, $I(G)=\phi(G)=\left\{a \in G: \phi^{2}(a)=a\right\}$.

3- The set $B(a)=\{x \in G: a \leq x\}$, where $a \in I(G)$ is called the branch initiated by a.
4- Branches initiated by different elements are disjoint. Comparable elements are in the same branch, but there are weak AB -algebras containing branches in which not all elements are comparable.

Lemma 2.1.7.

1- Elements x and y are in the same branch if and only if, $x * y \in B(0)$.
2- $B(0)$ is a $A B$-subalgebras of G. It is a maximal $A B$-algebra contained in G.
3- In a weak $A B$-algebra G, for all $a, b \in I(G)$ we have $B(a) * B(b)=B(a * b)$.
4- The identity $\left(x^{*} \mathrm{y}\right)^{*} \mathrm{z}=(\mathrm{x} * \mathrm{z})^{*} \mathrm{y}$. plays an important role in the theory of BCI-algebras.
Definition 3.1.8. A weak $A B$-algebra G is called solid if the above condition is valid for all x, y belonging to the same branch and arbitrary $\mathrm{z} \in \mathrm{G}$.

Remark 3.1.9.

1- A simple example of a solid weak AB -algebra is a BCI -algebra.
2- BCK-algebra is a solid weak AB-algebra.
3- A solid AB-algebra is a BCK-algebra.

4- There are solid weak AB -algebras which are not BCI -algebras.
5- The smallest such weak AB -algebra has 5 elements.
Example 3.1.10. Consider the set $\mathrm{X}=\{0,1,2,3,4,5\}$ with the operation defined by the following table:

$*$	0	1	2	3	4	5
0	0	0	4	4	2	2
1	1	0	4	4	2	2
2	2	2	0	0	4	4
3	3	2	1	0	4	4
4	4	4	2	2	0	0
5	5	4	3	3	1	0

Since $\left(S ;{ }^{*}, 0\right)$, where $S=\{0,1,2,3,4\}$, is an AB-algebra, it is not difficult to verify that ($\mathrm{X} ;$ *, 0) is a weak AB-algebra. It is proper because $(5 * 3) * 2 \neq(5 * 2) * 3$. Simple calculations show that this weak AB -algebra is solid.

Proposition 3.1.11. In any solid weak AB-algebra we have
(a) $x *(x * y) * y$,
(b) $x^{*}\left(x^{*}\left(x^{*} y\right)\right)=x^{*} y$, for all x, y belonging to the same branch.

Corollary 3.1.12. In a solid weak $A B$-algebra from $x, y \in B(a)$ it follows
$x *(x * y), y *\left(y^{*} x\right) \in B(a)$.
Proposition 3.1.13. The map $\phi(x)=0 * x$ is an endomorphism of each solid weak AB-algebra.
Proposition 3.1.14. In each solid weak $A B-a l g e b r a$ for $x * y, ~ x * z(o r ~ x * y$ and $z * y)$ belonging to the same branch we have $\left(x^{*} y\right) *\left(x^{*} z\right) \leq\left(z^{*} y\right)$.

Proof.
Indeed, $\left(\left(\mathrm{x}^{*} \mathrm{y}\right) *\left(\mathrm{x}^{*} \mathrm{z}\right)\right) *\left(\mathrm{z}^{*} \mathrm{y}\right)=\left(\left(\mathrm{x}^{*} \mathrm{y}\right) *\left(\mathrm{z}^{*} \mathrm{y}\right)\right)^{*}\left(\mathrm{x}^{*} \mathrm{z}\right)=0$.

3.2.t-derivations in AB-algebras

The following definitions introduce the notion of t-derivation for a $A B$-algebra.
Definition 3.2.1Let X be a $A B$-algebra. Then for any $t \in X$, the self map $d_{t}: X \rightarrow X$ is called a right translation by t and is denoted by R_{t} if $d_{t}(x)=x * t$, for all $x \in X$.
Example3.2.2LetG $=\{0,1,2,3,4\}$ bean AB -algebra with the following Cayley table:

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	0	0	1
2	2	2	0	0	1
3	3	2	1	0	1
4	4	4	4	4	0

For any $t \in X$, define a self map $d t: G \rightarrow G$ by

$$
d_{t}(x)=x * t=\left\{\begin{array}{lc}
0 & \text { if } x=0,1,2,3 \\
4 & \text { if } x=4
\end{array}\right.
$$

Then it is easy to check that d_{t} is a t-derivation on G.(i.e. d_{t} is $(1, r)$ and(r, 1$)-\mathrm{t}$ derivations)

Example 3.2.3Let $G=\{0, a, b\}$ be anAB-algebra with the following Cayley table:

$*$	0	a	b
0	0	0	0
a	a	0	a
b	b	b	0

For any $\mathrm{t} \in \mathrm{X}$, define a self map
$\mathrm{d}_{\mathrm{t}}: \mathrm{G} \rightarrow \operatorname{Gbyd}_{t}(x)=x * t=\left\{\begin{array}{lc}0 & \text { if } x=0, a \\ b & \text { if } x=b\end{array}\right.$
Then it is easily checked that d_{t} is both (l, r) and (r, l) - t -derivation of G .

Definition 3.2.4A self map d_{t} of an $A B$-algebra X is said to be t-regular if $d_{t}(0)=0$.
Theorem 3.2.5A (l, r)-t-derivation of an AB-algebra X is t -regular.
Proof.
$\mathrm{d}_{\mathrm{t}}(0)=\mathrm{d}_{\mathrm{t}}(0 * \mathrm{x})=\left(\mathrm{d}_{\mathrm{t}}(0) * \mathrm{x}\right) \wedge\left(0 * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right)=((0 * \mathrm{t}) * \mathrm{x}) \wedge(0 *(\mathrm{x} * \mathrm{t}))$

ON SOME PROPERTIES OF AB-ALGEBRAS

$$
=((0 * t) * x) \wedge 0=0 *(0 *((0 * t) * x))=0 .
$$

Theorem 3.2.6A (r, l)-t-derivation of an AB-algebra X is t-regular.
Proof.

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{t}}(0)=\mathrm{d}_{\mathrm{t}}(0 * \mathrm{x})=\left(0 * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right) \wedge\left(\mathrm{d}_{\mathrm{t}}(0) * \mathrm{x}\right) \\
& =0 \wedge((0 * \mathrm{t}) * \mathrm{x})=((0 * \mathrm{t}) * \mathrm{x}) *(((0 * \mathrm{t}) * \mathrm{x}) * 0) \\
& =((0 * \mathrm{t}) * \mathrm{x}) *((0 * \mathrm{t}) * \mathrm{x})=0 .
\end{aligned}
$$

Corollary 3.2.7A t-derivation of an AB -algebra X is t -regular.
Proposition 3.2.8Let d_{t} be a self map of an AB-algebra X. Then
i) If dis a (l, r)-t-derivation of X, then $d_{t}(x)=d_{t}(x) \wedge x$, for all $x \in X$.
ii) If dis a (r, l)-t-derivation of X, then $d_{t}(x)=x \wedge d_{t}(x)$ for all $x \in X$.

Proof.
(i). Let $\mathrm{d}_{\mathrm{t}} \mathrm{be}$ a ($\left.1, \mathrm{r}\right)$-t-derivation of X , then
$\mathrm{d}_{\mathrm{t}}(\mathrm{x})=\mathrm{d}_{\mathrm{t}}(\mathrm{x} * 0)=\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * 0\right) \wedge\left(\mathrm{x}^{2} * \mathrm{~d}_{\mathrm{t}}(0)\right)=\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \wedge(\mathrm{x} * 0)=\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \wedge \mathrm{x}$.
(ii). Let d_{t} be a (r, l)-t-derivation of X, Then
$\mathrm{d}_{\mathrm{t}}(\mathrm{x})=\mathrm{d}_{\mathrm{t}}(\mathrm{x} * 0)=\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(0)\right) \wedge\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * 0\right)=(\mathrm{x} * 0) \wedge \mathrm{d}_{\mathrm{t}}(\mathrm{x})=\mathrm{x}^{2} \wedge \mathrm{~d}_{\mathrm{t}}(\mathrm{x})$.
Theorem 3.2.9Let dtbe a t-regular (r, l)-t-derivation of an AB-algebra X. Then, the following hold:
i) $\quad d_{t}(x) \leq x$, for all $x \in X$.
ii) $d_{t}(x) * y \leq x * d_{t}(y)$, for all $x, y \in X$.
iii) $d_{t}(x * y)=d_{t}(x) * y \leq d_{t}(x) * d_{t}(y)$, for all $x, y \in X$.
iv) $d_{t}^{-1}(0)=\operatorname{Ker}\left(d_{t}\right)=\left\{x \in X: d_{t}(x)=0\right\}$ is a AB-subalgebras of X.
v) $d_{t}\left(d_{t}(x)\right) \leq x$.
vi) $\mathrm{d}_{\mathrm{t}}\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right)=0$.

Proof.

(i). For any $x \in X$, we have:
$\mathrm{d}_{\mathrm{t}}(\mathrm{x})=\mathrm{d}_{\mathrm{t}}(\mathrm{x} * 0)=\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(0)\right) \wedge\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * 0\right)=(\mathrm{x} * 0) \wedge \mathrm{d}_{\mathrm{t}}(\mathrm{x})=\mathrm{x} \wedge \mathrm{d}_{\mathrm{t}}(\mathrm{x}) \leq \mathrm{x}$.
(ii). Since $d_{t}(x) \leq x$ for all $x \in X$, then $d_{t}(x) * y \leq x * y \leq x * d_{t}(y)$ and hence the proof follows.
(iii). For any $x, y \in X$, we have
$\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{y})=\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right)=\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right) *\left(\left(\mathrm{~d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right) *\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right)\right)$
$=\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right) * 0=\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right) \leq \mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})$.
(iv). Let $x, y \in \operatorname{Ker}\left(d_{t}\right) \Rightarrow d_{t}(x)=0=d_{t}(y)$.From (iii), we have $d_{t}(x * y) \leq d_{t}(x) * d_{t}(y)$ $=0 * 0=0$. implying $d_{t}(x * y) \leq 0$ and so $d_{t}(x * y)=0$.

Consequently $\operatorname{Ker}\left(\mathrm{d}_{\mathrm{t}}\right)$ is a AB -subalgebras of X .
(v). $\mathrm{d}_{\mathrm{t}}\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x})\right)=\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{t}) \leq \mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{t})=(\mathrm{x} * \mathrm{t}) *(\mathrm{t} * \mathrm{t})=(\mathrm{x} * \mathrm{t}) * 0=(\mathrm{x} * \mathrm{t}) \leq \mathrm{x}$.
(iv) $\mathrm{d}_{\mathrm{t}}\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right)=\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})=0$.

Proposition 3.2.10Let X be an $A B$-algebra and d_{t} a t-derivation. If $y \in \operatorname{Ker}\left(d_{t}\right)$ and $x \in X$, then $x \wedge y \in \operatorname{Ker}\left(d_{t}\right)$.

Proof.

Let d_{t} be a $(1, r)-t$-derivation and $y \in \operatorname{Ker}\left(d_{t}\right)$. Then we get $d_{t}(y)=0$, and so

$$
\begin{aligned}
\mathrm{d}_{\mathrm{t}}(\mathrm{x} \wedge \mathrm{y}) & =\mathrm{d}_{\mathrm{t}}(\mathrm{y} *(\mathrm{y} * \mathrm{x})) \\
& =\left(\mathrm{d}_{\mathrm{t}}(\mathrm{y}) *(\mathrm{y} * \mathrm{x})\right) \wedge\left(\mathrm{y} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y} * \mathrm{x})\right) \\
& =(0 *(\mathrm{y} * \mathrm{x})) \wedge\left(\mathrm{y} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y} * \mathrm{x})\right) \\
& =0 \wedge\left(\mathrm{y} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y} * \mathrm{x})\right) \\
& =\left(\mathrm{y} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y} * \mathrm{x})\right) *\left(\left(\mathrm{y} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y} * \mathrm{x})\right) * 0\right) \\
& =\left(\mathrm{y} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y} * \mathrm{x})\right) *\left(\mathrm{y} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y} * \mathrm{x})\right)=0
\end{aligned}
$$

Hence we have $x \wedge y \in \operatorname{Ker}\left(d_{t}\right)$. Similarly, we can prove in case of (r, l)-t-derivation.
Proposition 3.2.11 Let X be a commutative $A B$-algebra and d_{t} a t-derivation. If $x \leq y$ and y $\in \operatorname{Ker}\left(d_{t}\right)$, Then $x \in \operatorname{Ker}\left(d_{t}\right)$.

Proof.

Let $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \in \operatorname{Ker}\left(\mathrm{d}_{\mathrm{t}}\right)$. Then we get $\mathrm{x} * \mathrm{y}=0$ and $d_{\mathrm{t}}(\mathrm{y})=0$, and so
$d_{t}(x)=d_{t}(x * 0)=d_{t}(x *(x * y))=d_{t}(y *(y * x))=d_{t}(y) *(y * x)=0 *(y * x)=0$
Hence we have $x \in \operatorname{Ker}\left(d_{t}\right)$.
Proposition 3.2.12Let X be an $A B$-algebra and d_{t} a t-derivation. If $x \in \operatorname{Ker}\left(d_{t}\right)$, we have $x * y$ $\in \operatorname{Ker}\left(\mathrm{d}_{\mathrm{t}}\right)$,for all $\mathrm{y} \in \mathrm{X}$.

Proof.

Let $\mathrm{x} \in \operatorname{Ker}\left(\mathrm{d}_{\mathrm{t}}\right)$. Then $\mathrm{d}_{\mathrm{t}}(\mathrm{x})=0$. Thus we have $\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{y})=\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}=0 * \mathrm{y}=0$ which implies $\mathrm{x} * \mathrm{y} \in \operatorname{Ker}\left(\mathrm{d}_{\mathrm{t}}\right)$.

ON SOME PROPERTIES OF AB-ALGEBRAS
Proposition 3.2.13LetX be a commutative AB-algebra and d_{t} at-derivation. Then $\operatorname{Ker}\left(\mathrm{d}_{\mathrm{t}}\right)$ is an ideal of \mathbf{X}.

Proof.

Clearly, $d_{t}(0)=0$. Let $\mathrm{x} * \mathrm{y} \in \operatorname{Ker}\left(\mathrm{d}_{\mathrm{t}}\right)$ and $\mathrm{y} \in \operatorname{Ker}\left(\mathrm{d}_{\mathrm{t}}\right)$. Then we get $\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{y})=0$ and $\mathrm{d}_{\mathrm{t}}(\mathrm{y})=0$, and so
$\mathrm{d}_{\mathrm{t}}(\mathrm{x})=\mathrm{d}_{\mathrm{t}}(\mathrm{x} * 0)=\mathrm{d}_{\mathrm{t}}(\mathrm{x} *(\mathrm{x} * \mathrm{y}))=\mathrm{d}_{\mathrm{t}}(\mathrm{y} *(\mathrm{y} * \mathrm{x}))=\mathrm{d}_{\mathrm{t}}(\mathrm{y}) *(\mathrm{y} * \mathrm{x})=0 *(\mathrm{y} * \mathrm{x})=0 \Rightarrow \mathrm{x} \in \operatorname{Ker}\left(\mathrm{d}_{\mathrm{t}}\right)$.
Definition 3.2.14Let d_{t} be a t-derivation of an $A B$-algebra X. An $A B$-ideal A of X is said to be $d_{t}-$ invariant if $d_{t}(A) \subseteq A$, where $d_{t}(A)=\left\{d_{t}(x) \mid x \in A\right\}$.

Theorem 3.2.15Let d_{t} be a t-derivation of an AB-algebra X. Then every ideal A of X is $d_{t}-$ invariant.

Proof.

Let A be an $A B$-ideal of an $A B$-algebra X. Let $y \in d_{t}(A)$. Then $y=d_{t}(x)$, for some $x \in A$. It follows that $\mathrm{y} * \mathrm{x}=\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{x}=0 \in \mathrm{~A}$, which implies $\mathrm{y} \in \mathrm{A}$.

Thus $d_{t}(A) \subseteq A$. Hence A is d_{t}-invariant.

3.3. Commutative solid weak AB-algebras

In any BCK-algebra G we can define a binary operation \wedge by putting $x \wedge y=y *(y * x)$, for all x, $y \in G$. A BCK-algebra satisfying the identity
(1) $x *\left(x^{*} y\right)=y^{*}\left(y^{*} x\right)$,i.e., $y \wedge x=x \wedge y$, is called commutative.

A commutative BCK-algebra is a lower semi lattice with respect to the operation \wedge.This definition cannot be extended to BCI -algebras, AB -algebras and weak AB -algebras since in any weak AB-algebra satisfying (1) we have $0 *\left(0^{*} x\right)=x *(x * 0)=0$, i.e., $\phi^{2}(x)=0$, for every $x \in G$. Thus $\phi(x)=\phi^{3}(x)=0$, by Theorem (3.1.7). Hence in this algebra $0 \leq x$ for every $x \in G$.

This means that this algebra is a commutative $A B$-algebra. But in any $A B$-algebra G we have 0 $\leq y^{*} x$ for all $x, y \in G$, which together with (3) implies $y *(y * x) \leq y$. Thus a commutative ABalgebra satisfies the inequality $\left(y^{*} x\right)^{*}\left(x^{*} y\right)=y *\left(y^{*} x\right) \leq y$.
Consequently, it satisfies the identity $\left(x^{*}\left(x^{*} y\right)\right)^{*} y=0$, so it is a BCK-algebra. Hence a commutative (weak) AB-algebra is a commutative BCK-algebra. Analogously, a commutative BCI-algebra is a commutative BCK-algebra. But there are weak AB-algebras in which the condition (1) is satisfied only by elements belonging to the same branch.

Example 3.3.1A weak AB-algebra defined by the following table:

$*$	0	a	b	c	d
0	0	0	0	c	c
a	a	0	0	c	c
b	b	a	0	d	c
c	c	c	c	0	0
d	d	c	c	a	0

has two branches: $B(0)=\{0, a, b\}$ and $B(c)=\{c, d\}$. It is not difficult to verify that in this weak AB -algebra (1) is satisfied only by elements belonging to the same branch.

Definition 3.3.2A weak AB-algebra in which Remark (3.1.9(5)) is satisfied by elements belonging to the same branch is called branch wise commutative.

Theorem 3.3.3 For a solid weak AB -algebra G the following conditions are equivalent:
(1) G is branch wise commutative,
(2) $x^{*} y=x *\left(y^{*}\left(y^{*} x\right)\right)$ for x, y from the same branch,
(3) $x=y^{*}\left(y^{*} x\right)$) for $x \leq y$,
(4) $\left.x^{*}\left(x^{*} y\right)\right)=y^{*}\left(y^{*}\left(x *\left(x^{*} y\right)\right)\right)$, for x, y from the same branch,
(5) each branch of G is a semilattice with respect to the operation $x \wedge y=y *(y * x)$.

In the proof of the next theorem we will need the following well-known result from the theory of BCK-algebras.

Lemma 3.3.4If p is the greatest element of a commutative BCK-algebra G , then $(\mathrm{G} ; \leq)$ is a distributive lattice with respect to the operations
$\left.x \wedge y=y^{*}\left(y^{*} x\right)\right)$ and $x \vee y=p^{*}\left(\left(p^{*} x\right) \wedge\left(p^{*} y\right)\right)$.
Theorem 3.3.5 In a solid branch wise commutative weak AB-algebra G, for every $p \in G$, the set $A(p)=\{x \in G: x \leq p\}$ is a distributive lattice with respect to theoperations $\left.x \wedge y=y^{*}\left(y^{*} x\right)\right)$ and $x \vee y=p^{*}\left(\left(p^{*} x\right) \wedge\left(p^{*} y\right)\right)$.
Proof.
(A). We prove that $\left(A_{p} ; \leq\right)$, where $A_{p}=\left\{p^{*} x: x \in A(p)\right\}$, is a distributive lattice.

ON SOME PROPERTIES OF AB-ALGEBRAS
First, we show that A_{p} is a $A B$-subalgebras of $B(0)$. It is clear that $0=p^{*} p \in A_{p}$ and $A(p) \subseteq B(a)$ for some $a \in I(G)$. Thus $A_{p} \subset B(0)$. Obviously $a \leq x$ for everyx $\in A(p)$.

Consequently, $p^{*} x \leq p^{*} a$. Hence p^{*} a is the greatest element of A_{p}.
Let $p^{*} x, p^{*} y$ be arbitrary elements of A_{p}. Then obviously $y^{*} x \in B(0)$ and $z=p *\left(y^{*} x\right) \in A_{p}$ because $z^{*} p=\left(p *\left(y^{*} x\right)\right)^{*} p=0$.
Moreover, $\mathrm{z}^{*} \mathrm{x}=\left(\mathrm{p}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{x}=\left(\mathrm{p}^{*} \mathrm{x}\right)^{*}\left(\mathrm{y}^{*} \mathrm{x}\right) \leq \mathrm{p}^{*} \mathrm{y}$, by $\left(\mathrm{i}^{\prime}\right)$. Since
$\left(\left(\mathrm{p}^{*} \mathrm{x}\right) *\left(\mathrm{p}^{*} \mathrm{z}\right)\right) *\left(\mathrm{z}^{*} \mathrm{x}\right)=\left(\left(\mathrm{p}^{*} \mathrm{x}\right)^{*}\left(\mathrm{z}^{*} \mathrm{x}\right)\right) *\left(\mathrm{p}^{*} \mathrm{z}\right)=0$, we also have
$\left(\left(p^{*} \mathrm{x}\right)^{*}\left(\mathrm{p}^{*} \mathrm{z}\right)\right) \leq \mathrm{z}^{*} \mathrm{x} \leq \mathrm{p}^{*} \mathrm{y}$.
Therefore, $0=\left(\left(p^{*} \mathrm{x}\right)^{*}\left(\mathrm{p}^{*} \mathrm{z}\right)\right) *\left(\mathrm{p}^{*} \mathrm{y}\right)=\left(\left(\mathrm{p}^{*} \mathrm{x}\right)^{*}\left(\mathrm{p}^{*} \mathrm{z}\right)\right)^{*}\left(\mathrm{p}^{*} \mathrm{z}\right)$, i.e., (2) $\left(\left(p^{*} \mathrm{x}\right) *\left(\mathrm{p}^{*} \mathrm{y}\right)\right) \leq \mathrm{p}^{*} \mathrm{z}$.

On the other hand, since a weak $A B$-algebra G is branch wise commutative, for every $y \in A(p)$, according to Theorem (3.3.3), we have $\mathrm{p}^{*}\left(\mathrm{p}^{*} \mathrm{y}\right)=\mathrm{y}$.
Hence $\left(\left(p^{*} x\right)^{*}\left(p^{*} y\right)\right)=\left(p^{*}\left(p^{*} y\right)\right)^{*} x=y^{*} x$.
But $\left(\mathrm{p}^{*} \mathrm{z}\right)^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)=\mathrm{p}^{*}\left(\mathrm{p}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)=\left(\mathrm{p}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*}\left(\mathrm{p}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)=0$.
Thus $p^{*} z \leq y^{*} x=\left(p^{*} x\right)^{*}\left(p^{*} y\right)$, which together with (2) gives $\left(p^{*} x\right)^{*}\left(p^{*} y\right)=p^{*} z$. Hence A_{p} is a $A B$-subalgebras of $B(0)$.
Obviously, $B(0)$ as anAB-algebra contained in G is commutative, and consequently it is a commutative BCK-algebra. Thus A_{p} is a commutative BCK-algebra, too. By Lemma (3.3.4), ($\mathrm{A}_{\mathrm{p}} ; \leq$) is a distributive lattice.
(B). Now, we show that $(\mathrm{A}(\mathrm{p}) ; \leq)$ is a distributive lattice. Clearly, p is the greatestelement of $A(p)$.Let $x, y \in A(p)$. Then $\left(p^{*} x\right),\left(p^{*} y\right) \in A_{p}$ and from the fact that $\left(A_{p} ; \leq\right)$ is a lattice itfollows that there exists the last upper bound $\mathrm{p}^{*} \mathrm{z} \in \mathrm{A}_{\mathrm{p}}$, i.e.,
(1) $\left(p^{*} x\right) V_{p}\left(p^{*} y\right)=p^{*} z$.

Observe that for $x, y \in A(p)$ we have
(2) $\mathrm{p}^{*} \mathrm{y} \leq \mathrm{p}^{*} \mathrm{x} \Leftrightarrow \mathrm{x} \leq \mathrm{y}$.

Indeed, in view of (3), $\mathrm{x} \leq \mathrm{y}$ implies $\mathrm{p}^{*} \mathrm{y} \leq \mathrm{p}^{*} \mathrm{x}$. Similarly, $\mathrm{p}^{*} \mathrm{y} \leq \mathrm{p}^{*} \mathrm{x}$ implies
$p *\left(p^{*} x\right) \leq p^{*}\left(p^{*} y\right)$.
But G is branchwise commutative, hence by Theorem (4.3)., for every $v \in A(p)$, we have $p^{*}\left(p^{*} v\right)=v$. Therefore $x=p^{*}\left(p^{*} x\right) \leq p^{*}\left(p^{*} y\right)=y$.
From (3) and (4) it follows that z is the greatest lower bound for x and y. Hencex $\wedge y=z$.
Moreover, we have $\mathrm{p}^{*}(\mathrm{x} \wedge \mathrm{y})=\mathrm{p}^{*} \mathrm{z}$ and $\left(\mathrm{p}^{*} \mathrm{x}\right) \mathrm{V}_{\mathrm{p}}\left(\mathrm{p}^{*} \mathrm{y}\right)=\mathrm{p}^{*} \mathrm{z}$, which implies
(3) $p^{*}(x \wedge y)=\left(p^{*} x\right) \vee_{p}\left(p^{*} y\right)$.

Analogously, we can prove that for all $x, y \in A(p)$ there exists $x V_{p} y$ and
(4) $p^{*}\left(x \vee_{p} y\right)=\left(p^{*} x\right) \wedge(p * y)$.

Therefore ($\mathrm{A}(\mathrm{p}) ; \leq)$ is a lattice.
Since (5) and (6) are satisfied in A_{p} and $\left(A_{p} ; \leq\right)$ is a distributive lattice, we have
$\left(p^{*} \mathrm{x}\right) \mathrm{V}_{\mathrm{p}}\left(\left(\mathrm{p}^{*} \mathrm{y}\right) \wedge\left(\mathrm{p}^{*} \mathrm{z}\right)\right)=\left(\left(\mathrm{p}^{*} \mathrm{x}\right) \mathrm{V}_{\mathrm{p}}\left(\mathrm{p}^{*} \mathrm{y}\right)\right) \wedge\left(\left(\mathrm{p}^{*} \mathrm{x}\right) \mathrm{V}_{\mathrm{p}}\left(\mathrm{p}^{*} \mathrm{z}\right)\right)$ This, in view of (5) and (6), gives $p^{*}\left(x \wedge\left(y \vee_{p} z\right)\right)=p^{*}\left((x \wedge y) \vee_{p}(x \wedge z)\right)$.

Consequently, $\mathrm{p}^{*} \mathrm{p}^{*}\left(\mathrm{x} \wedge\left(\mathrm{y} \vee_{\mathrm{p}} \mathrm{z}\right)\right)=\mathrm{p}^{*} \mathrm{p}^{*}\left((\mathrm{x} \wedge \mathrm{y}) \vee_{\mathrm{p}}(\mathrm{x} \wedge \mathrm{z})\right)$ and
$x \wedge\left(y \vee_{p} z\right)=(x \wedge y) \vee_{p}(x \wedge z)$, because $x \wedge\left(y \vee_{p} z\right),(x \wedge y) \vee_{p}(x \wedge z) \in A(p)$. This means
that $(\mathrm{A}(\mathrm{p}) ; \leq)$ is adistributive lattice.In this lattice
$x \vee_{p} y=p^{*}\left(p^{*}\left(x \vee_{p} y\right)\right)=p^{*}\left(\left(p^{*} x\right) \wedge\left(p^{*} y\right)\right)$.
This completes the proof.

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] A.T.Hameed and B.N.Abbas, AB-ideals of AB-algebra, Appl. Math. Sci. 11(35)(2017), 1715-1723
[2] A.T.Hameed and B.N.Abbas, Fuzzy AB-ideals of AB-algebra, in press.
[3] A.T.Hameed, Fuzzy ideals of QS-algebras, Int. J. Algebra, 11(1)(2007), 43-52.
[4] A.T.Hameed, Fuzzy ideals of some algebras, PH. Sc. Thesis, Ain Shams University, Faculty of Sciences, Egypt, 2005.
[5] S.S. Ahn and H.S.Kim, On QS-algebras, J. Chungcheong Math. Soc., 12 (1999), 33-41.
[6] W. A.Dudek and Y. B. Jun, Fuzzy BCC-ideals in BCC-algebras, Math. Montisnigri , 10 (1999), 21 - 30.
[7] W.A.Dudek and J.Thomys, On some generalizations of BCC-algebras, Intern. J. Comp. Math. 89(2012), 1596-1606.
[8] W.A.Dudek, On BCC-algebras, Logique et Analyse ,129-131(1991),103-111.
[9] Y.Komori, The class of BCC-algebras is not a variety, Math. Japon., 29(1984),390-394.
[10] Mostafa S. M., Abdel Naby M. A. Abdel-Halim F. and Hameed A .T., On KUS-algebras, Int. J. Algebra 7(3)(2003), 131 - 144.
[11]Mostafa S. M., Hameed A. T., and Abed A.H., Fuzzy KUS-ideals of KUS-algebra, Basra J. Sci. (A), 34 (2)(2006), 73-84.

[^0]: *Corresponding author
 E-mail address: areej.tawfeeq@uokufa.edu.iq
 Received June 12, 2017

