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Abstract. A right module M over an associative ring with unity is a QTAG-module if every finitely generated

submodule of any homomorphic image of M is a direct sum of uniserial modules. The main aim of this paper is

to investigate the direct sums of countably generated QTAG-modules and obtain some significant results related to

these modules.
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1. INTRODUCTION

Different concepts for groups like purity, projectivity, injectivity, height etc. have been gen-

eralized for modules. In generalizing the results of groups for modules sometimes we find that

they are not true for modules. So, for establishing such generalizations we impose some condi-

tions either on the module or on the underlying ring. Here we impose a condition on modules

that every finitely generated submodule of any homomorphic image of the module is a direct

sum of uniserial modules while the rings are associative with unity. After these conditions many
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elegant results of groups can be proved for QTAG-modules which are not true in general. Many

results of this paper are the generalization of the paper [3].

The study of QTAG-modules was initiated by Singh [8]. Mehdi et al. [2] worked a lot

on these modules. They introduced many concepts and generalized different notions for these

modules and contributed to the development of the theory of QTAG-modules. Yet there is much

to explore.

Singh [8] proved that a QTAG-module M is a direct sum of uniserial modules if and only

if M is the union of an ascending chain of bounded submodules. This indicates that M is a

direct sum of uniserial modules if and only if Soc(M) =
⊕

k∈ω

Sk and H(x) = k for every x ∈ Sk.

This motivates us to define summable modules. A reduced QTAG-module M of length σ is

said to be summable if Soc(M) =
⊕

ρ<σ

Sρ and the nonzero elements of Sρ are contained in

(Hρ(M) \Hρ+1(M)) [1]. This implies that a QTAG-module M of length ω is a direct sum of

uniserial modules if and only if it is summable.

Here we investigate the direct sums of countably generated QTAG-modules. The following

example shows that a summable λ -module (ω ≤ λ ) need not be a direct sum of countably

generated modules. Let Mα be the countably generated QTAG-module of length α, having

each of its nonzero Ulm-invariant equal to N0. If γ < λ , then for each β (α < β < γ) Mα can

be embedded in Mβ such that Hµ(Mβ )∩Mα = Hµ(Mα) for all µ. For a limit ordinal γ, Mγ '⋃
α<γ

Mα and Hµ(Mβ )∩Mα = Hµ(Mα) for α < β ≤ γ. If γ is a non limit ordinal, γ − 1 is

a limit ordinal and Hγ−1(Mγ)-high submodule of Mγ is isomorphic to Mγ−1. If γ − 2 exists

then we consider Mγ−1, a direct summand of Mγ i.e. Mγ = Mγ−1⊕Hγ−1(Mγ) for α < β ≤ γ .

As α ranges over the countable ordinals the modules Mα are embedded in one another. Let

M =
⋃

α<λ

Mα . Now M is summable, M/Hα(M) is a direct sum of countably generated modules

for each countable α, but M is not a direct sum of countably generated modules.

This made us investigate the other conditions as summability is not enough. The condition

that M/Hρ(M) should be a direct sum of countably generated modules for all ρ less than the

length of M ensures that M is a direct sum of countably generated modules. If ρ is a countable

ordinal and M/Hρ(M) and Hρ(M) are h-reduced countably generated QTAG-modules then M
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is a direct sum of countably generated QTAG-modules. Therefore we focused on the QTAG-

modules of limit length.

In section 3 of this article we prove some significant results related to the modules which

are the direct sums of countably generated modules. Section 4 deals with some applications of

these results.

2. PRELIMINARIES

Throughout this paper, all rings are associative with unity and modules M are uni-

tal QTAG-modules. An element x ∈ M is uniform, if xR is a non-zero uniform (hence

uniserial) module and for any R-module M with a unique composition series, d(M) de-

notes its composition length. For a uniform element x ∈ M, e(x) = d(xR) and HM(x) =

sup
{

d
(

yR
xR

)
| y ∈M, x ∈ yR and y uniform

}
are the exponent and height of x in M, respec-

tively. Hk(M) denotes the submodule of M generated by the elements of height at least k and

Hk(M) is the submodule of M generated by the elements of exponents at most k. A submod-

ule N of M is h-pure [5] in M if N ∩Hk(M) = Hk(N), for every integer k ≥ 0. A submodule

N of M is said to be isotype in M, if it is σ -pure for every ordinal σ [4]. M is h-divisible if

M = M1 =
∞⋂

k=0
Hk(M) and it is h-reduced if it does not contain any h-divisible submodule. In

other words it is free from the elements of infinite height.

For a QTAG-module M, there is a chain of submodules M0 ⊃ M1 ⊃ M2 · · · ⊃ Mτ = 0, for

some ordinal τ . Mσ+1 = (Mσ )1, where Mσ is the σ th-Ulm submodule of M. Several results

which hold for TAG-modules also hold good for QTAG-modules [8]. Notations follows the

standard work of Fuchs [6, 7].

3. MAIN RESULTS

This section deals with some interesting results and consequences. We start with the follow-

ing:

Definition 3.1. A submodule N of a QTAG-module M is height finite, if the heights of the

elements of N take only finitely many values.
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Remark 3.1. We may observe that if M is a summable QTAG-module of countable length

then Soc(M) is the union of an ascending chain of height finite submodules. Since Soc(M) =⊕
ρ<σ

Sρ , Sρ ⊆ (Hρ(M)\Hρ+1(M))∪{0} if ρ1, ρ2, . . . ,ρn, . . . are the ordinals less than σ , then

Soc(M) =
∞⋃

k=1
Tk, Tk = Sρ1⊕ . . .⊕Sρk and Tk are height finite.

We prove the following lemma:

Lemma 3.1. Let N be a submodule of a QTAG-module M such that

(i) Hα(M/N) =
Hα(M)+N

N
, for every α < β ;

(ii) M/N is countably generated of length ≤ β .

If K/N is finitely generated submodule of M/N, then K also satisfies these two conditions.

Proof. Assume that Hα(M/K) =
Hα(M)+K

K
, for all α < γ < β . Consider x+K ∈ Hγ(M/K).

If γ = α +1, then there exists y+K ∈ Hα(M/K) =
Hα(M)+K

K
such that d

(
(y+K)R
(x+K)R

)
= 1,

therefore y ∈ Hα(M) and x+K ∈
Hγ(M)+K

K
. Otherwise, if γ is a limit ordinal, then for each

α < γ, x+K = z+K, where z ∈ Hα(M). Thus x− z = u+ v where u ∈ K, v ∈ N. Since u

assumes only finitely many values, there is a fixed u0 ∈ K and a set T ⊆ {α | α < γ} such that

supT = γ and x−z= u0+v where v∈N. Now x−u0+K = z+N ∈ Hα(M)+N
N

. Since supT =

γ, x−uo +N = z+N ∈ Hα(M)+N
N

for all α ∈ T and x−uo +N ∈ Hγ(M/N) =
Hγ(M)+N

N
.

Now we may write x−uo +N = z+N with z ∈ Hγ(M) and x+K = z+K ∈ Hα(M)+K
K

.

To prove the second condition it is sufficient to prove Hβ (M/K) = 0 i.e., length of M/K is β .

For x+K ∈Hβ (M/K) we find u ∈ K such that x−u+N ∈Hβ (M/N) = 0. Therefore x−u ∈ N

or x+K = 0. �

Theorem 3.1. If N is a submodule of a QTAG-module M such that

(i) Hα(M/N) =
Hα(M)+N

N
for every α < β ;

(ii) Hα(M)∩N = Hα(N) for every α < β ;

(iii) M/N is countably generated of length ≤ β ;

then N is a summand of M.



ON COUNTABLY GENERATED QTAG-MODULES 5

Proof. Since M/N is countably generated, we have to show that if K/N is a finitely generated

submodule of M/N, every height increasing homomorphism f : K → N ( f |N = IN) can be

extended to a height increasing homomorphism f̄ : K + xR→ N whenever y ∈ K such that

d
(

xR
yR

)
= 1. Consider x 6∈K. Now HM/K(x+K) =α, for some α < β . Therefore x+K = z+K

with z ∈ Hα(M). Since u ∈ K where d
(

zR
uR

)
= 1 and xR+K = zR+K, x ∈ Hα(M). Now

HM(x+ v)≤ HM/K(x+K) = HM(x) = α for all v ∈ K. Again α +1 = β , we have w ∈ Hα(N)

such that w′ = f (y)∈Hα+1(M)∩N = Hα+1(N) where d
(

wR
w′R

)
= 1. Now we may define f̄ on

K+xR such that f̄ (xr+u) = wr+ f (u), r ∈ R, u∈K. Here f̄ is a well defined height increasing

homomorphism, which is an extension of f . �

As a corollary to the Theorem 3.1, we have the following theorem:

Theorem 3.2. Let N be a submodule of a QTAG-module M such that

(i)
M/N

Hβ (M/N)
is countably generated;

(ii)
N +Hβ (M)

Hβ (M)
is a summand of M/Hβ (M);

(iii) N∩Hβ (M) = Hβ (N) and

(iv) Hβ (M) = Hβ (N)⊕T ;

then M = N⊕K with K ⊇ T.

Proof. We may put

M
Hβ (M)

=
N +Hβ (M)

Hβ (M)
⊕ Q

Hβ (M)
.

Thus, (N +Hα(M))∩Q = Hα(M)∩Q for all α ≤ β . Now suppose Hα(M)∩N = Hα(N) for

α < γ ≤ β . If γ is a limit ordinal, we have Hγ(M)∩N = Hγ(N), otherwise γ = α + 1. For

x ∈ Hγ(M)∩N, there exist y ∈ N, z ∈ Q such that d
(
(y+ z)R

xR

)
= 1 and y+ z ∈ Hα(M). Then

z ∈ (N +Hα(M))∩Q = Hα(M)∩Q and y = y+ z− z ∈Hα(M)∩N = Hα(N). If d
(

yR
y′R

)
= 1,

then x−y′ ∈ N∩Q = N∩Hβ (M) = Hβ (N) and x = (x−y′)+y′ ∈Hγ(N). In order to show that

Hα(M/N) =
Hα(M)+N

N
, for all α ≤ β ,
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consider

M
N +Hα(M)

=
N +Hα(M)+Q

N +Hα(M)

∼=
Q

Q∩ (N +Hα(M))
=

Q
Q∩Hα(M)

∼=
Hα(M)+Q

Hα(M)
⊆ M

Hα(M)
, for all α ≤ β .

Now we apply Theorem 3.1 to
N⊕T

T
=

N +Hβ (M)

T
and get

Hα

(
(M/T )

(N⊕T )/T

)
∼= Hα

(
M

N⊕T

)
= Hα

(
M

(N +Hβ (M))

)

∼= Hα

(
(M/N)

Hβ (M/N)

)
=

Hα(M/N)

Hβ (M/N)

∼=
Hα(M)+N
Hβ (M)+N

∼=
(Hα(M)+N)/T
(Hβ (M)+N)/T

=
(Hα(M/T )+N⊕T )/T

(N⊕T )/T
.

These isomorphisms give identity on
M/T

(N⊕T )/T
when combined together and we have

((Hα(M)+N)/T )
((Hβ (M)+N)/T )

=
(Hα(M/T )+N⊕T )/T

(N⊕T )/T
, for all α < β .

Now,

Hα(M/T )∩ ((N⊕T )/T ) = (Hα(M)/T )∩ ((N⊕T )/T )

= ((Hα(M)∩N)⊕T )/T = (Hα(N)⊕T )/T

⊆ Hα((N⊕T )/T ), for all α ≤ β .
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Also,

(M/T )
(N⊕T )/T

∼=
M

N +Hβ (M)
∼=

(M/Hβ (M))

(N +Hβ (M))/(Hβ (M))

=
M/N

Hβ (M/N)

is countably generated module of length at most β . Again by Theorem 3.1 we have

M
T

=

(
N⊕T

T

)
⊕
(

K
T

)
and therefore M = N⊕K. �

In order to prove some important results, we need the following lemmas:

Lemma 3.2. For a QTAG-module M, a submodule N ⊆M and a limit ordinal λ if

Soc(Hα(M/N)) =
Soc(Hα(M))+N

N
, for every α < λ , then

Hα(M/N) =
Hα(M)+N

N
, for all α < λ .

Proof. Assume that β < λ and Hα(M/N) =
Hα(M)+N

N
, for all α < β . If β = α +1 and x+

N ∈Hβ (M/N), then d
(
(y+N)R
(x+N)R

)
= 1 for some y∈Hα(M/N) =

Hα(M)+N
N

. Without loss of

generality, we may assume that y∈Hα(M) and x+N = y′+N ∈
Hβ (M)+N

N
, where d

(
yR
y′R

)
=

1. Otherwise, if β is a limit ordinal and we assume Hk(Hβ (M/N))⊆
Hβ (M)+N

N
and x+N ∈

Hk+1(Hβ (M/N)). If d
(
(x+N)R
(y+N)R

)
= k, then y+N ∈ Soc(Hβ+k(M/N))=

Soc(Hβ+k(M))+N
N

as β + k < λ . Therefore y+N = z+N such that z′ ∈ Hk+1(Hβ (M)), d
(

z′R
zR

)
= k and (x−

z′)+N ∈ Hk(Hβ (M/N)) ⊆
Hβ (M)+N

N
. Therefore x− z′+N = u+N with u ∈ Hβ (M) and

x+N = (z′+u)+N ∈
Hβ (M)+N

N
. �

Lemma 3.3. Let N ⊆ K be submodules of a QTAG-module M such that K/N is h-divisible. If

Soc
(

Hα

(
M
N

))
=

Soc(Hα(M))+N
N

, then

Soc
(

Hα

(
M
K

))
=

Soc(Hα(M))+K
K

.
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Proof. Since K/N is h-divisible, it is a direct summand of M/N and
M
N

=
K
N
⊕ Q

N
, for some

Q ⊇ N. For x+K ∈ Soc(Hα(M/K)), x = y+ z, y ∈ Q, z ∈ N and we may define a homo-

morphism f : M/K→ Q/N such that f (x+K) = y+N. Therefore y+N ∈ Soc(Hα(Q/N)) ⊆

Soc(Hα(M/N)) = (Soc(Hα(M))+N)/N and there exists a u ∈ Soc(Hα(M)) such that y+N =

u+N. Therefore

x+K = y+K = u+K ∈ Soc(Hα(M))+K
K

.

which completes the proof. �

Lemma 3.4. For k < ω, let K be a Hα+k(M)-high submodule of M. Then H i(M) ⊆ H i(K)+

Hα(M) for every i≤ k+1.

Proof. Since Soc(M) = Soc(K) ⊕ Soc(Hα+k(M)) ⊆ Soc(K) + Hα(M), we suppose that

H i(M)⊆H i(K)+Hα(M) for every i≤ k. Consider x′ ∈H i+1(M). Then there exists x ∈H i(M)

such that d
(

x′R
xR

)
= i and x = y+ z′ where y ∈ Soc(K) and d

(
zR
z′R

)
= k with z ∈ Hα(M).

Now y = x− z′ ∈ Hi(M)∩K = Hi(K), as K is h-pure in M. Therefore d
(

y′R
yR

)
= i for some

y′ ∈ K. Now if d
(

z′′R
z′R

)
= i, then x− y′− z′′ ∈ H i(M) ⊆ H i(K)+Hα(M) which implies that

x ∈ H i+1(K)+Hα(M). �

The above discussion leads to the following:

Remark 3.2. For a submodule N of a QTAG-module M, if Soc(Hα(M/N))=
Soc(Hα(M))+N

N
for all α ≤ β , then Hα(M)∩N = Hα(N) for all α ≤ β . For β ≤ ω, the converse holds.

Lemma 3.5. If N is a direct summand of a Hα(M)-high submodule of M, then Soc(Hγ(M/N))=
Soc(Hγ(M))+N

N
, for all γ ≤ α.

Proof. Being a direct summand of a h-pure submodule of M, N is also h-pure in M. Remark

3.2 suggests that for all γ < ω, Soc(Hγ(M/N)) =
Soc(Hγ(M))+N

N
. Without loss of gener-

ality, we may assume that α ≥ ω. Let α = β + k, k < ω, β a limit ordinal and Q⊕N, a

Hα(M)-high submodule of M. Suppose the result holds for all ordinals δ < α. If ω ≤ δ < α

and if T is a Hδ (N)-high submodule of N, then T is a direct summand of Hδ (M)-high sub-

module of M. Therefore if K is Hδ (Q)-high in Q, then T ⊕K is Hδ (M)-high in M. Inductively,
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Soc(Hδ (M/T )) =
Soc(Hδ (M))+T

T
. As

N
T

is h-divisible by Theorem 3.2,
Soc(Hδ (M))+N

N
=

Soc(Hδ (M/N)) and the result holds for all γ < α.

In order to prove that Soc(Hα(M/N)) =
Soc(Hα(M))+N

N
, we have to show that

Hk+1(Hβ (M/N)) =
Hk+1(Hβ (M))+N

N
. Consider x+N ∈ Hk+1

(
Hβ

(
M
N

))
. Since N is h-

pure, x ∈ Hk+1(M) and by Lemma 3.4, x = x1 + x2 + x3 where x1 ∈ Hk+1(N), x2 ∈ Hk+1(Q)

and x3 ∈Hβ (M). As β is a limit ordinal, for every ordinal γ < β , by Lemma 3.2, we may write

x+N = z+N, where z ∈Hγ(M). Thus for each γ < β , we have x = x1+x2+x3 = z+ z1 where

z1 ∈ N.

Now, x1−z1+x2 ∈Hγ(M)∩(N⊕Q) = Hγ(N)⊕Hγ(Q) and x2 ∈
⋂

γ<β

Hγ(Q) = Hβ (M) implying

that x+N = (x2 + x3)+N ∈
Hk+1(Hβ (M))+N

N
. �

We need some more lemmas to prove our main results:

Lemma 3.6. Let K =
⊕
i∈I

Ki be a submodule of a QTAG-module M such that each Ki is countably

generated. If N is a submodule of M, N∩K =
⊕
i∈I′

Ki, I′ ⊂ I and if T/N is a countably generated

submodule of
M
N
, then there is a submodule Q⊆M such that T ⊆Q,

Q
N

is countably generated

and Q∩K =
⊕
i∈J

Ki for some subset J of I. If
M
K

and
N

N∩K
are h-divisible, then M can be chosen

so that
Q

Q∩K
is also h-divisible.

Proof. Since
T ∩K
N∩K

is countably generated, there is a countable subset I′′ of I such that
⊕
i∈I′′

Ki

contains a complete set of representatives of
T ∩K
N∩K

. Set Q = T +(
⊕
i∈I′′

Ki) = T +(
⊕
i∈J

Ki), where

J = I′∪ I′′.

Now, suppose
M
K

and
N

N∩K
are h-divisible. Consider a submodule L⊃N such that

L
N

is

countably generated i.e.,
L
N

= Σ(bi +N)R. Consider the elements x1, x2, . . . , xn, . . . such that

bi− yi ∈ K where d
(

xiR
yiR

)
= 1.

If P= L+ΣxiR, then
P
N

is countably generated and L⊆H1(P)+K. In this way we can choose

two ascending sequences of submodules T ⊆Q1⊆Q2⊆ . . .⊆Qk⊆ . . . and P1⊆P2⊆ . . .⊆Pk⊆

. . . , where
Mk

N
and

Pk

N
are countably generated for every k, Qk∩K =

⊕
i∈Ik

Kk, Qk⊆Pk⊆Qk+1 and
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Qk⊆H1(Pk)+K for each k. If we put Q=
∞⋃

k=1
Qk =

∞⋃
k=1

Pk and J =
∞⋃

k=1
Ik, then Pk⊆H1(Pk+1)+K

ensures that
Q

K∩Q
is h-divisible. �

Lemma 3.7. Let {Kk}∞
k=1 be a sequence of submodules of a QTAG-module M and Kk =

⊕
i∈Ik

K(i)
k ,

where each K(i)
k is countably generated. Let A be a set of positive integers such that M/Kk is

h-divisible, for every k ∈ A. If N is a submodule of M such that N∩Kk =
⊕
i∈Ik

K(i)
k for each k and

N
N∩Kk

is h-divisible, whenever k ∈ A and if
T
N

is a countably generated submodule of
M
N
, then

there is a submodule Q of M such that T ⊆Q,
Q
N

is countably generated, Q∩Kk =
⊕
i∈Jk

K(i)
k and

Q
Q∩Kk

is h-divisible, whenever k ∈ A.

Proof. Let n1, n2, . . . be a sequence of positive integers such that for every pair of positive

integers k and n there is an integer j > k such that n j = n. By Lemma 3.6, we may construct

a chain of submodules of M containing T, Q1 ⊆ Q2 ⊆ . . . ⊆ Qk ⊆ . . . such that for each k,
Qk

N
is countably generated. Qk ∩Knk =

⊕
i∈Ik

nk

Ki
nk

and
Qk

Qk∩Knk

is h-divisible, whenever nk ∈ A. Set

Q =
∞⋃

k=1
Qk and for each n, let Jn be the union of all Ik

nk
for which nk = n. Since for each n, Q is

the union of those Qk such that nk = n, Q is the required submodule. �

Lemma 3.8. Let N be a submodule of M such that Soc
(

Hα

(
M
N

))
=

Soc(Hα(M))+N
N

for all

α < λ . If Soc(M) = Soc(N)⊕T, where T is a summable subsocle such that T ∩Hλ (M) = 0,

then
M
N

is a summable module of length atmost λ .

Proof. Let T =
⊕

α<λ

Tα , where Sα ⊆ Hα(M), Sα ∩Hα+1(M) = 0, for every α. Then

Soc(M/N) =
Soc(M)+N

N
=

T ⊕N
N

=
⊕
α<λ

(
Tα ⊕N

N

)
.



ON COUNTABLY GENERATED QTAG-MODULES 11

We have to show that for x+N(6= 0)∈ Tα +N
N

, HM/N(x+N)=α. Since Soc(M)= Soc(N)⊕

T, Soc(Hα(M)) = (Soc(N)∩Hα(M))⊕(T ∩Hα(M)) = (Soc(N)∩Hα(M))⊕(
⊕

β≥α

Sβ ). There-

fore

Soc(Hα(M/N)) = (Soc(Hα(M))+N)/N

= ((T ∩Hα(M))+N)/N =
⊕
β≥α

((Tβ ⊕N)/N)

= ((Tα ⊕N)/N)⊕ (
⊕

β≥α+1

((Tβ ⊕N)/N))

= ((Tα ⊕N)/N)⊕Soc(Hα+1(M/N)).

and we are done. �

Now we are able to prove one of our main results.

Theorem 3.3. Let M be a QTAG-module of length σ , where σ is a countable limit ordinal. Then

M is a direct sum of countably generated modules if M is summable and for each ρ < σ , M

contains a Hρ(M)-high submodule which is a direct sum of countably generated modules.

Proof. For an ordinal ρ such that ω ≤ ρ < σ , let Kρ be a Hρ(M)-high submodule of M which

is a direct sum of countably generated submodules. Put Kρ =
⊕
i∈Iρ

Ki
ρ such that each Ki

ρ is count-

ably generated and Soc(M) =
⊕
i∈I

Ti, where each Ti is countably generated. Now the elements

of the minimal generating set of M, {xα} can be well ordered α < δ . Since σ is countable,

Kρ ’s can be enumerated and by Lemma 3.7, we may define submodules {Nα} satisfying the

following conditions:

(i) N0 = 0,Nα ⊆ Nβ for every α < β and Nα =
⋃

β<α

Nβ , if α is a limit ordinal;

(ii) xα ∈ Nα+1;

(iii) Nα ∩Kρ =
⊕

i∈Iα
ρ

Ki
ρ , for each α;

(iv) Nα+1/Nα is countably generated;

(v) Nα/(Nα ∩Kρ) is h-divisible, for each α;

(vi) Soc(Nα) =
⊕

i∈Iα

Ti.
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By Lemma 3.5,

Soc(Hρ(M/Nα)) =
Soc(Hρ(M))+Nα

Nα

, for all ρ < σ .

Therefore by Remark 3.2, each Nα is isotype and again by Lemma 3.2,

Hρ(M/Nα) =
Hρ(M)+Nα

Nα

, for all ρ < σ .

Now we infer that

Hρ(Nα+1/Nα) =
Hρ(Nα+1)+Nα

Nα

, for all ρ < σ .

By Lemma 3.8,
Nα+1

Nα

has length at most σ and

Hρ(Nα+1)∩Nα = (Hρ(M)∩Nα+1)∩Nα = Hρ(M)∩Nα = Hρ(Nα), for all ρ ≤ σ .

Now using Theorem 3.1, we get Nα+1 = Nα + Qα , for each α < δ . Consequently, M =⊕
α

Qα , α < δ is a direct sum of countably generated modules. �

To prove some other interesting results, we need some more lemmas.

Lemma 3.9. If ρ is a countable ordinal and x ∈ Hρ(M), then there is a countably generated

submodule N of M such that x ∈ Hρ(N).

Proof. The statement holds if ρ = 0. We shall prove the result inductively by assuming that it

holds for all ordinals σ < ρ. If ρ = σ + 1, then there exists an element y ∈ Hρ(M) such that

d
(

yR
xR

)
= 1. By assumption, there is a countably generated submodule N such that y∈Hσ (N).

Now x ∈Hσ+1(N) = Hρ(N) as d
(

yR
xR

)
= 1. Otherwise, if ρ is a limit ordinal, then x ∈Hσ (M)

for all σ < ρ. Inductively, there exists a countable submodule Nσ for each σ < ρ, such that

x ∈ Hσ (Nσ ). If N = ΣNσ , then N is countably generated and x ∈
⋂

σ<ρ

Hσ (Nρ) ⊆
⋂

σ<ρ

Hσ (N) =

Hρ(N). �

Lemma 3.10. Let σ be a countable ordinal and N a submodule of a QTAG-module M such that

Hσ (M)∩N = Hσ (N). If T/N is a countably generated submodule of M/N, then there exists a

submodule K ⊆M such that T ⊆ K, K/N is countably generated and Hσ (M)∩K = Hσ (K).
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Proof. As

T ∩Hσ (M)

Hσ (N)
∼=

(T ∩Hσ (N))+N
N

⊆ T
N
,

we may select elements x1, x2, . . . ,xk, . . . such that
T ∩Hσ (M)

Hσ (N)
= ΣxiR. By Lemma 3.9, for

each k, there is a countably generated submodule Nk such that xk ∈Hσ (Nk). Put K1 = T +ΣNk.

Now
K1

N
is countably generated and T ∩Hσ (M)⊆ Hσ (K1). On repeating this process, we may

construct a chain of submodules K1 ⊆ K2 ⊆ . . . such that
Kk

N
is countably generated and Kk ∩

Hσ (M)⊆ Hσ (Kk+1). Now K =
∞⋃

k=1
Kk is the required module. �

Lemma 3.11. Let σ be a countable ordinal and T a submodule of M such that T =⊕
i∈I

Ti,
M
T

=
⊕
j∈J

Q j and each Ti and Q j is countably generated. Suppose N is a submodule of

M such that N∩T =
⊕
i∈I′

Ti,
N +T

T
=
⊕
j∈J′

Q j and Hσ (M)∩N = Hσ (N). If
Q
N

is a countably gen-

erated submodule of
M
N
, then there exists a submodule P of M such that Q⊆ P,

P
N

is countably

generated, P∩T =
⊕
i∈I′′

Ti,
P+T

T
=
⊕
j∈J′′

Q j and Hσ (M)∩P = Hσ (P).

Proof. Since Q/N is a countably generated module, so
Q+T
N +T

is also countably generated.

Therefore there exists a subset J̄ ⊂ J such that
⊕
j∈J̄

Q j contains a set of representatives of(
Q+T

T

)
/

(
N +T

T

)
. If L is generated by a complete set of representatives of

⊕
j∈J̄

Q j, then L is

a countably generated submodule of M such that
L+T

T
=
⊕
j∈J̄

Q j. If P1 = Q+L and J1 = J′∪ J̄,

then
P1

N
is countably generated and

P1 +T
T

=
⊕
j∈J1

Q j. Now by Lemma 3.10 and Lemma 3.6, there

exist ascending chains of submodules P1 ⊆ P2 ⊆ . . . ⊆ Pk ⊆ . . . ;L1 ⊆ L2 ⊆ . . . ⊆ Lk ⊆ . . . and

K1 ⊆ K2 ⊆ . . .⊆ Kk ⊆ . . . such that N ⊆ Pk ⊆ Lk ⊆ Kk ⊆ Pk+1, Pk/N is countably generated for

each k,
Pk +T

T
=
⊕
j∈Jk

Q j, Lk∩T =
⊕
i∈Ik

Ti and Hσ (M)∩Kk = Hσ (Kk). Now P =
∞⋃

k=1
Pk, I′′ =

∞⋃
k=1

Ik

and J′′ =
∞⋃

k=1
Jk and we are done. �

Now we are able to prove the following result.
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Theorem 3.4. If σ is a countable ordinal and if M is a h-reduced QTAG-module such that

M/Hσ (M) and Hσ (M) are direct sums of countably generated modules, then M is a direct sum

of countably generated modules.

Proof. Let
M

Hσ (M)
=
⊕
j∈J

Q j and Hσ (M) =
⊕
i∈I

Pi, where each Q j and Pi is countably generated.

We may define a well ordering relation on the set of generators of M, {xα}, α < β . By Lemma

3.11, we may construct a well ordered family of the submodules {Nα} of M satisfying the

following conditions:

(i) N0 = 0,Nα ⊆ Nβ if α < β and Nα =
⋃

β<α

Nβ , if α is a limit ordinal;

(ii) xα ∈ Nα+1;

(iii) Nα ∩Hσ (M) =
⊕

i∈Iα

Ti;

(iv)
Nα +Hσ (M)

Hσ (M)
=
⊕

j∈Jα

Q j;

(v) Hσ (M)∩Nα = Hσ (Nα);

(vi) Nα+1/Nα is countably generated.

Now Hσ (Nα+1)∩Nα = Hσ (Nα) and Hσ (Nα) =
⊕

i∈Iα

Ti, is a direct summand of Hσ (Nα+1) =

⊕
i∈Iα+1

Ti. If we define the canonical map f :
Nα+1 +Hσ (M)

Hσ (M)
→ Nα+1

Hσ (Nα+1)
, then f is an iso-

morphism and f
(

Nα +Hσ (M)

Hσ (M)

)
=

Nα +Hσ (Nα+1)

Hσ (Nα+1)
. As

Nα +Hσ (M)

Hσ (M)
is a direct summand of

Nα+1 +Hσ (M)

Hσ (M)
,

Nα +Hσ (Nα+1)

Hσ (Nα+1)
is a direct summand of

Nα+1

Hσ (Nα+1)
and all the conditions of

Theorem 3.2 are satisfied, therefore for each α < β we have Nα+1 =Nα⊕N′α . Thus M =
⊕

α<β

N′α

is a direct sum of countably generated modules. �

Since h-pure, isotype and high submodules are very significant in the study of QTAG-

modules. We prove some results related to these submodules.

Proposition 3.1. For a countable ordinal σ and a QTAG-module M, if M/Hσ (M) is a direct

sum of countably generated modules, then every Hσ (M)-high submodule of M is a direct sum

of countably generated submodules.

Proof. Suppose the statement holds for all the ordinal less than σ and σ ≥ ω. Now we put

σ = ρ +k, where ρ is a limit ordinal and k < ω. Let N be a Hα(M)-high submodule of M. Then
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by Lemma 3.5 and Lemma 3.2,

M/N = Hα(M/N) =
Hα(M)+N

N
for all α < ρ.

Therefore,

N
Hα(N)

∼=
Hα(M)+N

Hα(M)
=

M
Hα(M)

∼=
(M/Hα(M))

Hα(M/Hσ (M))

is a direct sum of countably generated submodules for all α < ρ. Now, by induction, ev-

ery Hα(M)-high submodule of N/Hρ(N) is a direct sum of countably generated submod-

ules. Since
N +Hρ(M)

Hρ(M)
∼=

N
Hρ(N)

and
N +Hρ(M)

Hρ(M)
is isotype in the summable module

M/Hρ(M), N/Hρ(N) is also summable.

Now by Theorem 3.3, N/Hρ(N) is a direct sum of countably generated modules, therefore

by Theorem 3.4, N is a direct sum of countably generated modules. �

Theorem 3.5. Let N be an isotype submodule of a QTAG-module M of countable length and

M, a direct sum of countably generated h-reduced QTAG-modules. Then N is also a direct sum

of countably generated modules.

Proof. Let σ be the length of N. As
N +Hσ (M)

Hσ (M)
is isotype in

M
Hσ (M)

, without loss of generality,

we assume that the length of M is also σ . Suppose the statement holds for all lengths ρ < σ .

Now
N +Hρ(M)

Hρ(M)
is isotype in

M
Hρ(M)

for all ρ < σ . Inductively,
N

Hρ(N)
∼=

N +Hρ(M)

Hρ(M)
is a

direct sum of countably generated modules for all ρ < α. If σ = ρ +1, then
N

Hρ(N)
and Hρ(N)

are the direct sums of countably generated modules and the result follows from Theorem 3.4.

Otherwise, if σ is a limit ordinal,
N

Hρ(N)
is a direct sum of countably generated submodules

for all ρ < σ and N is summable as it is isotype in the summable module M of countable length.

Therefore, N is a direct sum of countably generated modules. �

4. SOME APPLICATIONS

In this section we establish some interesting results using the results of section 3. We start

with the following lemma:
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Lemma 4.1. Let N, K be Hσ (M)-high submodules of M where σ = ρ + n, n < ω. If x +

Hρ(N)→ y+Hρ(K) if and only if x− y ∈ Hρ(M), then this mapping is a height preserving

isomorphism from Soc(N/Hρ(N)) to Soc(K/Hρ(K)).

Proof. Let x ∈ N and x′ ∈ Hρ(N) such that d
(

xR
x′R

)
= 1. Suppose x /∈ K, then (K + xR)∩

Hσ (M) 6= 0 and therefore there exists y′ ∈ K and z ∈ Hρ(M) such that y′+ x′′ = z′ 6= 0. Here

d
(

xR
x′′R

)
= i, d

(
zR
z′R

)
= n. Since K ∩Hσ (M) = 0, i ≤ n and there is a y′′ ∈ K such that

d
(

y′′R
y′R

)
= i. By Lemma 3.4, y′′+ x+ z′′ ∈ H i(M) ⊆ H i(K)+Hρ(M), where d

(
z′′R
z′R

)
= i.

Now x = (u− y′′)+ z′′+ v for some u ∈ H i(K) and v ∈ Hρ(M). Put y = u− y′′. Now the map

x+Hρ(N)→ y+Hρ(K) is a height preserving isomorphism. �

Theorem 4.1. If a Hσ (M)-high submodule of a QTAG-module M is a direct sum of count-

ably generated modules, then every Hσ (M)-high submodule of M is a direct sum of countably

generated submodules.

Proof. We may assume that σ is countable and σ ≥ ω. Now σ = ρ + n, where ρ is a limit

ordinal and n < ω. Let N, K be two Hσ (M)-high submodules of M and N a direct sum of

countably generated submodules. Now N/Hρ(N) is also a direct sum of countably generated

modules and by Lemma 4.1, K/Hρ(K) is summable. As ρ is a limit ordinal, by Proposition

3.1, we have N/Hα(N)∼= M/Hα(M)∼= K/Hα(K) for all α < ρ. Therefore K/Hρ(K) is a direct

sum of countably generated modules. Now Hρ(K) is bounded, therefore by Theorem 3.4, K is

a direct sum of countably generated modules. �

Proposition 4.1. For a QTAG-module M, if M/Hρ(M) is summable for all ρ ≤ σ , where σ is

countable then M/Hσ (M) is a direct sum of countably generated modules.

Proof. We assume that the result holds for all ordinals less than σ . If σ = α + 1, then by in-

duction we may say that M/Hα(M) is a direct sum of countably generated modules. Since
(M/Hσ (M))

Hα(M/Hσ (M))
∼=

M
Hα(M)

and Hα(M/Hα(M)) are direct sums of countably generated mod-

ules, the result follow from Theorem 3.4. Otherwise, if σ is a limit ordinal, then by assumption

M/Hσ (M)

Hρ(M/Hσ (M))
∼=

M
Hρ(M)
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is a direct sum of countably generated modules for each ρ < σ . Since
M

Hσ (M)
is summable,

M
Hσ (M)

is a direct sum of countably generated modules. �

An immediate consequence of this proposition may be stated as follows:

Corollary 4.1. Let σ be a countable limit ordinal and let M be a QTAG-module of length σ .

Then the following conditions are equivalent:

(i) M is a direct sum of countably generated modules;

(ii) M is summable and
M

Hρ(M)
is a direct sum of countably generated modules for all

ρ < σ ;

(iii)
M

Hρ(M)
is summable for all ρ ≤ σ ;

(iv) M is summable and for each ρ < σ , the Hρ(M)-high submodules of M are direct sums

of countably generated modules.

Ulm factors play a very important role in the study of QTAG-modules. In order to establish

our next result involving Ulm factors we need the following lemma:

Lemma 4.2. Let σ be a countable ordinal. Then for a QTAG-module M, M/Hρ(M) is a

direct sum of countably generated modules for all ρ < ωσ if and only if
M

Mα
is a direct sum of

countably generated modules for all α < σ . Here Mα is the α th- Ulm submodule of M.

Proof. If ρ < ωσ , then ρ = ωα +n, n < ω, α < σ . Now we have

M
Mα

=
M

Hωα(M)
∼=

(M/Hρ(M))

Hωα(M)/Hρ(M)
=

M/Hρ(M)

Hωα(M/Hρ(M))
.

Therefore, Hωα

(
M

Hρ(M)

)
is bounded and if

M
Mα

is a direct sum of countably generated mod-

ules, then by Theorem 3.4,
M

Hρ(M)
is a direct sum of countably generated modules. �

Theorem 4.2. Let M be a QTAG-module of countable length. Then M is a direct sum of

countably generated modules if and only if

(i) all Ulm factors of M are direct sums of uniserial modules and

(ii) M/Mρ is summable, for all limit ordinals ρ.
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Proof. The second condition implies that M is summable. Now, M will be a direct sum of

countably generated modules if M/Hτ(M) is a direct sum of countably generated modules for

all τ less than σ , the length of M. Assume that ρ < σ and
M
Mτ

is a direct sum of countably

generated modules for all τ < ρ. In the light of Lemma 4.2, we have to show that
M

Mρ
is a direct

sum of countably generated modules for all ρ < σ . If ρ = α +1, then

(M/Mρ)

Hωα(M/Mρ)
=

(M/Mρ)

Mα/Mρ
∼=

M
Mα

is a direct sum of countably generated modules by induction. Now

Hωα

(
M

Mρ

)
=

Mα

Mρ
=

Mα

Mα+1

is a direct sum of uniserial modules by (i). Therefore by applying Theorem 3.4,
M

Mρ
is a direct

sum of countably generated modules. Otherwise, if ρ is a limit ordinal, then
M

Mρ
=

M
Hωρ(M)

is

summable by (ii). Inductively,
M

Mα
is a direct sum of countably generated modules for all α <

ρ. By Lemma 4.2, M/Hτ(M) is a direct sum of countably generated modules for all τ < ωρ.

Thus
M

Hωρ(M)
=

M
Mρ

is a direct sum of countably generated modules. �

As an immediate consequence of this result, we can say that a summable QTAG-module M

of length ω is a direct sum of countably generated modules if and only if all of its Ulm factors

are direct sums of uniserial modules.
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