A STUDY ON THE SYMMETRIC NUMERICAL SEMIGROUPS

SEDAT İLHAN*

Dicle University, Faculty of Science, Department of Mathematics, Diyarbakır, Turkey
Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we will give some results about the numerical semigroups such that $S_{k}=<5,5 k+4>$ where $k \geq 1, k \in \mathbb{Z}$. Also, we will obtain Arf closure of these symmetric numerical semigroups.

Keywords: Symmetric numerical semigroup, Arf closure, genus.
2010 AMS Subject Classification: 20M14

1. Introduction

Let $\mathbb{N}=0,1,2, \ldots, n, \ldots$ and \mathbb{Z} be integer set. S is called a numerical semigroup if
(i) $a_{1}+a_{2} \in S$, for $a_{1}, a_{2} \in S$
(ii) $\operatorname{gcd} S=1$
(iii) $0 \in S$
where $S \subseteq \mathbb{N}$ (Here, gcd $S=$ greatest common divisor the elements of S).
A numerical semigroup S can be written that
$S=<a_{1}, a_{2}, \ldots, a_{n}>=\left\{\sum_{i=1}^{n} k_{i} a_{i}: k_{i} \in \mathbb{N}\right\}$ (for detail see [4]).
*Corresponding author
E-mail address: sedati@dicle.edu.tr
Received July 23, 2020
$U \subset \mathbb{N}$ is minimal system of generators of S if $\langle U\rangle=S$ and there isn't any subset $V \subset U$ such that $<V>=S$.Also, $m(S)=\min x \in S: x>0$ is called as multiplicity of S (See [3]). Let S be a numerical semigroup, then $F(S)=\max \mathbb{Z} S$ is called as Frobenius number of $S . n(S)=$ Card $\quad 0,1,2, \ldots, F(S) \cap S$ is called as the determine number of S (see [5]).

If S is a numerical semigroup such that $S=<a_{1}, a_{2}, \ldots, a_{n}>$, then we observe that $S=<a_{1}, a_{2}, \ldots, a_{n}>=s_{0}=0, s_{1}, s_{2}, \ldots, s_{n-1}, s_{n}=F(S)+1, \rightarrow \ldots$, where $s_{i}<s_{i+1}, n=n(S)$ and the arrow means that every integer greater than $F(S)+1$ belongs to S for $i=1,2, \ldots, n=n(S)($ see [6]).

If $b \in \mathbb{N}$ and $b \notin S$, then b is called gap of S. We denote the set of gaps of S, by $H(S)$, i.e, $H(S)=\mathbb{N} \backslash$. The $G(S)=\#(H(S))$ is called the genus of S. It known that $G(S)+n(S)=F(S)+1($ see $[4])$.
S is called symmetric numerical semigroup if $F(S)-t$ belongs to S, for $t \in \mathbb{Z} \backslash S$. It is know the numerical semigroup $S=<a_{1}, a_{2}>$ is symmetric and $F(S)=a_{1} a_{2}-a_{1}-a_{2}$. In this case, we write $n(S)=\frac{F(S)+1}{2}($ see [1] $)$.

A numerical semigroup S is called Arf if $a_{1}+a_{2}-a_{3} \in S$, for all $a_{1}, a_{2}, a_{3} \in S$ such that $a_{1} \geq a_{2} \geq a_{3}$. The smallest Arf numerical semigroup containing a numerical semigroup S is called the Arf closure of S, and it is denoted by $\operatorname{Arf}(S)$ (for detail see [2, 3]). If S is a numerical semigroup such that $\left.S=<a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, then $L(S)=\left\langle a_{1}, a_{2}-a_{1}, a_{3}-v_{1}, \ldots, a_{n}-v_{1}\right\rangle$ is called Lipman numerical semigroup of S, and it is known that $L_{0}(S)=S \subseteq L_{1}(S)=L\left(L_{0}(S)\right) \subseteq L_{2}=L\left(L_{1}(S)\right) \subseteq \ldots \subseteq L_{m}=L\left(L_{m-1}(S)\right) \subseteq \ldots \subseteq \mathbb{N}$ (see [7])

2. MAIN Results

Theorem 1. Let $S_{k}=<5,5 k+4>$ be numerical semigroups, where $k \geq 1, k \in \mathbb{Z}$. Then, we have
(a) $F\left(S_{k}\right)=20 k+11$
(b) $n\left(S_{k}\right)=10 k+6$
(c) $G\left(S_{k}\right)=10 k+6$.

Proof. Let $S_{k}=<5,5 k+4>$ be numerical semigroups, where $k \geq 1, k \in \mathbb{Z}$. Then, S_{k} is symmetric and we find that
(a) $F\left(S_{k}\right)=5(5 k+4)-5-5 k-4=20 k+11$.
(b) $n\left(S_{k}\right)=\frac{F\left(S_{k}\right)+1}{2}=\frac{20 k+11+1}{2}=10 k+6$.
(c) $G\left(S_{k}\right)=20 k+11+1-10 k-6=10 k+6$ from $G\left(S_{k}\right)=F\left(S_{k}\right)+1-n\left(S_{k}\right)$.

Theorem 2. Let $S_{k}=<5,5 k+4>$ be numerical semigroups, where $k \geq 1, k \in \mathbb{Z}$. Then, $\operatorname{Arf}\left(S_{k}\right)=0,5,10,15, \ldots, 5 k, 5 k+4, \rightarrow \ldots$.

Proof. Let $S_{k}=<5,5 k+4>$ be numerical semigroups, where $k \geq 1, k \in \mathbb{Z}$. Then, we have $L_{i}\left(S_{k}\right)=<5,5 k+(4-5 i)>$ for $i=0,1,2, \ldots, k-2$. In this case,

If $5<5 k+(4-5 i)$ then $m_{i}=5$.
If $5>5 k+(4-5 i)$ then $m_{i}=4$. So, we write $L_{k}\left(S_{k}\right)=<5,6>, m_{k}{ }_{1}=5$
and $L_{k}\left(S_{k}\right)=<5,1>=<1>=\mathbb{N}, m_{k}=1$.
Thus, we obtain $\operatorname{Arf}\left(S_{k}\right)=0,5,10,15, \ldots, 5 k, 5 k+4 \rightarrow \ldots$.
Corollary 3. Let $S_{k}=<5,5 k+4>$ be numerical semigroups, where $k \geq 1, k \in \mathbb{Z}$. Then, we have
(a) $F\left(\operatorname{Arf}\left(S_{k}\right)\right)=5 k+3$
(b) $n\left(\operatorname{Arf}\left(S_{k}\right)\right)=k+1$
(c) $G\left(A r f\left(S_{k}\right)\right)=4 k+3$.
Proof. Let $S_{k}=<5,5 k+4>$ be numerical semigroups, where $k \geq 1, k \in \mathbb{Z}$. Then, we write that $F\left(\operatorname{Arf}\left(S_{k}\right)\right)=5 k+3$ from Theorem 2. On the other hand, we find that $n\left(\operatorname{Arf}\left(S_{k}\right)\right)=\#(0,1,2, \ldots, 5 k+3 \cap \operatorname{Arf}(S))=\#(0,5,10, \ldots, 5 k)=k+1$ and we obtain $G\left(\operatorname{Arf}\left(S_{k}\right)\right)=5 k+3+1-k-1=4 k+3$ since $G\left(\operatorname{Arf}\left(S_{k}\right)\right)=F\left(\operatorname{Arf}\left(S_{k}\right)\right)+1-n\left(\operatorname{Arf}\left(S_{k}\right)\right)$.

Corollary 4. Let $S_{k}=<5,5 k+4>$ be numerical semigroups, where $k \geq 1, k \in \mathbb{Z}$. Then, we have
(a) $F\left(S_{k}\right)=4 F\left(\operatorname{Arf}\left(S_{k}\right)\right)-1$
(b) $n\left(S_{k}\right)=10 n\left(\operatorname{Arf}\left(S_{k}\right)\right)-4$
(c) $G\left(S_{k}\right)=3 G\left(\operatorname{Arf}\left(S_{k}\right)\right)-(2 k+3)$.
Proof. Let $S_{k}=<5,5 k+4>$ be numerical semigroups, where $k \geq 1, k \in \mathbb{Z}$. We write that (a) $4 F\left(\operatorname{Arf}\left(S_{k}\right)\right)-1=4(5 k+3)-1=20 k+11=F\left(S_{k}\right)$. However, we find that
(b) $10 n\left(\operatorname{Arf}\left(S_{k}\right)\right)-4=10(k+1)-4=10 k+6=n\left(S_{k}\right)$,
(c) $3 G\left(\operatorname{Arf}\left(S_{k}\right)\right)-(2 k+3)=3(4 k+3)-2 k-3=10 k+6=G\left(S_{k}\right)$.
Corollary 5. Let $S_{k}=<5,5 k+4>$ be numerical semigroups, where $k \geq 1, k \in \mathbb{Z}$. Then, it satisfies following conditions:
(a) $F\left(S_{k+1}\right)=F\left(S_{k}\right)+20$
(b) $n\left(S_{k+1}\right)=n\left(S_{k}\right)+10$
(c) $G\left(S_{k+1}\right)=G\left(S_{k}\right)+10$.
Corollary 6. Let $S_{k}=<5,5 k+4>$ be numerical semigroups, where $k \geq 1, k \in \mathbb{Z}$. Then, it satisfies following conditions:
(a) $F\left(\operatorname{Arf}\left(S_{k+1}\right)\right)=F\left(\operatorname{Arf}\left(S_{k}\right)\right)+5$
(b) $n\left(\operatorname{Arf}\left(S_{k+1}\right)\right)=n\left(\operatorname{Arf}\left(S_{k}\right)\right)+1$
(c) $G\left(\operatorname{Arf}\left(S_{k+1}\right)\right)=G\left(\operatorname{Arf}\left(S_{k}\right)\right)+4$.
Example 7. We put $k=1$ in $S_{k}=<5,5 k+4>$ symmetric numerical semigroups. Then we have $S_{1}=\langle 5,9\rangle=0,5,9,10,14,15,18,19,20,23,24,25,27,28,29,30,32, \rightarrow \ldots$. In this case, we obtain $F\left(S_{1}\right)=31, n\left(S_{1}\right)=16, H\left(S_{1}\right)=1,2,3,4,6,7,8,11,12,13,16,17,21,22,26,31, G\left(S_{1}\right)=16$, $\operatorname{Arf}\left(S_{1}\right)=0,5,9, \rightarrow \ldots, F\left(\operatorname{Arf}\left(S_{1}\right)\right)=8, n\left(\operatorname{Arf}\left(S_{1}\right)\right)=2, \operatorname{H}\left(\operatorname{Arf}\left(S_{1}\right)\right)=1,2,3,4,6,7,8 \quad$ and $G\left(\operatorname{Arf}\left(S_{1}\right)\right)=7$. Thus, we find that
$4 F\left(\operatorname{Arf}\left(S_{1}\right)\right)-1=4.8-1=31=F\left(S_{1}\right), 10 n\left(\operatorname{Arf}\left(S_{1}\right)\right)-4=10.2-4=16=n\left(S_{1}\right)$
and $3 G\left(\operatorname{Arf}\left(S_{1}\right)\right)-(2+3)=3 G\left(\operatorname{Arf}\left(S_{1}\right)\right)-5=3.7-5=16=G\left(S_{1}\right)$.
If $k=2$ then we write
$S_{2}=<5,14>=0,5,10,14,15,19,20,24,25,28,29,30,33,34,35,38,39,40,42,43,44,45,47,48,49,50,52, \rightarrow \ldots$.
Thus, we have $F\left(S_{2}\right)=51, n\left(S_{2}\right)=26, G\left(S_{2}\right)=26, \operatorname{Arf}\left(S_{2}\right)=0,5,10,14, \rightarrow \ldots$,

A STUDY ON THE SYMMETRIC NUMERICAL SEMIGROUPS
$F\left(\operatorname{Arf}\left(S_{2}\right)\right)=13, n\left(\operatorname{Arf}\left(S_{2}\right)\right)=3$ and $G\left(\operatorname{Arf}\left(S_{2}\right)\right)=11$.
So, we write that $F\left(S_{1}\right)+20=31+20=51=F\left(S_{2}\right)$, $n\left(S_{1}\right)+10=16+10=26=n\left(S_{2}\right)$ and $G\left(S_{1}\right)+10=16+10=26=G\left(S_{2}\right)$. Also, we obtain that $F\left(\operatorname{Arf}\left(S_{1}\right)\right)+5=8+5=13=F\left(\operatorname{Arf}\left(S_{2}\right)\right), n\left(\operatorname{Arf}\left(S_{1}\right)\right)+1=2+1=3=n\left(\operatorname{Arf}\left(S_{2}\right)\right)$ and $G\left(\operatorname{Arf}\left(S_{1}\right)\right)+4=7+4=11=G\left(\operatorname{Arf}\left(S_{2}\right)\right)$.

CONFLICT OF Interests

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] J.C. Rosales, Fundamental gaps of numerical semigroups generated by two elements, Linear Algebra Appl. 405 (2005), 200-208.
[2] J.C. Rosales, P.A. Garcia-Sanchez, J.I. Garcia-Garcia and M.B. Branco, Arf numerical semigroups, J. Algebra, 276 (2004), 3-12.
[3] S. İlhan and H.İ. Karakaş, Arf numerical semigroups, Turk. J. Math. 41 (2017), 1448-1457.
[4] J.C. Rosales and P.A. Garcia-Sanchez, Numerical semigroups. Springer, New York, 2009.
[5] R. Froberg, C. Gotlieb, and R. Haggkvist, On numerical semigroups. Semigroup Forum, 35 (1987), 63-68.
[6] M.D'anna,, Type Sequences of Numerical Semigroups, Semigroup Forum 56 (1998), 1-31.
[7] J. Lipman, Stable ideals and Arf rings, Amer. J. Math. 93 (1971), 649-685.

