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Abstract. Let k be a commutative ring and assume that R is a commutative k-algebra. Let Q; (R) be the second
order universal module of derivations of R. In this paper, we define the function Q, (R) — A2 (€, (R)) of second
order exterior derivation and investigate the homological properties of A% (Q, (R)).
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1. INTRODUCTION

In order to prove conclusions about algebraic sets and their coordinate rings, one of the meth-
ods is to study the universal module of differential operators. This ideas of studying the uni-
versal module may decrease questions about algebras to questions of module theory. The idea
of using the universal module goes as far back as [6] which was proved some propeties of
Q) (R). The universal modules of higher differential operators of an algebra were introduced
by [10]. After on the like thought has appeared in [4] and [7]. During the recent years, subject
of universal modules of high order differential operators has studied by [1]. In this study, it was
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acquired important outcomes about projective dimension of universal modules and he show that
if R = k[xy,x2,...,x5] and I is an ideal of R generated by f € R, then, pd (Q, (R/I)) < 1. Also
in [1], the author has speak of exterior powers of universal derivation modules. In [3], it was
indicated that, if R is an affine algebra then, there is a split exact sequence of R-modules. In
[8], the authors were also remarked that some substantial results on the universal modules and
in [9],has studied universal modules of finitely generated algebras. In [2], given any R-module
B, there is an R-module J; (B) and a differential operator A; : B — J; (B) of order i which is uni-
versal with regard to that for any R-module 7 and any differential operator D : B — T of order
< i, there is a unique R-homomorphism v : J; (B) — T such that, D = vA;. In [5], it was stated
that a differential operator d of order i if d (1) = 0. For a diversified consideration of a higher
derivation you can see [5].

The purpose of this study is introduced second order exterior derivation on high order univer-
sal modules. We will construct the second order exterior derivation on high order universal mod-
ules of commutative ring extension R /k and show their fundamental properties. In particular our
exact sequence of high order universal modules were not known related to regularity of the com-
mutative rings. Throughout this paper, unless the contrary is stated explicitly, we will let R be a
commutative algebra over an algebraically closed field k£ with charasteristic zero. When R is a
k-algebra, J, (R/k) or J, (R) denotes the universal module of n-th order differentials of R over k
and Q@) (R/k) denotes the module of g-th order universal modules of R over k and 51(;]/),( or 59
denotes the canonical g-th order k-derivation R — Q@) (R/k) of R. The pair {Q(Q) (R/k), 553/),(}
has the universal mapping property with respect to the g-th order k-derivations of R. Ig ;. or Ig
denotes the kernel of the canonical mapping R®@; R — R (a ®b — ab). Q9 (R/k) is identified
with Ig/ IZH. It 1s very well known that J, (R) & Q, (R) +R. Q9 (R/k) is generated by the
set {5 (@) (r):reRrR } . Therefore, if R is finitely generated k-algebra, then Q%) (R/k) will be a

finitely produced R-module.

2. PRELIMINARIES

Let M and N be R-modules. A bilinear map y: M x M — N is named alternating if y ((m,m)) =
0 for any m € M. Let M ®g M be the tensor product of M with itself and let U be the submod-

ule of M ®g M generated by the elements of the form m @ m where m € M. Bear in mind the
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following factor module

A2 (M) := (M®rM) /U
Definition 1. The module A> (M) is said to be the second exterior power of M.[1]

Lemma 1. Let N be an R-module and 'y : M x M — N be a linear alternating map. Then,there

exist an R-module homomorphism f : A*> (M) — N such that the following diagram

MxM % N

AN f
A% (M)

commutes.|5]

Proposition 1. Let M be an R-module and N be a submodule of M and that Ly is the submodule
of A> (M) generated by the set

{mAn:meM andn € N}.
Then,there is an R-module isomorphism
A% (M) /Ly = A*(M/N).[1]

Lemma 2. Let K be a commutative k-algebra.We assume that, Q; (K) is the universal module

of derivations of K with the universal derivation A : K — Q| (K) . Then, the map
D:Q;(K)— A% (Q(K)), D <ZaiAb,~> =Y Aa;AAD;
i i
is a differential operator of order 1 on Q| (K) where a;,b; € K. [11]
Proposition 2. There is a split exact sequence of R-modules
0— Qs —J; (Q)) = A2 (Q) — 0.[3]

Proposition 3. Assume that J,, (Q, (R)) is the universal module of differential operators of

order m on Q, (R) with the universal differential A,,. Then, there exist a unique R-module
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homomorphism 0 : Qi (R) — Jin (2, (R)) where Y aidyn (bi) — Ay (Y aidpmin (b)) such

that the following diagram

R % 0.m

i dm—i—n l/ An

Quin(R) > 1,(Qu(R))

commutes.[1]

Remark 1. Let R be a k-algebra and 0 : Q.1 (R) — Jyy (2 (R)) be an R—module homomor-

phism given in proposition 3. Then, we have an exact esquence of R-modules as follows
0 ker® - Qpuin (R) 2 7,0 (2 (R)) 5 coker® — 0

where i is the inlusion map and p is the natural surjection Jp, (2, (R)) = Jp (2, (R)) /Im 6.[1]

Under favour of this test, the which condition ker® = 0 and coker® = 0 is found in the

following result.
Proposition 4. Assume that R is a regular local ring with dimension s. Then, 0 is injective.[1]

Theorem 1. Let [ is the kernel of R-module homomorphism R @i R — R. Then, there exist an

R-module isomorphism Q, (R) ~1/1""1.[4]
Theorem 2. If R regular and m = n =1, then Q1 (R) ~ J,, (Q,, (R)) with dimension 1.[1]

Lemma 3. Let R = k[x1,x7,...,xs] be an affine k-algebra. Then, there is a short exact squence

of R-modules

0 ker8; — > (Q (R) & 9, (R) — 0.[12]
Lemma 4. Let R = k[x|,x3,...,xs| be an affine k-algebra. Then,
A
Q) (R) 3 1 (Q2(R) 2 A2(2(R)) =0

is an exact sequence of R-modules.[12)]
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3. MAIN CONCLUSIONS

Throughout this study, R denotes a commutative algebra over an algebrically closed field
k with characteristic zero. In this section, we inspired from Lemma 2 and we introduced a
generalized version of Lemma 2 for Q (R). Afterwards, we we define the function € (R) —

A? (5 (R)) of second order exterior derivation and investigate the homological properties of

A (Q(R)).

Lemma 5. Let R be a commutative k-algebra. Suppose that Q; (R) is the universal module of

derivations of R with universal derivations dy : R — Q; (R) .Then, the map

D;: Qs (R) — A? (Q2 (R Za id> (b)) — Dy <Zazd2 ) = Zd2 (ai) Ad> (bi)

is a differential operator of order 2 on Q; (R) where a;,b; € R.

Proof. Let RQxR % A2 (Q; (R)) denote the k-linear map. @ (Xijai®bj) =Y, jd2(a;) Ady (b))
and assume that}; ja;®b; €1, Z,jal®b el, Z,Ja ®b €l.Here u :RQxR—R,u (Z,jal®b )
Y jaibjand I =keru. Then, since }; ;a;b; Z,j =Y.q b =0, for keru =1, there exist

a R-module homomorphism ¥ : I/I> — A% (Q, (R)) such that the following diagram

ROR 2 A2(Q(R))

N\ S
1/P

commutes. Now, we must show that @ (I*) = 0. We know that

Z(aa/a”@b i b > cl.
ij
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Then, we have

® (z add' @ bb’b”) —Yd, <aa’a”) Ady (bb’b”)
(ads (") +d d> (ad") +a'ds (aa') —ad dz (a") —ad'd (a) ~ dd' d> (@)

A ((bdz (b’b") b ds (bb”) b (bb’) by (b”) b d (b’) A (b)))
— Y abd, (a’a”) Ady (b b ) FYabdy (a’a”) Ady (bb ) n zab”dz (a’a”) Ady (bb’
_Yabb'dy (a’a )Adz (b Y abb'd (a a )Adz (
Y dbd (aa ) Ady ( V') +Ydbd (aa ) Ady (bb”
Y dbbd (aa ) Ady (b za b’ dy (aa ) Ady (b
Y d'bds (aa ) Ady ( b
Y d'bbds <aa ) Ads (b

)-
)
)-
)
)-
—Zaabdz( )Adz( b)) Zaabcb( )Adz(bb"
)-
)
)-
)+

=X

+zaa’bbd2< )Adz (b Y adbb'dy <a)Ad2 b

/N

Y Y adb'b'ds <a) Ad> (b
Yad'b'ds (a> Ady (bb’
Y'Y adbb'ds ( ) Ad> (b

—Yad by ( ) Ady (b b
Y ad'bb dy ( ) Ady (b
—Ydd'bd> (a) Ad (b b
(b

Yad'bds ( ) Ady (bb”
Y ad'bb' d (a) Ady (b/
Yd'd'bds (a) Ads (bb

)=
)
)-
)
yd'bb'dy <aa ) Ad> (b)) Yd'bb' ds <aa’) Ad> (b
)
)-
)+

—Ydd'b d (a) Ad> (bb

FYdd'bbdy(a)Ady (") +Xdd'bb'd> (a) Ad (b) Yd'd'bb d (a) Ads ().

If we rearrange the terms for above identity, the expression is reduced to as below:

® (z add' ® bb’b”) Yd <aa a ) Ady (bb b")
—Yabd, (a’a”) Ady <bb ) FYab dy (a a ) Ady (b ) Ydbb'dy (aa ) Ad> (b)
+Y.d by <aa”) Ady (b’b ) 1Y db'ds (aa ) Ads ( b ) Ya'bb'ds <aa ) Ady (b’)
Y d by (aa’> Ady (b’b”) +yYd'bd (aa’) Ady (b ) yd'bb dy <aa ) Ady (b”)
—Yadb'd, (a) Ady (bb’) —Yad'bds (a) Ady (b ) Y d'd" b (a) Ad> <b b ) .

According to definition of exterir derivation, we construct all terms for previous equation as

noted below



SECOND EXTERIOR DERIVATION OF HIGH ORDER UNIVERSAL MODULES

® (z add' ® bb’b”) —Yd <aa’a”) Ady (bb’b")

— ab’ [(a’cb( ) a d2< )) A (bdz (b”) b (b))}
tab' [(a’dz ( ) d'dy ( )) A (bdz (b’) b (b))]
—db'b [(adz ( ) _d'd (a)) Ad> (b)}
+d'b [(adz <a) —d'ds (a)) A(bds (b ) b'dy (b))]
+d'b" Kadz <a) —d'd (a)) A (bdz (b ) b (b))}
bt [(adz ( ) —dd (a)) Ad> (b’)]
+d'b [(adz (a) —ddr(a))A (b d> (b”) b (b))]
+d'p [(adz (a) dd (a)) A (bdz (b”) b (b))}

—d'bb [<ad2 <a> —dd> (a)> Ad> <b>
—ad'b’ [a’z <a) A (bdz (b’) A (b)>:
—ad'¥ [’dz <a ) A (bdz (b ) b'ds ( ))

b
—dd'p [dz (a) A <b/a’2 (b”) b (b’) ) .

Now, we will product the terms considering the exterior product, hence we have,

| S

® (zaa’a” ® bb’b”) Ydy <aa a ) Ady <bb b )
—ab’ [a’bdz (a) Ad> (b”) —db'd <a) Ad> (b) —d'bd ( ) Ad> (b ) d'b'dy (a> Ad> (b)}
tab' [a’bdz <a) Ad> (b’) —dbds ( ) Ads (b) — d'bd» ( ) Ad> (b ) vd'bd <a> Ad> (b)]
—dvb [ad2 ( ) Ad> (b) d'ds ( ) Ada ( b)

—

b [abdz (a) Ad> (b’) —ab'dy ( )Ad2 (b) — d"bds (a) Ads (
—d'bb’ [adz ( ) Ad ( ) d'dy (a) Ady (b
+d'b [ab’dz (a) Ad (b”) —ab'dy < ) Ads ( ) b ds (a) Ada (b
+d'b [abdz (a) Ad (b”) —ab'dy ( ) Ads (b) — d'bds (a) Ady (b
—d'bb :adz( )Ad2< ) dd (a ) Ada (b )
—ad'b’ :bdz (a) Ad> (b’ )
—ad'V :bdz (a) Ad> (b” )
—dd'b :b'dz (a) Ada (b”) —b'ds (a) Ad (b/ ] .

+db'ds(a Ad2< )]

~— —
|
. S
S
—
Q
—
>
S




8 ALI KARAKUS

If we use some basic mathematical operations, we obtain

add @bb'b") =Y dy (ad'a" ) Ady (bb'B"
oY

ab'dbds <a) Ad> (b ) —abdb ds ( )Ad2 (b) — ab'd' b <a> Ad (b ) —ab'd'b ds ( )Adz (b)

noro nn non_r

ab'd b (a> Ady <b ) —ab'dbds ( ) Ads (b) —ab"d"bds ( ) Ad (b ) vab'd'b dy ( ) Ads (b)

o nn

—d Vb ads (a )Adg (b) +d'b'b"d"dy (a) Ad> (b)

!/ n_n

d bab'd ( )Adz ( ) —dbab' ds ( )Ad2 (b) —d'bd'b dy (a) Ads (b ) +dbd'b'd> (a) Ad (b’)
+d'b' abd, (a ) Ad <b ) —db'ab'dy <a) Ads (b) —d'b'd" b (a) Ads (b ) +d'b'd'b dy (a) Ad> (b)
—db'b ads (a) Ads (b)+d b'b"d'd> (a) Ads (b)
+d'bab dy (a) Ady (b”) —dbab'd (a) Ad (b’) —dbd'bd> (a) Ads (b ) +d'bd'b d (a) Ad> (b’)
+d'b' abd, (a> Ads (b’) —dbabds (a) Ad> ( )—db’ a’bdz (a) Ads (b ) +d'b'd' b d> (a) Ads (b)
—d'bb ady (a” )

||\/
+
Q
Q
@‘
@
S-
>
S~

—~
S

~—

Therefore, we construct our main aim such that @ (I 3) =0. O

Let R @i R = A% (Q; (R)) denote the k-linear map

0] (Zbi ®Cli> Zdz /\dz al

and assume that },;b; ®a; € J and }_; b/j ®a/j € J . Then, since ) ; b;a; = Z] b a =0, it follows

that
© (Z bib aia’}.) _ (): bid,ds (b'j> Ads (a;) + b aids (b;) Ada (aj> ) .
ij IJ

We know that,

Y. (bid2 (ai) + aids (b Zb > (d}) +ayds (b)) =0
the latter two terms cancel each other. Hence, @J? = 0 and one verifies directly that induced

map

J/J? = A% (Q(R))
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is the restriction to degree 2 of an exterior derivation of A% (Q; (R)) .Let R be a k-algebra and
Q) (R) be the universal module of second order derivation of R. Let J, (Q; (R)) be the universal
module of differantial operators of order less than or equal to 2 on € (R) with the univer-
sal differantial operator A, : Q; (R) — J2 (Q2 (R)). Recall from [1], there exist 6 : Q3 (R) —
J2 (€7 (R)) such that the following diagram

R 4 o®
lds 14
Q(R) 2 L(2(R)
commutes. Let Dy : Q5 (R) — A% (Q3 (R)) where Dy (Y;aid> (b;)) = Y d> (a;) Ad> (b;) . By the

universal property of J; (Q; (R)), there is a R-module homomorphism
B2 (Q(R) = A* (2 (R))

such that the following diagram

Q> (R) Dy A2 (95 (R))
Ax ™\ /B
J2 (22 (R))

commutes.

Proposition 5. Let S be an affine algebra presented by S = R/I and R = k [x1,x2,...,xs| . Then,

there is a split exact sequence

Q3(8) & 1 (2 (5) B A2(Q,(5)) — 0.

Proof. First of all we must show that 8 is surjective. Let R be a commutative algebra with
unity and Q5 (R) be the universal module of second order derivation of R. For x;,x;,xt,X; € R,
m,n,t,r=0,1,2and 1 <i,j k,[ <sthe map
Ay : Q) (R) = A2 (9, (R)), where A, ( Y, ¥y (xix{)) = Y dy (x]'x}) Ady (xjx])
i,j kil ij.k,l
is a second order differential operator identify on ; (R) . Since universal property of J (> (R)) ,

there exist a unique an R-module homomorphism 8 : J, (Q2 (R)) — A? (Q; (R)) such that BA; =



10 ALI KARAKUS

A5 and the following diagram

&R B A2(Q(R)
Ax N\ /B
1> (9 (R))

commutes. Since
By = (s (xaf)) = Ao (¥l ()
= () Ads ()
B is surjective. Now, we shall show that Im 6 = ker 3. We know that Im 6 generated by the set
6 (d3(xi)), 0 (ds (xix;)) , 0 (d3 (xixjxe) )
fori, j,k=1,2,...,s. Therefore, we can write the following equality

d> (x,') Ady (xjxk) +d; (xj) Ad> (x,'xk) +dp (xk) Ady (xixj) +dp (x,'xj) Ad> (xk)
+d> (xixg) Ady (x;) +do (xjxi) Ady (x7) = 0.

Hence, we have
BO(ds(xi)) = B (A2 (d2 (xi))) = D2 (d2 (xi)) = d> (1) Ada (x;) = 0

B (ds (x5;)) = B (8 (da (5,))) = Da (ds (vix))) = d (1) Ads (x,) =0

BO (ds (xixjxi)) = P (A2 (da (xixjxi) ) ) = Da (o (i)
= D2 [x,'dz (xjxk) —l—xjdz (X,'xk) +xkd2 (x,-xj) —x,-xjdz (xk) —x,'xkdz (xj) —xjxkdz (x,-)]

B (ds (xixjxi) ) = B (A2 (da (xixjee) )) = Da (da (xixjxi) )
=D, [x,-dz (xjxk) +xd> (xixy) +xrda (xixj) — xixjdy (i) — xixda (xj) — X jXpd (xi)]
=d (x;) Ads (x jxk) +dp (x j) Ady (xixg) +do (x) Ady (xix j)
—d> (xixj) Ady (x) — dp (xixy) Ad (xj) —d (xjxk) Ady (x;) =0.

We have an induced map p : J> (Q(S)) / Im8 — A% (Q; (S)) defined by

P (Az (X,‘dz ()ijk)>) = d2 ()C,‘)Adz ()ijk) .
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Now suppose that A’F and Ly are defined as [1] and A% (Q, (S)) = S = Ly. Here, J, (Q, (S5)) /

Im 60 is generated by the set

{A2<x,~d2(xjxk)) 01 §i<j<k§s}.

We can define a map

q: A2 F = 1 (Q:(5))/Im6, g (d2 (x*) Ad> (ﬂ*)) — Ao <x°‘d2 <xﬁ)> .

Thus, if { f; } is generating set for 7 , then we have

q(dx (fi) Ada (x%)) = (Z = dy (x1) Ady (x ))

_ Zafk (xida (x%))
= Ao (fidy (x%))
)

Hence, ¢ (Ly) = 0. Therefore, ¢ induces an S-module homomorphism and

G:A2(F/Ly) — J» (2 (S)) /Im6,3 <d2 (x%) Ady (xﬁ)) = A, (x%d, (xB)).

It is evident that, gp and pq are the identitier. So, ker p =ker 3 /Im 6 and thus, kerf =Im#6. O

Example 1. Let R = k|x,y| polynomial algebra and I be an ideal of R such that, generating by
elements f =y* —x>. Let S = k[x,y| / (f). Here Q, (S) = F /Ly and F is a free S-module with

basis
{da(x),d2(y) 2 (xy) ,d (), (37) }

and Ly is a submodule of A> (F) generated by the set

{d2(f),d2 (xf),d2 (1)} -

Since
dy (f) = do (y*) = 3xdy (x*) + 3x%d; (x)
dy (xf) = xd; ( 2) 6x%d, ( ) 4 2yds (xy) +Tx3dy (x) — 2xyd; (y)
do (vf) = 3yds (y*) — 3xydy (x*) — 3x%dy (xy) + 6x°d> (x) — y?d> (y)
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2+1
and rankQ; (S) = —1=2,
1

rankLy = rankF — rankQ, (S) =5—-2=3.

Therefore, Ly is a free S-module. Now, A* (F) is a free module with the basis

d> (x) Ady (y) ,do (x) Ady (xy) ,d (x) Ada (x*) ,da (x) Ada (¥?) ,da (y) Ada (xy) ,da (y) Ada (x?)
,dy (v) Ady () ,da (xy) Ady (x2) ,da (xy) Ada (y*) . dp (x%) Ada (y?)

and Ly is a submodule of A> (F) generated by the set,

dr (f)Adr(x) = db(y*) Ad>(x) —3xd (x*) Ad> (x)
dr (f)Adr(y) = o (y*)Ada () —3xds (x*) A (v) +3x°da (x) Ad (y)
dr (f)Ady(xy) = dy (y*) Ada (xy) —3xd> (¥*) Ads (xy) + 3x°d> (x) Ads (xy)
A () = dy(y*) Ady (x*) +3x%d; (x) Ady (x%)
fAdy (y*) = —3xdr (x*)Ads (y*) +3x°d> (x) Ads ()
dr (xf)Ady (x) = xdr (y*) Ady (x) — 6x%ds (x*) Ads (x) +2yds (xy) Ado (x) — 2xyd> (v) Ada ()
dr (xf)Adz (y) = xdy (y*) Ada (y) — 6x%da (x*) Ada (v) +2yda (xy) Ada (v) + Txda (x) Ada (y)
dr (xf)Ada (xy) = xda (y*) Ada (xy) — 6x7ds () Ad (xy) + 7 da (x) Ada (xy) — 2xyda (v) Ads (x)
dr (xf)Ady (x*) = xdy (y*) Ada (x*) +2yd> (xy) Ady (x*) +7x°ds (x) Ady (x*) — 2xyd> (y) Ads (x7)
dr (xf)Ady (y?) = —6x7dy (x*) Ada () +2yd> (xy) Ada (y*) + 7 d, (x) Ady (y*) — 2xyds (v) Ada (v*)
d> (yf)Ada (x) = 3ydy (y*) Ada (x) — 3xyds (¥) Ads (x) — 3x%ds (xy) Ada (x) — y*da (y) Ada (x)
dy (vf)Adx(v) = 3yda (y*) Adz (v) = 3xyda (x%) Ada (y) = 3x°dz (xy) Ada (v) + 6x°d3 (x) Ada (y)
dr (yf)Ada (xy) = 3yds (y*) Ada (xy) — 3xyds (x*) Ada (xy) + 6x°ds (x) Ada (xy) — yda (v) Adb (xy)
dy (yf)Ady (x*) = 3ydy (y*) Ada (x*) — 3x%ds (xy) Ada (¥) 4+ 6x7d5 (x) Ady (x*) — y2da (y) Ady (x7)
dy(yf)Ady (y?) = —3xydy (x*) Ads (y*) — 3x%ds (xy) Ads (y*) +6x7ds (x) Ada (y*) — y*da (y) Ada (%) -
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