

Available online at http://scik.org
Algebra Letters, 2013, 2013:3
ISSN 2051-5502

SIGMA BOUNDED SEQUENCE AND SOME MATRIX TRANSFORMATIONS

AB. HAMID GANIE
Department of Mathematics, National Institute of Technology Srinagar, INDIA

Abstract

The object of this paper is to investigate some classes of infinite matrices, i.e., $\left(l_{\infty}(p, s), v^{\sigma}\right)$ and $\left(l_{\infty}(p, s), v_{\infty}^{\sigma}\right)$, where v^{σ} is the space of all bounded sequences all of whose σ - means are equal, v_{∞}^{σ} is the space of σ-bounded sequence and the space $l_{\infty}(p, s)$ have been defined and studied by T. Jalal and Z. U. Ahmad [5].

Keywords: Invariant means, Infinite matrices, Matrix transformations.
2000 AMS Subject Classification: 40A05, 40A45, 40C05.

Preliminaries, background and Notation: A sequence space is defined to be a linear space of real or complex sequences. Throughout the paper \mathbb{N}, \mathbb{R} and \mathbb{C} denotes the set of non-negative integers, the set of real numbers and the set of complex numbers, respectively. Let ω denote the space of all sequences (real or complex); l_{∞} and c respectively, denotes the space of all bounded sequences, the space of convergent sequences. Also, by $c s, l_{1}$ and $l(p)$ we denote the spaces of all convergent, absolutely and p-absolutely convergent series, respectively. Also, by f we denote the set of almost convergent sequences.

Let σ be a mapping of the set of positive integers into itself. A continuous linear functional Φ on l_{∞} is said to be an invariant mean or a σ-mean if and only if $(i) \Phi(x) \geq 0$, when the sequence $x=\left(x_{n}\right)$ has $x_{n} \geq 0$ for all n; (ii) $\Phi(e)=1$, where $e=\{1,1,1, \ldots \ldots\}$; and (iii) $\Phi\left(x_{\sigma(n)}\right)=\Phi(x)$ for all $x \in l_{\infty}$. Through out this paper, we deal only with mappings σ as one to one and are such that $\sigma^{m}(n) \neq n$, for all positive integers n and m, where $\sigma^{m}(n)$ denotes the m th iterate of the mapping σ at n. If σ is the
translation mapping $n \rightarrow n+1$, a σ mean is often called a Banach limit (see, [1, 3-5]). If $x=\left(x_{n}\right)$, write $T x=\left(T x_{n}\right)=\left(x_{\sigma(n)}\right)$. It can be shown (see[12]) that

$$
v^{\sigma}=\left\{x \in l_{\infty}: \lim _{m \rightarrow \infty} t_{m n}(x)=L \text { uniformly in } n, L=\sigma-\lim x\right\}
$$

where,

$$
t_{m n}(x)=\frac{1}{m+1} \sum_{j=0}^{m} T^{j} x_{n}, T^{j} x_{n}=x_{\sigma^{j}(n)}, t_{-1, n}(x)=0
$$

We define v_{∞}^{σ} the space of σ-bounded sequences (see [9]) in the following wa:

$$
v_{\infty}^{\sigma}=\left\{x \in w: \sup _{m, n}\left|\Phi_{m, n}(x)\right|<\infty\right\}
$$

where,

$$
\begin{align*}
\Phi_{m, n}(x) & =t_{m, n}(x)-t_{m-1, n}(x) \\
& =\frac{1}{m(m+1)} \sum_{j=1}^{m} j\left(T^{j} x_{n}-T^{j-1} x_{n}\right) \tag{1}
\end{align*}
$$

If $\sigma(n)=n+1$, then v_{∞}^{σ} is the set of almost bounded sequences f_{∞} (see, $[2,3,8,10-14]$). The approach of constructing a new sequence space by means of matrix domain of a particular limitation method has been studied by several authors viz., (see, [1, 2, 7-9, 13]). In [2], Jalal and Ahmad [5] have defined the space $l_{\infty}(p, s)$ and characterized the classes $\left(l_{\infty}(p, s), l_{\infty}\right)$ and $\left(l_{\infty}(p, s), f\right)$. The object of this paper is to characterize the classes of matrices $\left(l_{\infty}(p, s), v^{\sigma}\right)$ and $\left(l_{\infty}(p, s), v_{\infty}^{\sigma}\right)$, where the space $l_{\infty}(p, s)$ is defined as follows:

$$
l_{\infty}(p, s)=\left\{x: \sup _{k} k^{-s}\left|x_{k}\right|^{p_{k}}<\infty, s \geq 0\right\}
$$

1. SOME MATRIX TRANSFORMATIONS

Let X, Y be two sequence spaces and let $A=\left(a_{n k}\right)$ be an infinite matrix of real or complex numbers $a_{n k}$, where $n, k \in \mathbb{N}$. Then, the matrix A defines the A-transformation from X into Y, if for every sequence $x=\left(x_{k}\right) \in X$ the sequence $A x=\left\{(A x)_{n}\right\}$, the A-transform of x exists and is in Y; where $(A x)_{n}=$ $\sum_{k} a_{n k} x_{k}$. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞. By $A \in(X: Y)$ we mean the characterizations of matrices from X to Y i.e., $A: X \rightarrow Y$. A sequence x is said to be A-summable to l if $A x$ converges to l which is called as the A-limit of x.

We note that, if $A x$ is defined, then it follows from (1) that, for all integers $n, m \geq 0$

$$
\Phi_{m, n}(A x)=\sum_{k} \chi(n, k, m) x_{k}
$$

where

$$
\chi(n, k, m)=\frac{1}{m(m+1)} \sum_{j=1}^{m} j\left\{a\left(\sigma^{j}(n), k\right)-a\left(\sigma^{j-1}(n), k\right)\right\}
$$

Theorem 2.1: Let $1<p_{k} \leq \sup _{k} p_{k}=H<\infty$ for every k, then $A \in\left(l_{\infty}(p, s), v_{\infty}^{\sigma}\right)$ if and only if there exists an integer $N>1$ such that

$$
\begin{equation*}
\sup _{m, n} \sum_{k}|\chi(n, k, m)|^{q_{k}} k^{\frac{s}{p_{k}}} N^{\frac{1}{p_{k}}}<\infty \tag{2}
\end{equation*}
$$

Proof: Let $A \in\left(l_{\infty}(p, s), v_{\infty}^{\sigma}\right)$ and that $x \in l_{\infty}(p, s)$. Put

$$
q_{n}(x)=\sup _{m}\left|\Phi_{m n}(A x)\right|
$$

For $n>0, q_{n}$ is continuous semi-norm on $l_{\infty}(p, s)$ and $\left(q_{n}\right)$ is pointwise bounded on $l_{\infty}(p, s)$. Suppose that (2.1) is not true. Then there exists $x \in l_{\infty}(p, s)$ with

$$
\sup _{n} q_{n}(x)=\infty
$$

By the principle of condensation of singularities (see[15]), the set

$$
\left\{x \in l_{\infty}(p, s): \sup _{n} q_{n}(x)=\infty\right\}
$$

is of second category in $l_{\infty}(p, s)$ and hence nonempty i.e., there is $x \in l_{\infty}(p, s)$ with $\sup _{n} q_{n}(x)=\infty$. But this contradicts the fact that q_{n} is pointwise bounded on $l_{\infty}(p, s)$. Now, by Uniform bounded principle,
there is constant M such that

$$
\begin{equation*}
q_{n}(x) \leq M g(x) \tag{3}
\end{equation*}
$$

Applying (3) to the sequence $x=\left(x_{k}\right)$ defined as in [5] by replacing $a_{n k}(i)$ by $a(n, k, m)$, we then obtain the necessity of (2).

Sufficiency. Let (2) holds and $x \in l_{\infty}(p, s)$. Using the following inequality

$$
|a b| \leq C\left(|a|^{q} C^{-q}+|b|^{p}\right)
$$

for $C>0$ and a, b two complex numbers $\left(p>1\right.$ and $\left.p^{-1}+q^{-1}=1\right)($ see $[7,15])$, we have

$$
\begin{aligned}
\left|\Phi_{m, n}(A x)\right| & =\left|\sum_{k} \chi(n, k, m) x_{k}\right| \\
& \leq \sum_{k}\left|\chi(n, k, m) x_{k}\right| \\
& \leq \sum_{k} N\left[|\chi(n, k, m)|^{q_{k}} k^{\frac{s}{p_{k}}} N^{\frac{1}{p_{k}}}+\left|x_{k}\right|^{p_{k}} k^{\frac{-s}{p_{k}}}\right] .
\end{aligned}
$$

Taking the supremum over m, n and using (2.2) we get $A x \in v_{\infty}^{\sigma}$ for $x \in l_{\infty}(p, s)$. i.e, $A \in\left(l_{\infty}(p, s), v_{\infty}^{\sigma}\right)$. This completes the proof of the theorem.

Theorem 2.2: Let $1<p_{k} \leq \sup _{k} p_{k}=H<\infty$ for every k, then $A \in\left(l_{\infty}(p, s), v^{\sigma}\right)$ if and only if there exists an integer $N>1$ such that
(i) $\sup _{m, n} \sum_{k}|t(n, k, m)|^{q_{k}} k^{\frac{s}{p_{k}}} N^{\frac{1}{p_{k}}}<\infty$,
(ii) $\lim _{m} t(n, k, m)=a_{k}$ uniformly in n, for every k.

Necessity: Let $A \in\left(l_{\infty}(p, s), v^{\sigma}\right)$ and that $x \in l_{\infty}(p, s)$. Write $q_{n}(x)=\sup _{m}\left|t_{m n}(A x)\right|$. It is easy to see that for $n \geq 0, q_{n}$ is continuous semi-norm on $l_{\infty}(p, s)$ and q_{n} is pointwise bounded on $l_{\infty}(p, s)$. Suppose that (i) is not true. Then there exists $x \in l_{\infty}(p, s)$ with $\sup _{n} q_{n}(x)=\infty$. By the principle of condensation of singularities [15], the set

$$
\left\{x \in l(p, s): \sup _{n} q_{n}(x)=\infty\right\}
$$

is of second category in $l_{\infty}(p, s)$ and hence non empty i.e, there is $x \in l_{\infty}(p, s)$ with $\sup _{n} q_{n}(x)=\infty$. But this contradicts the fact that $\left(q_{n}\right)$ is pointwise bounded on $l_{\infty}(p, s)$. Now by Banach-Steinhauss theorem, there is constant M such that

$$
\begin{equation*}
q_{n}(x) \leq M g(x) \tag{4}
\end{equation*}
$$

Now define a sequence $x=\left(x_{k}\right)$ by

$$
x_{k}= \begin{cases}(\operatorname{sgn} t(n, k, m)) k^{\frac{s}{p_{k}}} N^{\frac{-1}{p_{k}}}, & 1 \leq k \leq k_{0} \\ 0 & , k>k_{0}\end{cases}
$$

Then it is easy to see that $x \in l(p, s)$. Applying this sequence to (4) we get the condition (i). Since $e_{k} \in l_{\infty}(p, s)$, condition (ii) follows immediately by taking $x=e_{k}$.

Sufficiency. Let (i) and (ii) hold and $x \in l_{\infty}(p, s)$. For $j \geq 1$

$$
\sum_{k=1}^{j}|t(n, k, m)|^{q_{k}} k^{\frac{s}{p_{k}}} N^{\frac{1}{p_{k}}} \leq \sup _{m} \sum_{k}|t(n, k, m)|^{q_{k}} k^{\frac{s}{p_{k}}} N^{\frac{1}{p_{k}}}<\infty \text { for every } n
$$

Therefore,

$$
\begin{aligned}
\sum_{k}\left|\alpha_{k}\right|^{q_{k}} k^{\frac{s}{p_{k}}} N^{\frac{1}{p_{k}}} & =\lim _{j} \lim _{m} \sum_{k=1}^{j}|t(n, k, m)|^{q_{k}} k^{\frac{s}{p_{k}}} N^{\frac{1}{p_{k}}} \\
& \leq \sup _{m} \sum_{k}|t(n, k, m)|^{q_{k}} k^{\frac{s}{p_{k}}} N^{\frac{1}{p_{k}}}<\infty .
\end{aligned}
$$

Consequently the series $\sum_{k} t(n, k, m) x_{k}$ and $\sum_{k} \alpha_{k} x_{k}$ converges for every n, m and for every $x \in l_{\infty}(p, s)$.

Now for $\epsilon>0$ and $x \in l_{\infty}(p, s)$. Choose $k_{0} \in N$ such that

$$
\sum_{k \geq k_{0}+1}\left|x_{k}\right|^{p_{k}} k^{\frac{-s}{p_{k}}}<1
$$

By condition (ii), there exits m_{0} such that

$$
\left|\sum_{k=1}^{k_{0}}\left[t(n, k, m)-\alpha_{k}\right]\right|<\infty
$$

for every $m>m_{0}$. By condition (i), it follows that

$$
\left|\sum_{k \geq k_{0}+1}\left[t(n, k, m)-\alpha_{k}\right]\right|
$$

is arbitrarily small. Therefore

$$
\lim _{m} \sum_{k} t(n, k, m) x_{k}=\sum_{k} \alpha_{k} x_{k} \text { uniformly in } n .
$$

Hence $A \in\left(l_{\infty}(p, s), v^{\sigma}\right)$

References

[1] S. Banach, Theorie des operations linearies, Warszawa,1932.
[2] E. Bullet and O. Cakar, The sequence space and related matrix transformations, Comm. Fac. Sci. Univ. Aukara 28(1979),33-44.
[3] A. H. Ganie and N.A. Sheikh, A note on almost convergent sequences and some matrix transformations, Int. J. Mod. Math. Sci., 4(2012),126-132.
[4] A. H. Ganie and N. A. Sheikh, On the sequence space of nonabsolute type and matrix transformations (accepted for publication in Jour. Egyptain Math. Society, ID-JOEMS-D-12-00105).
[5] T. Jalal and Z.U. Ahmad, A new sequence space and matrix transformations, Thai J. Math., 8(2)(2010), 373-381.
[6] G. G. Lorentz, A contribution to the theory of divergent sequence, Acta Math., 80(1948), 167-190.
[7] I. J. Maddox, Continuous and Kothe-Toeplitz dual of certain sequence space, Proc. Camb. Phil. Soc., 65(1969),431-435.
[8] Mursaleen, Infinite matrices and almost convergent sequences, SEA Bul. Math., 19(1)(1995), 45-48.
[9] M. Mursaleen, Some matrix transformtions on sequence spaces of invariant means, Hacet. J. Math. Stat., 38(2009), 259?64.
[10] S. Nanda, On some sequence spaces, Math. student, 48(4)(1980), 348-452.
[11] G. M. Petersen. Regular matrix transformations. McGraw-Hill Publishing Co. Ltd., London-New York-Toronto, (1966).
[12] P. Schaefer, Infinite matricies and invariant means, Proc. Amer. Math. Soc., 36(1972), 104-110.
[13] N. A. Sheikh, and A. H. Ganie: Matrix transformations into new sequence spaces related to invariant means, Chamchuri J. Math., 4(2012), 71-77.
[14] N. A. Sheikh and A. H. Ganie, On the λ-convergent sequence and almost convergence (to be appeared in Thai J. of Math.).
[15] K. Yosida, Functional Analysis, Springer-Verlag, Berlin Heidelberg, New York, (1996).

