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1. INTRODUCTION

Throughout this paper, we assume that H is a real Hilbert space with inner product

〈·, ·〉 and norm ‖.‖, respectively, C is a nonempty closed convex subset of H, PC is the

metric projection of H onto C, and I is the identity mapping on C. Recall that a mapping

T : C → C is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ , ∀x, y ∈ C.
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We denote the set of fixed points of T by F (T ). Recall that a mapping A : C → H is

said to be

(1) monotone if

〈Ax− Ay, x− y〉 ≥ 0, ∀x, y ∈ C,

(2) η-strongly monotone if there exists a constant η > 0 such that

〈Ax− Ay, x− y〉 ≥ η ‖x− y‖2 , ∀x, y ∈ C,

(3) v-inverse strongly monotone if there exists a constant v > 0 such that

〈Ax− Ay, x− y〉 ≥ v ‖Ax− Ay‖2 , ∀x, y ∈ C,

(4) L-Lipschitzian if there exists constant a L > 0 such that

‖Ax− Ay‖ ≤ L ‖x− y‖ , ∀x, y ∈ C.

It is obvious that any v-inverse strongly monotone mapping A is monotone and (1/v)-

Lipschitz continuous. A self-mapping f : C → C is a contraction if there exists a constant

k ∈ (0, 1) such that

‖f (x)− f (y)‖ ≤ k ‖x− y‖ , ∀x, y ∈ C.

Let A : C → H be a mapping. The classical variational inequality problem V I (C ,A)

is to find a point x ∈ C such that 〈Ax, y − x〉 ≥ 0 for all y ∈ C. The set of solutions

of variational inequality problem is denoted by Ω (C ,A). The variational inequalities

were initially studied by Stampachhia [5, 6], and ever since have been widely studied.(see,

[11, 12, 15, 16, 17, 18, 19, 21, 22, 24]). Such a problem is connected with the con-

vex minimization problem, the complementarity problem, the problem of finding a point

u ∈ H satisfying 0 = Au and so on. The existence and approximation of solutions are

important aspects for the study of variational inequalities. It is well known that the vari-

ational inequality problem is equivalent to finding the set of fixed points of the operator

PC (I − µA), i.e., F (PC (I − µA)) = Ω (C ,A), where µ > 0 is a constant and PC is a

metric projection from H onto C. We know that if A is κ-Lipschitzian and η-strongly

monotone, then the operator PC (I − µA) is also a contraction on C with 0 < µ < 2η/κ2.
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So, it follows from the Banach contraction principle that V I (C,A) has a unique solution

x∗ and the sequence of the Picard iteration process, given by x∗,

(1.1) xn+1 = PC (I − µA)xn, n ≥ 1,

converges strongly to x∗. This method is called the projected gradient method [13]. It

has been used widely in many practical problems, due partially to its fast convergence.

On the other hand, two classical iteration processes are often used to approximate a

fixed point of a nonexpansive mapping. The first one is introduced by Mann [7] and is

defined as follows:

(1.2)

 x1 = x ∈ C,

xn+1 = (1− αn)xn + αnTxn, n ≥ 1,

where {αn} is a real sequence in (0, 1).

The second iteration process is referred to as Ishikawa’s iteration process [9] which is

defined recursively by

(1.3)


x1 = x ∈ C,

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn, n ≥ 1,

where {αn} and {βn} is a real sequences in (0, 1) (see for example [7, 9, 10]). The Ishikawa

process can be seen as a ”double Mann iterative process” or a ”hybrid of Mann process

with itself”.

In 2007, Agarwal-O’Regan-Sahu [1] introduced the S iteration process:

(1.4)


x1 = x ∈ C,

xn+1 = (1− αn)Txn + αnTyn,

yn = (1− βn)xn + βnTxn, n ≥ 1,
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where {αn} and {βn} is a real sequences in (0, 1). The S iteration process is independent

of all Picard, Mann and Ishikawa iterative processes. Sahu [4] also showed analytically

that the process (1.4) converges faster than both Picard and Mann. See Theorem 3.6 [4].

In this paper, motivated and inspired by Agarwal-O’Regan-Sahu [1], we will introduce

a new iterative scheme. Our process reads as follows:

(1.5)



x1 = x ∈ C,

xn+1 = (1− αn)Txn + αnTyn,

yn = (1− βn)Txn + βnTzn,

zn = (1− γn)xn + γnTxn, n ≥ 1,

where {αn}, {βn} and {γn} is a real sequences in (0, 1). (1.5) is called S∗ iteration

process. S∗ iteration process is independent from the (1.1), (1.2), (1.3), and (1.4) iteration

processes.

The purpose of this paper is to prove that our process (1.5) converges faster than all of

Picard, Mann and S iterative processes for contractions in the sense of Berinde [3]. We

support our analytical proof by a numerical example. We also prove a strong convergence

theorem with the help of our process for the class of nonexpansive mappings in general

Banach spaces and apply it to get a result in uniformly convex Banach spaces. We also

prove some weak convergence results when the underlying space satisfies Opial’s condition.

2. PRELIMINARIES

Let X be a Banach space and SX = {x ∈ X : ‖x‖ = 1} unit sphere on X. For all

λ ∈ (0, 1), and x, y ∈ SX with x 6= y, if ‖(1− λ)x+ λy‖ < 1, then X is called strictly

convex. If X is a strictly convex Banach space and ‖x‖ = ‖y‖ = ‖αx+ (1− α) y‖ for

x, y ∈ X and α ∈ (0, 1) , then x = y.

The space X is said to be smooth if

(2.1) lim
t→0

‖x+ ty‖ − ‖x‖
t
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exists for each x and y in SX . In this case, the norm of X is called Gateaux differentiable.

For all y ∈ SX , if the limit (2.1) is attained uniformly for x ∈ SX , then the norm is said

to be uniformly Gateaux differentiable or Frechet differentiable.

We call the space X satisfies the opial condition [8] if for any sequence {xn} in X,

xn ⇀ x implies that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

for all y ∈ X with y 6= x.

A mapping T : C → X is demiclosed at y ∈ X if for each sequence {xn} in C and each

x ∈ X, xn ⇀ x and Txn → y imply that x ∈ C and Tx = y.

The following lemmas will be needed in the sequel for the proof of our main results:

Lemma 1. [23]Let C be a nonempty closed convex subset of a uniformly convex Banach

space X, and T a nonexpansive mapping on C. Then, I − T is demiclosed at zero.

Lemma 2. [14]Suppose that X is a uniformly convex Banach space and 0 < p ≤ tn ≤ q <

1 for all n ∈ N. Let {xn} and {yn} be two sequences of X such that lim supn→∞ ‖xn‖ ≤ r,

lim supn→∞ ‖yn‖ ≤ r and lim supn→∞ ‖tnxn + (1− tn) yn‖ = r hold for some r ≥ 0. Then

limn→∞ ‖xn − yn‖ = 0.

Lemma 3. [2]Let X be a reflexive Banach space satisfying the Opial condition, C a

nonempty convex subset of X and T : C → X an operator such that I − T demiclosed at

zero and F (T ) 6= ∅. Let {xn} be a sequence in C such that limn→∞ ‖xn − Txn‖ = 0 and

limn→∞ ‖xn − p‖ exists for all p ∈ F (T ) . Then {xn} converges weakly to a fixed point of

T.

3. COMPARISON OF S∗ AND S ITERATION PROCESSES

Now, we give S∗ operator and some of its properties and then compare the rate of con-

vergence of the S∗ iteration process with the S iteration process for contraction operators.

Definition 1. Let C be a nonempty convex subset of a vector space X and T : C → C

an operator. Then, Gα,β,γ,T : C → C is called S∗ operator generated by α, β, γ ∈ (0, 1)
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and T if

Gα,β,γ,T = (1− α)T + αT ((1− β)T + βT ((1− γ) I + γT )) .

If T is a contraction operator with contractivity factor k, then it is easy to see that

Gα,β,γ,T is a contraction with contractivity factor k (1− α (1− k (1− βγ (1− k)))) and if

T is a nonexpansive operator then Gα,β,γ,T is also nonexpansive.

Proposition 1. Let X be a Banach space, C a nonempty closed convex subset of X, and

T : C → C a contraction operator. Suppose that α, β, γ ∈ (0, 1). If Gα,β,γ,T is an S*

operator generated by α, β, γ and T , then F (Gα,β,γ,T ) = F (T ) .

Proposition 2. Let X be a strictly convex Banach space, C a nonempty closed convex

subset of X, and T : C → C a nonexpansive operator with F (T ) 6= ∅. Suppose that α,

β, γ ∈ (0, 1). If Gα,β,γ,T is an S∗ operator generated by α, β, γ and T , then F (Gα,β,γ,T ) =

F (T ) .

Proof. It is clear from the definition of Gα,β,γ,T that F (T ) ⊆ F (Gα,β,γ,T ). Now we show

that F (Gα,β,γ,T ) ⊆ F (T ). Let z ∈ F (Gα,β,γ,T ) and v ∈ F (T ). We have

‖z − v‖ = ‖(1− α)Tz + αT ((1− β)T + βT ((1− γ) I + γT )) z − v‖

≤ (1− α) ‖Tz − v‖+ α ‖(1− β)Tz + βT ((1− γ) I + γT ) z − v‖

≤ (1− α) ‖Tz − v‖+ α [(1− β) ‖Tz − v‖+ β ‖T ((1− γ) I + γT ) z − v‖]

≤ (1− αβ) ‖Tz − v‖+ αβ ‖T ((1− γ) I + γT ) z − v‖

≤ (1− αβ) ‖Tz − v‖+ αβ ‖(1− γ) z + γTz − v‖

≤ (1− αβ) ‖Tz − v‖+ αβ [(1− γ) ‖z − v‖+ γ ‖Tz − v‖]

≤ (1− αβγ) ‖z − v‖+ αβγ ‖Tz − v‖

≤ ‖z − v‖ .
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This implies that

‖z − v‖ = ‖Tz − v‖

= ‖T ((1− γ) I + γT ) z − v‖

= ‖T ((1− β)T + βT ((1− γ) I + γT )) z − v‖

= ‖(1− α)Tz + αT ((1− β)T + βT ((1− γ) I + γT )) z − v‖ .

Since X is strinctly convex, we obtain Tz = z. Hence we have F (Gα,β,γ,T ) ⊆ F (T ) , and

so proof is completed. �

The following definitions about the rate of convergence are due to Berinde [3].

Definition 2. Let {an} and {bn} be two sequences of real numbers converging to a and b

respectively. If lim
n→∞

|an − a|
|bn − b|

= 0, then {an} converges faster than {bn}.

Definition 3. Suppose that for two fixed-point iteration processes {xn} and {un}, both

converging to the same fixed point p, the error estimates

‖xn − p‖ ≤ an for all n ≥ 1,

‖un − p‖ ≤ bn for all n ≥ 1,

are available where {an} and {bn} are two sequences of positive numbers converging to

zero. If {an} converges faster than {bn}, then {xn} converges faster than {un} to p.

Theorem 1. Let C be a nonempty closed convex subset of a Banach space X and T :

C → C a contraction operator with contractivity factor k ∈ [0, 1) and fixed point p. Let

{αn} , {βn} and {γn} be three real sequences in (0, 1) such that α ≤ αn < 1, β ≤ βn < 1

and γ ≤ γn < 1 for all n ∈ N and for some α, β, γ > 0. For given u1 = x1 ∈ C, define

sequences {xn} and {un} in C as follows:

S∗ iteration process:

xn+1 = (1− αn)Txn + αnTyn

yn = (1− βn)Txn + βnTzn

zn = (1− γn)xn + γnTxn
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S iteration process:

un+1 = (1− αn)Tun + αnTvn

vn = (1− βn)un + βnTun.

Then, we have the following:

(a) ‖xn+1 − p‖ ≤ kn [1− α (1− k (1− βγ (1− k)))]n ‖x1 − p‖

(b) ‖un+1 − p‖ ≤ kn [1− αβ (1− k)]n ‖u1 − p‖ .

Furthermore, the S ∗ iteration process is faster than the S iteration process.

Proof. (a) From the definition of the S∗ iteration process, we obtain

‖xn+1 − p‖

≤ (1− αn) k ‖xn − p‖+ αnk ‖yn − p‖

≤ (1− αn) k ‖xn − p‖+ αnk [(1− βn) k ‖xn − p‖+ βnk ‖zn − p‖]

≤ (1− αn) k ‖xn − p‖

+αnk [(1− βn) k ‖xn − p‖+ βnk [(1− γn) ‖xn − p‖+ γnk ‖xn − p‖]]

= ‖xn − p‖
[
(1− αn) k + αnk

2 (1− βn) + αnβnk
2 (1− γn) + αnβnγnk

3
]

= ‖xn − p‖ k [1− αn (1− k (1− βnγn (1− k)))]

≤ an

where an = ‖x1 − p‖ kn [1− α (1− k (1− βγ (1− k)))]n.

(b) From the definition of the S iteration process, we have

‖un+1 − p‖ ≤ (1− αn) k ‖un − p‖+ αnk ‖vn − p‖

≤ (1− αn) k ‖un − p‖+ αnk [(1− βn) ‖un − p‖+ βnk ‖un − p‖]

= ‖un − p‖ k [1− (1− k)αnβn]

≤ bn

where bn = ‖u1 − p‖ kn [1− (1− k)αβ]n .
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Moreover, it is clear that lim
n→∞

an
bn

= 0. Indeed, since

β (1− kγ) < 1 ⇒ β (1− k) (1− kγ) < 1− k

⇒ β (1− k)− kβγ (1− k) < 1− k

⇒ β (1− k) < 1− k + kβγ (1− k)

⇒ (1− k) β < 1− k [1− βγ (1− k)]

⇒ (1− k)αβ < α [1− k [1− βγ (1− k)]]

⇒ 1− α [1− k [1− βγ (1− k)]] < 1− (1− k)αβ,

we get

lim
n→∞

an
bn

= lim
n→∞

‖x1 − p‖ kn [1− α (1− k (1− βγ (1− k)))]n

‖u1 − p‖ kn [1− (1− k)αβ]n

= lim
n→∞

[1− α (1− k (1− βγ (1− k)))]n

[1− (1− k)αβ]n

= 0.

So, the S∗ iteration process is faster than the S iteration process. �

We support our above analytical proof by a numerical example.

Example 1. Let X = R and C = [1,∞). Let T : C → C be an operator defined by

Tx =
√
x2 − 9x+ 54 for all x ∈ C. It is not difficult to show that T is a contraction.

Choose αn = βn = γn = 3/4 for all n with initial value x1 = 30. The comparison

given in the following table shows that our iterative process (1.5) converges faster than all

Picard, Mann and S iterative processes up to the accuracy of seven decimal places. All

the processes converge to the same fixed point p = 6. First twelve iterations for all the

processes are given below for the sake of comparison.
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A comparison of our process with other processes

steps S∗ iteration S iteration Picard iteration Mann iteration

x1 30.000000 30.000000 30.000000 30.000000

x2 21.834770 24.050330 26.153390 27.115050

x3 14.505540 18.437270 22.419180 24.290740

x4 8.990788 13.393820 18.837380 21.542040

x5 6.530200 9.372555 15.469660 18.889280

x6 6.055566 6.993935 12.413040 16.360650

x7 6.005067 6.186207 9.816627 13.995420

x8 6.000455 6.028369 7.875057 11.847570

x9 6.000041 6.004134 6.718706 9.986986

x10 6.000004 6.000598 6.218734 8.490041

x11 6.000000 6.000086 6.058386 7.408304

x12 6.000000 6.000012 6.014862 6.724666

Remark. The above calculations have been repeated by taking different values of param-

eters αn, βn and γn. It has been verified every time that our iterative process S∗ converges

faster than all Picard, Mann and S iterative processes. Moreover, it has been observed

that as the values of αn, βn and γn go far below 0.5 and near 0 (above 0.5 and near 1), the

convergence gets slower (faster), and it happens with every scheme except Picard as it has

nothing to do with these parameters. For example, when αn = βn = γn = 1/4 for all n,

the values for the above four processes at the 12th iteration become 6.000679, 6.006863,

6.014862, 19.854840, respectively. The accuracy of seven decimal places is obtained by

our process at the 16th iteration. The values at this iteration for the above processes are

6.000000, 6.000005, 6.000015 15.718300 . By the way, for αn = βn = γn = 1/2 for all n,

at the 14th iteration, we get 6.000000, 6.000029 6.000934 and 9.130115, respectively. For

the initial value x1 = 2 and αn = βn = γn = 3/4 for all n, our iteration process is faster

than the others. At the 7th iteration, S∗, S, Picard and Mann iteration processes become

6.000000, 5.999999, 6.000362 and 5.989854, respectively.
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In the light of Theorem 1, we give the following theorem.

Theorem 2. Let C be a nonempty closed convex subset of a Banach space X and T :

C → C a contraction operator with contractivity factor k ∈ [0, 1). Let {αn} , {βn} and

{γn} be three real sequences in (0, 1) such that α ≤ αn < 1, β ≤ βn < 1 and γ ≤ γn < 1

for all n ∈ N and for some α, β, γ > 0. Let {xn} be the S∗ iteration process defined by

(1.5) for the arbitrary initial value x1 ∈ C and F (T ) 6= ∅. Then the iterative sequence

{xn} converges strongly to a fixed point of T.

Proof. For p ∈ F (T ) , it follows from the proof of Theorem 1 and the definition of {xn}

that

lim
n→∞

‖xn+1 − p‖ ≤ lim
n→∞

kn [1− α (1− k (1− βγ (1− k)))]n ‖x1 − p‖ = 0.

So, proof is completed. �

4. NONEXPANSIVE OPERATORS AND S∗ ITERATION PROCESS

Lemma 4. Let C be a nonempty closed convex subset of a uniformly convex Banach space

X. Let T be a nonexpansive self mapping on C, {xn} defined by (1.5) and F (T ) 6= ∅.

Then limn→∞ ‖xn − p‖ exists for all p ∈ F .

Proof. Let p ∈ F (T ). Set an := xn − p for all n ∈ N. From (1.5), we have

‖zn − p‖ = ‖(1− γn)xn + γnTxn − p‖

≤ (1− γn) ‖xn − p‖+ γn ‖Txn − p‖

≤ (1− γn) ‖xn − p‖+ γn ‖xn − p‖

≤ ‖xn − p‖ .(4.1)
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From (4.1) and (1.5), we have

‖yn − p‖ = ‖(1− βn)Txn + βnTzn − p‖

≤ (1− βn) ‖Txn − p‖+ βn ‖Tzn − p‖

≤ (1− βn) ‖xn − p‖+ βn ‖zn − p‖

≤ ‖xn − p‖ .(4.2)

By (4.2) and (1.5), we obtain

‖xn+1 − p‖ = ‖(1− αn)Txn + αnTyn − p‖

≤ (1− αn) ‖Txn − p‖+ αn ‖Tyn − p‖

≤ (1− αn) ‖xn − p‖+ αn ‖yn − p‖

≤ ‖xn − p‖ .

So, {‖an‖} is nonincreasing and hence limn→∞ ‖an‖ exists for all p ∈ F (T ). �

Lemma 5. Let C be a nonempty closed convex subset of a uniformly convex Banach space

X. Let T be a nonexpansive self mapping on C, {xn} defined by (1.5) and F (T ) 6= ∅.

Then limn→∞ ‖xn − Txn‖ = 0.

Proof. By Lemma 4, limn→∞ ‖xn − p‖ exists. Assume that limn→∞ ‖xn − p‖ = c. From

(4.1) and (4.2) we have

(4.3) lim sup
n→∞

‖yn − p‖ ≤ c and lim sup
n→∞

‖zn − p‖ ≤ c.

Since T is nonexpansive mappings, we have

‖Txn − p‖ ≤ ‖xn − p‖ and ‖Tyn − p‖ ≤ ‖yn − p‖

Taking lim sup on both sides, we obtain

(4.4) lim sup ‖Txn − p‖ ≤ c and lim sup ‖Tyn − p‖ ≤ c.

Since

c = lim
n→∞

‖xn+1 − p‖ = lim
n→∞

‖(1− αn) (Txn − p) + αn (Tyn − p)‖ ,
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by using Lemma 2, we have

lim
n→∞

‖Txn − Tyn‖ = 0.

Now

‖xn+1 − p‖ = ‖(1− αn)Txn + αnTyn − p‖ ≤ ‖Txn − p‖+ αn ‖Txn − Tyn‖

yields that

(4.5) c ≤ lim
n→∞

inf ‖Txn − p‖

so that (4.4) and (4.5) gives

lim
n→∞

‖Txn − p‖ = c.

On the other hand, we have

‖Txn − p‖ ≤ ‖Txn − Tyn‖+ ‖Tyn − p‖ ≤ ‖Txn − Tyn‖+ ‖yn − p‖ ,

so we write

(4.6) c ≤ lim
n→∞

inf ‖yn − p‖ .

From (4.3) and (4.6) we get

lim ‖yn − p‖ = c.

Since T is nonexpansive, by using (4.1) we have

(4.7) lim
n→∞

sup ‖Tzn − p‖ ≤ c.

From the inequality (4.4) and (4.7), by using Lemma 2 we obtain

lim
n→∞

‖Txn − Tzn‖ = 0.

Since

‖Txn − p‖ ≤ ‖Txn − Tzn‖+ ‖Tzn − p‖ ≤ ‖Txn − Tzn‖+ ‖zn − p‖

we write

(4.8) c ≤ lim
n→∞

inf ‖zn − p‖ .
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From (4.3) and (4.8), it follows that

lim
n→∞

‖zn − p‖ = c.

On the other hand, since

c = lim
n→∞

‖zn − p‖

= lim
n→∞

‖(1− γn)xn + γnTxn − p‖

= lim
n→∞

‖(1− γn) (xn − p) + γn (Txn − p)‖ ,

by Lemma 2, we have

lim
n→∞

‖xn − Txn‖ = 0.

So proof is completed. �

By using Lemma 1, Lemma 3, Lemma 4 and Lemma 5, we can write the following

theorem.

Theorem 3. Let X be a real uniformly convex Banach space which satisfies the Opial

condition, C a nonempty closed convex subset of X and T : C → C a nonexpansive

mapping with F (T ) 6= ∅. Let {xn} be the sequence defined by S* iteration process. Then

{xn} converges weakly to a fixed point of T.

5. APPLICATIONS

Let H be a Hilbert space, C a closed convex subset of H, v > 0 a constant, PC : H → C

a metric projection and A : C → H a v- inverse strongly monoton mapping. It is well

known that PC (I − γA) is nonexpansive mapping provided that γ ∈ (0, 2v) . So, we derive

the following theorems from Theorem 2, and Theorem 3.

Theorem 4. Let H be a Hilbert space, C a nonempty closed convex subset of H and

A : C → H a κ-Lipschitzian and η-strongly monoton operator. Let {αn} , {βn} and {γn}

be sequences in (0, 1) such that α < αn, β < βn, and γ < γn for all n ∈ N and for some

α, β, γ > 0. Then for µ ∈ (0, 2η/κ2), the iterative sequence {xn} generated from x1 ∈ C,
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and defined by 
xn+1 = (1− αn)PC (I − µA)xn + αnPC (I − µA) yn

yn = (1− βn)PC (I − µA)xn + βnPC (I − µA) zn

zn = (1− γn)xn + γnPC (I − µA)xn,

converges strongly to p ∈ Ω (C,A).

Theorem 5. Let H be a Hilbert space, C a nonempty closed convex subset of H and

A : C → H a κ-Lipschitzian and η-strongly monoton operator. Let {αn} , {βn} , and {γn}

be sequences in (0, 1) such that α ≤ αn, β ≤ βn, and γ ≤ γn for all n ∈ N and for some

α, β, γ > 0. Then for µ ∈ (0, 2η/κ2), the iterative sequence {xn} generated from x1 ∈ C

for all n ∈ N, and defined by

xn+1 = (1− αn)PC (I − µA)xn + αnPC (I − µA) [(1− βn)PC (I − µA)xn

+ βnPC (I − µA) [(1− γn)xn + γnPC (I − µA)xn]]

converges strongly to p ∈ Ω (C,A).

Theorem 6. Let H be a Hilbert space, C a closed convex subset of H, v > 0 a constant,

PC : H → C a metric projection and A : C → H a v- inverse strongly monoton mapping.

Suppose that Ω (C,A) 6= ∅ and γ ∈ (0, 2v). Let {xn} be a sequence in C, with a arbitrarily

initial value x1, generated by
xn+1 = (1− αn)PC (I − γA)xn + αnPC (I − γA) yn

yn = (1− βn)PC (I − γA)xn + βnPC (I − γA) zn

zn = (1− γn)xn + γnPC (I − γA)xn

where {αn} , {βn} and {γn} are sequences in (0, 1) such that α ≤ αn, β ≤ βn and γ ≤ γn

for all n ∈ N and for some α, β, γ > 0. Then {xn} converges weakly to a solution of the

variational inequality V I (C,A).

Algorithms for signal and image processing are often iterative constrained optimization

procedures designed to minimize a convex differentiable function f(x) over a closed convex

set C in H. It is well known that every L-Lipschitzian operator is 2/L-ism. Therefore,

the following scheme converges to minimizer of f .
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Corollary 1. Let H be a Hilbert space and C a nonempty closed convex subset of H, and

f a convex and differentiable function on an open set D containing the set C. Suppose that

∇f is a Lipschitz continuous operator on D, γ ∈ (0, 2/L) and minimizers of f relative to

the set C exists. For arbitrarily initial value x1 ∈ C, let {xn} be a sequence in C generated

by 
xn+1 = (1− αn)PC (I − γ∇f)xn + αnPC (I − γ∇f) yn

yn = (1− βn)PC (I − γ∇f)xn + βnPC (I − γ∇f) zn

zn = (1− γn)xn + γnPC (I − γ∇f)xn

for all n ∈ N where {αn} , {βn} and {γn} are sequences in (0, 1) such that α ≤ αn, β ≤ βn

and γ ≤ γn for all n ∈ N and for some α, β, γ > 0. Then {xn} converges weakly to a

minimizer of f .
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