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Abstract. In this note, we obtain a fixed point theorem for generalized contractive mappings in an untrametric

space which generalizes some known results.
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1. Introduction and Preliminaries

A metric space (X ,d) is said to be an ultrametric space if the triangle inequality is replaced

by the strong triangle inequality, i.e.,

d(x,y)≤max{d(x,z),d(y,z)}

for all x,y,z ∈ X .

Example 1. [1]. Every discrete metric space is an ultrametric space.

An ultrametric space (X ,d) is said to be spherically complete if every descending collection

of closed balls in X has a nonempty intersection. For details we refer to Khamsi and Kirk [3].
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Definition 1. A self-mapping T of a metric (resp. an ultrametric) space X is said to be contrac-

tive (or strictly contractive) mapping if

d(T x,Ty)< d(x,y)

for all x,y ∈ X with x 6= y.

It is well-known that a contractive mapping of a complete metric space need not have a fixed

point.

Example 2. [6]. Let X = (−∞,−∞) endowed with the usual metric and T : X → X defined by

T x = x+
1

1+ ex

for all x ∈ X. Notice that X is complete and T is a contractive mapping but T does not have a

fixed point.

Definition 2. A self-mapping T of a metric (resp. an ultrametric) space X is said to be gener-

alized contractive mapping if

(1.1) d(T x,Ty)< M(x,y)

for all x,y ∈ X with x 6= y, where

M(x,y) = max{d(x,y),d(x,T x),d(y,Ty),d(x,Ty),d(y,T x)}.

We remark that the condition (1.1) is considered as one of the most general contractive condi-

tions listed in Rhoades [7].

In [6], Petalas and Vidalis obtained the following fixed point theorem:

Theorem 1. Let (X ,d) be a spherically complete ultrametric space and T : X→X a contractive

mapping. Then T has a unique fixed point.

In [1], Gajić obtained the following generalization of the above theorem:
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Theorem 2. Let (X ,d) be a spherically complete ultrametric space and T : X → X a mapping

such that for all x,y ∈ X ,x 6= y,

(1.2) d(T x,Ty)< max{d(x,y),d(x,T x),d(y,Ty)}.

Then T has a unique fixed point.

In this note we obtain a generalization of Theorem 2 and which, in turn, generalizes Theorem

1.

2. Results

Our main result, Theorem 3, is prefaced by the following Lemma.

Lemma 1. Let X be an ultrametric space and T : X → X a generalized contractive mapping.

Then for all a,b ∈ X,

d(Ta,T b)< max{d(a,b),d(a,Ta),d(b,T b)}.

Proof. Since T is a generalized contractive mapping, we have

(2.1) d(Ta,T b)< max{d(a,b),d(a,Ta),d(b,T b),d(a,T b),d(b,Ta)}.

Now by the strong triangle inequality, we have

(2.2) d(a,T b)≤max{d(a,b),d(b,T b)}.

Similarly, we have

(2.3) d(b,Ta)≤max{d(b,a),d(a,Ta)}.

By (2.1)-(2.3), we conclude that

d(Ta,T b)< max{d(a,b),d(a,Ta),d(b,T b)}.

�

Now we present our main result.
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Theorem 3. Let (X ,d) be a spherically complete ultrametric space and T : X→X a generalized

contractive mapping. Then T has a unique fixed point.

Proof. Let Ba =: B(a,d(a,Ta)) denote the closed sphere centered at a with radius d(a,Ta), and

let A be the collection of these spheres for all a ∈ X . Then the relation

Ba ≤ Bb iff Bb ⊆ Ba

is a partial order. Let A1 be a totally ordered subfamily of A . From the spherical completeness

of X , we have ⋂
Ba∈A1

Ba =: B 6= /0.

Let b ∈ B and Ba ∈A1. Then if x ∈ Bb,

d(x,b)≤ d(b,T b) ≤ max{d(b,a),d(a,Ta),d(Ta,T b)}

= max{d(a,Ta),d(Ta,T b)}.

Since d(a,b)≤ d(a,Ta), the above inequality reduces to

d(x,b)≤max{d(a,Ta),d(Ta,T b)}.

Now two cases arise.

Case I: d(Ta,T b)≤ d(a,Ta). Then

d(x,b)≤ d(a,Ta).

Case II: d(Ta,T b)> d(a,Ta). Then

d(x,b)≤ d(b,T b)≤ d(Ta,T b).

By Lemma 1, the above inequality will lead to

d(x,b)≤ d(b,T b) ≤ d(Ta,T b)

< max{d(b,a),d(a,Ta),d(b,T b)}

= max{d(a,Ta),d(b,T b)}

= d(a,Ta),
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otherwise we have the contradiction d(b,T b)< d(b,T b). Therefore in both the cases, we have

(2.4) d(x,b)≤ d(a,Ta).

Now

d(x,a)≤max{d(a,b),d(b,x)}.

By the fact that d(b,a)≤ d(a,Ta) and (2.4), we get

d(x,a)≤max{d(a,b),d(b,x)} ≤ d(a,Ta).

So, x ∈ Ba and Bb ⊆ Ba for every Ba ∈A1. Thus Bb is an upper bound in A for the family A1.

By Zorn’s lemma, A has a maximal element, say Bz, for some z ∈ X . We claim that z = T z.

Since T is a generalized contractive mapping, we have

d(T z,T 2z)< max{d(z,T z),d(z,T z),d(T z,T 2z),d(z,T 2z),d(T z,T z)}.

Using Lemma 1, we get

(2.5) d(T z,T 2z)< max{d(z,T z),d(T z,T 2z)}= d(z,T z),

and

T z ∈ B
(
T z,d(T z,T 2z)

)
∩B(z,d(z,T z)) .

Hence BT z is not a subset of Bz. And this contradicts the maximality of Bz. Therefore T has a

fixed point. Uniqueness of fixed point is obvious. �

Example 3. Let X = [0,1] endowed with the discrete metric and T : X→ X defined by T x = 1/2

for all x ∈ X. Then T satisfies Theorem 3.

Example 4. (Compare Kirk and Shahzad [4]). Let X = {a,b,c,d} with d(a,b) = d(c,d) = 1/2;

d(a,c) = d(a,d) = d(b,c) = d(b,d) = 1. Then (X ,d) is a spherically complete ultrametric

space. Define T : X → X by Ta = a;T b = a;T c = a;T d = b. Then

d(T c,T d) = d(a,b) =
1
2
= d(c,d),

and the mapping T does not satisfy the contractive condition of Theorem 1. However, the

mapping T satisfies the conditions of Theorem 3 and a is the unique fixed point of T in X.
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Corollary 1. Theorem 2.

Proof. It comes from Theorem 3, when M(x,y) = max{d(x,y),d(x,T x),d(y,Ty)}. �

Corollary 2. Theorem 1.

Proof. It comes from Theorem 3, when M(x,y) = d(x,y). �

Finally, we present a multi-valued version of Theorem 3.

Let (X ,d) be an ultrametric space and C(X) the collection of all compact subsets of X . Then

the Hausdorff metric induced by d is defined by

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
for all A,B⊆C(X), where d(x,B) = inf

y∈B
d(x,y).

Theorem 4. Let (X ,d) be a spherically complete ultrametric space and T : X →C(X) a multi-

valued mapping such that for all x,y ∈ X, x 6= y,

(2.6) H(T x,Ty)< M(x,y).

Then T has a fixed point.

Proof. Since T satisfies (2.6), we have

(2.7) H(T x,Ty)< max{d(x,y),d(x,T x),d(y,Ty),d(x,Ty),d(y,T x)}.

By the strong triangle inequality, we have

(2.8) d(x,Ty)≤max{d(x,y),d(y,Ty)}

Similarly, we have

(2.9) d(y,T x)≤max{d(y,x),d(x,T x)}.

By (2.7)-(2.9), we conclude that

H(T x,Ty)< max{d(x,y),d(x,T x),d(y,Ty)}.

Now, rest of the proof can be completed as in [2] (see, also [5]). �
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We remark that Theorem 2.1 [5] and the main result in [2] are the spacial cases of Theorem 4.
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