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Abstract. By using the compatibility condition and mixed weakly monotone property, in this manuscript, we prove

some coupled common fixed point theorems for four mappings with twice power type φ -contraction condition in

partially ordered complete metric spaces.Our results are generalizations of the main results of Gordji, Akbartabar

and Cho and Ramezani et al.
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1. Introduction

Existence of fixed points in partially ordered metric spaces was first investigated by Turinici

[14], where he extended the Banach contraction principle in partially ordered sets. In 2004,

Ran and Reurings [12] presented some applications of Turinici’s theorem to matrix equations.

Following these initial articles, some remarkable results were reported, e.g., [1,2,13].

Recently. the existence of coupled fixed points for some kinds of contractive - type mappings
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in partially ordered metric spces, ordered metric spaces, cone metric spaces, fuzzy metric s-

paces, and other spaces with applications has been investigated by some authers, for examples,

Bhasker and Lakshmikantham [3], Cho et al. [5,6], Gordji et al. [7,8] and others. In [3] Bhasker

and Lakshmikantham introduced the notions of a mixed monotone mapping and a coupled fixed

point and proved some coupled fixed point theorems for mixed monotone mappings and dis-

cussed the existence and uniqueness of solution for periodic boundary value problems.On the

other hand Jungck [10,11] introduced more generalized commuting mappings, called compat-

ible and weakly compatible mappings, which are more general than commuting and weakly

commuting maps. Especially, in [9], Gordji et al. introduced the notion of a mixed weak-

ly monotone pair of mappings and proved some coupled common fixed point theorems for a

contractive-type mappings.In this paper, by using the compatible condition and mixed weak-

ly monotone property in metric spaces, we discussed the existence and uniqueness of coupled

common fixed point for four mappings with twice power type φ -contractive condition in com-

plete metric spaces.The results presented in this paper improves and extends some previous

results.

2. Preliminaries

Definition 2.1. [3] Let (X,≤) be a partially ordered set and f :X×X→ X be a mapping. We say

that f has the mixed monotone property on X if, for any x,y ∈ X ,

x1,x2 ∈ X ,x1 ≤ x2 =⇒ f (x1,y)≤ f (x2,y)

and

y1,y2 ∈ X ,y1 ≤ y2 =⇒ f (x,y1)≥ f (x,y2).

Definition 2.2. [3] An element (x,y) ∈ X×X is called a coupled fixed point of a mapping

F:X×X → X if x = F(x,y) and y = F(y,x).
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Definition 2.3. [9] Let (X,≤) be a partially ordered set and f ,g:X ×X → X be mappings.We

say that a pair ( f ,g) has the mixed weakly monotone property on X if, for any x,y ∈ X ,

x≤ f (x,y),y≥ f (y,x)

=⇒ f (x,y)≤ g( f (x,y), f (y,x)), f (y,x)≥ g( f (y,x), f (x,y))

and

x≤ g(x,y),y≥ g(y,x)

=⇒ g(x,y)≤ f (g(x,y),g(y,x)),g(y,x)≥ f (g(y,x),g(x,y)).

Example 2.4. [9] Consider an ordered cone metric space (R,≤,d), where ≤ represents the

usual order relation and d is a usual metric on R and let f ,g: R×R → R be two functions

defined by

f (x,y) = x−2y,g(x,y) = x− y.

Then a pair ( f ,g) has the mixed weakly monotone property.

Example 2.5. [9] Consider an ordered cone metric space (R,≤,d), where ≤ represents the

usual order relation and d is a usual metric on R and let f ,g :R×R → R be two functions

defined by

f (x,y) = x− y+1,g(x,y) = 2x−3y.

Then both mappings f and g have the mixed monotone property, but a pair ( f ,g) has not the

mixed weakly monotone property.

Definition 2.6. [10] Let (X, d) be a metric space and let f and g be two maps from X into

itself.Then f and g are called compatible if

limn→∞d( f gxn,g f xn) = 0

Definition 2.7. [4] Let φ be a function, we called φ satisfies the condition (φ), if the function

φ satisfying the following condition:

(φ) : φ : [0,∞)→ [0,∞)

and continuous at a point t from the right, nondecreasing and φ(t)< t for every t > 0.
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In order to prove the main results of this paper, we need the following Lemmas:

Lemma 2.8 [4] Let the function φ satisfies the condition (φ), then we have

(i) For all real number t ∈ [0,∞), if t ≤ φ(t), then t = 0;

(ii) For all nonnegative sequence {tn}, if tn+1 ≤ φ(tn), n = 1,2 3....

then limn→∞tn = 0.

Lemma 2.9. [4] Let (X, d) be a metric space, {yn} is a sequence in X which satisfies the

condition limn→∞d(yn,yn+1) = 0. Suppose that {yn} is not a Cauchy sequence in X, then there

must exist an ε0 > 0, and the positive integer sequences {mi}, {ni}, such that

(i) mi > ni +1, ni→ ∞ (i→ ∞);

(ii) d(ymi,yni)≥ ε0;d(ymi−1,yni)< ε0 for i = 0, 1, 2,....

3. Main results

Theorem 3.1. Let (X, d) be a complete metric space and let S, T, A and B be four mappings

from X×X into X satisfying the conditions

(i) S(X×X)⊂ B(X×X) and T (X×X)⊂ A(X×X),

(ii) the pairs (S,A) and (B,T) has mixed weakly monotone property,

(iii)

d2(S(x,y),T (u,v))

≤ φ(max{d(A(x,y),B(u,v))d(A(x,y),S(x,y)),

d(A(x,y),T (u,v))d(B(u,v),S(x,y)),

d(A(x,y),B(u,v))d(B(u,v),T (u,v))}), ∀(x,y),(u,v) ∈ X×X ,

(iv) If A and B are continuous and the pairs (S,A) and (B,T) are compatible.

Then S, T, A and B have a unique coupled common fixed point in X.

Proof. Suppose that x0 ≤ S(x0,y0) and y0 ≥ S(y0,x0) and since S(X ×X) ⊂ B(X ×X) there

exist x1,y1 ∈ X such that

S(x0,y0) = B(x1,y1) := x1,
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S(y0,x0) = B(y1,x1) := y1.

Again the pair (B, T) has mixed monotone property,

B(x1,y1)≤ T (B(x1,y1),B(y1,x1)) = T (x1,y1)

and

B(y1,x1)≥ T (B(y1,x1),B(x1,y1)) = T (y1,x1).

Since T (X×X)⊂ A(X×X), there exist x2,y2 ∈ X such that

T (x1,y1) = A(x2,y2) := x2,

T (y1,x1) = A(y2,x2) := y2.

Again a pair (S, A) has mixed monotone property,

A(x2,y2)≤ S(A(x2,y2),A(y2,x2)) = S(x2,y2)

and

A(y2,x2)≥ S(A(y2,x2),A(x2,y2)) = S(y2,x2).

Continuing in this way, we find that

x2n = T (x2n−1,y2n−1) = A(x2n,y2n),y2n = T (y2n−1,x2n−1) = A(y2n,x2n)

and

x2n+1 = S(x2n,y2n) = B(x2n+1,y2n+1),y2n+1 = S(y2n,x2n) = B(y2n+1,x2n+1)

for all n≥ 1. Then we can easily verify that

x0 ≤ x1 ≤ x2 ≤ .........................≤ xn ≤ xn+1 ≤ ..........

and

y0 ≥ y1 ≥ y2 ≥ .........................≥ yn ≥ yn+1 ≥ ............

Similarly, from the condition x0 ≤ T (x0,y0) and y0 ≥ T (y0,x0), one may easily see that the

sequences {xn} and {yn} are increasing and decreasing respectively. Let dn = d(xn,xn+1) and

d′n = d(yn,yn+1). Now we shall show that

lim
n→∞

dn = lim
n→∞

d(xn,xn+1) = 0 and lim
n→∞

d′n = lim
n→∞

d(yn,yn+1) = 0. (1)
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In fact, from condition (iii) and the property of φ , we have

d2(x2n−1,x2n)

= d2(S(x2n−2,y2n−2),T (x2n−1,y2n−1))

≤ φ(max{d(A(x2n−2,y2n−2),B(x2n−1,y2n−1))d(A(x2n−2,y2n−2),S(x2n−2,y2n−2)),

d(A(x2n−2,y2n−2),T (x2n−1,y2n−1))d(B(x2n−1,y2n−1),S(x2n−2,y2n−2)),

d(A(x2n−2,y2n−2),B(x2n−1,y2n−1))d(B(x2n−1,y2n−1),T (x2n−1,y2n−1))})

= φ(max{d(x2n−2,x2n−1)d(x2n−2,x2n−1),d(x2n−2,x2n)d(x2n−1,x2n−1),d(x2n−2,x2n−1)

d(x2n−1,x2n)})

= φ(max{d2(x2n−2,x2n−1),d(x2n−2,x2n−1)d(x2n−1,x2n)}).

Now suppose that d(x2n−2,x2n−1)< d(x2n−1,x2n), by the property of function φ , we get

d2(x2n−1,x2n)≤ φ(d2(x2n−1,x2n)).

Therefore by virtue of this and using Lemma 2.8 (i), we have d2(x2n−1,x2n) = 0, which implies

that d(x2n−1,x2n) = 0. Thus

d(x2n−2,x2n−1)< d(x2n−1,x2n) = 0,

which is a contradiction. It follows that, in any event, we have

d(x2n−2,x2n−1)≥ d(x2n−1,x2n).

It follows that d2(x2n−1,x2n)≤ φ(d2(x2n−2,x2n−1)). Hence by Lemma 2.8 (ii), we get

d2(x2n−1,x2n)→ 0(n→ ∞) and so lim
n→∞

d(x2n−1,x2n) = 0.

Similarly, we find that limn→∞ d(y2n−1,y2n) = 0. Also it can be proved that

lim
n→∞

d(x2n,x2n+1) = 0

and limn→∞ d(y2n,y2n+1)= 0. Thus, limn→∞ d(xn,xn+1)= 0 and limn→∞ d(yn,yn+1)= 0, There-

fore we obtained result (1).
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Next we shall prove that {xn} and {yn} are Cauchy sequences in X . If not, by Lemma 2.9

there exists ε0 > 0 and the positive integer sequences {mi}, {ni} such that

(a) mi > ni +1, ni→ ∞(i→ ∞).

(b) d(xmi,xni)≥ ε0; d(xmi−1,xni)≤ ε0 for i = 0, 1, 2,...

or d(ymi,yni)≥ ε0; d(ymi−1,yni)≤ ε0 for i = 0, 1, 2,...

Letting ei = d(xmi,xni); e′i = d(ymi,yni), we get

ε0 ≤ ei ≤ d(xmi,xmi−1)+d(xmi−1,xni)< ε0 +d(xmi−1,xmi)

and

ε0 ≤ e′i ≤ d(ymi,ymi−1)+d(ymi−1,yni)< ε0 +d(ymi−1,ymi).

Letting i→ ∞ in the above inequalities, we have from (1) that

lim
i→∞

ei = ε0 and lim
i→∞

e′i = ε0. (2)

On the other hand, we have

ei = d(xmi,xni)≤ d(xmi,xmi+1)+d(xmi+1,xni+1)+d(xni+1,xni), (3)

e′i = d(ymi,yni)≤ d(ymi,ymi+1)+d(ymi+1,yni+1)+d(yni+1,yni). (4)

Now we consider four possible cases for d(xmi+1,xni+1) and d(ymi+1,yni+1).

Case I: We assume that ni is odd and mi is even. By virtue of condition (iii), we have

d2(xmi+1,xni+1)

= d2(S(xmi,ymi),T (xni,yni))

≤ φ(max{d(A(xmi,ymi),B(xni,yni))d(A(xmi,ymi),S(xmi,ymi)),

d(A(xmi,ymi),T (xni,yni))d(B(xni,yni),S(xmi,ymi)),d(A(xmi,ymi),B(xni,yni))

d(B(xni,yni),T (xni,yni))})

= φ(max{d(xmi,xni)d(xmi,xmi+1),d(xmi,xni+1)d(xni,xmi+1),d(xmi,xni)d(xni,xni+1)})

≤ φ(max{eidmi,(ei +dni)(ei +dmi),eidni}),
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and

d2(ymi+1,yni+1)≤ φ(max{e′idmi,(e
′
i +dni)(e

′
i +dmi),e

′
idni}).

Let i→ ∞ in above equations. In view of (1), (3), (4) and the assumption about φ(t) is right-

continuous, we have limi→∞ d2(xmi+1,xni+1)≤ φ(ε2
0 ), which implies that

lim
i→∞

d(xmi+1,xni+1)≤ [φ(ε2
0 )]

1
2 (5)

and

lim
i→∞

d(ymi+1,yni+1)≤ [φ(ε2
0 )]

1
2 . (6)

Let i→ ∞ in (3) and (4). Using (1), (5) and (6), we obtain

ε0 ≤ ei ≤ 0+[φ(ε2
0 )]

1
2 +0 = [φ(ε2

0 )]
1
2 ,

and

ε0 ≤ e′i ≤ 0+[φ(ε2
0 )]

1
2 +0 = [φ(ε2

0 )]
1
2 .

It follows that

ε
2
0 ≤ e2

i ≤ φ(ε2
0 )≤ ε

2
0 ,

and

ε
2
0 ≤ e′i

2 ≤ φ(ε2
0 )≤ ε

2
0 ,

which are contradictions.

Case II: We assume that ni and mi are all even. By virtue of the condition (iii), we have

d(xmi+1,xni+1) = d(S(xmi,ymi),S(xni,yni))

≤ d(S(xmi,ymi),T (xni+1,yni+1))+d(S(xni,yni),T (xni+1,yni+1))
(7)
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and

d2(S(xmi,ymi),T (xni+1,yni+1))

≤ φ(max{d(A(xmi,ymi),B(xni+1,yni+1))d(A(xmi,ymi),S(xmi,ymi)),

d(A(xmi,ymi),T (xni+1,yni+1))d(B(xni+1,yni+1),S(xmi,ymi)),

d(A(xmi,ymi),B(xni+1,yni+1))d(B(xni+1,yni+1),T (xni+1,yni+1))})

= φ(max{d(xmi,xni+1)d(xmi,xmi+1),d(xmi,xni+2)d(xni+1,ymi+1),

d(xmi,xni+1)d(xni+1,xni+2)})

≤ φ(max{(ei +dni)dmi,(ei +dni +dni+1)(ei +dni +dmi),

d(ei +dni)dni+1}).

(8)

Letting i→ ∞ and using (1) and the assumption about φ(t) is right-continuous, we have

lim
i→∞

d2(S(xmi,ymi),T (xni+1,yni+1))≤ [φ(ε2
0 )],

lim
i→∞

d(S(xmi,ymi),T (xni+1,yni+1))≤ [φ(ε2
0 )]

1
2 . (9)

It follows from (1) that

lim
i→∞

d(S(xni,yni),T (xni+1,yni+1)) = lim
i→∞

d(xni+1,xni+2) = 0. (10)

Let i→ ∞ in (8). Using (9) and (10), we obtain that

lim
i→∞

d(xmi+1,xni+1)≤ [φ(ε2
0 )]

1
2 +0 = [φ(ε2

0 )]
1
2 . (11)

Let i→ ∞ in (3). Using (1) and (11), we obtain that

ε0 ≤ ei ≤ 0+[φ(ε2
0 )]

1
2 = [φ(ε2

0 )]
1
2 ,

which implies that ε2
0 ≤ e2

i ≤ φ(ε2
0 )< ε2

0 . This is a contradiction. Similarly, we hae

lim
i→∞

d(ymi+1,yni+1)≤ [φ(ε2
0 )]

1
2 +0 = [φ(ε2

0 )]
1
2 .

Let i→ ∞ in (4). Using (1) and (11), we obtain that

ε0 ≤ e′i ≤ 0+[φ(ε2
0 )]

1
2 = [φ(ε2

0 )]
1
2 ,
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which implies that

ε
2
0 ≤ e′2i ≤ φ(ε2

0 )< ε
2
0 .

This a contradiction. Similarly, we can also complete the proof when ni and mi are all odd,

or ni is even and mi is odd. This is the anticipated contradiction. Hence {xn} and {yn} are

Cauchy sequences in X . Since X is complete, suppose that xn → x∗ ∈ X and yn → y∗ ∈ X

then the sequences {x2n−1}, {x2n} and {y2n−1}, {y2n} are said to be convergent to x* and y*

respectively. It follows that

lim
n→∞

x2n = x∗= lim
n→∞

T (x2n−1,y2n−1) = lim
n→∞

A(x2n,y2n).

lim
n→∞

y2n = y∗= lim
n→∞

T (y2n−1,x2n−1) = lim
n→∞

A(y2n,x2n).

lim
n→∞

x2n+1 = x∗= lim
n→∞

S(x2n,y2n) = lim
n→∞

B(x2n+1,y2n+1).

lim
n→∞

y2n+1 = y∗= lim
n→∞

S(y2n,x2n) = lim
n→∞

B(y2n+1,x2n+1).

Suppose B is continuous, then

lim
n→∞

B(x2n+1,y2n+1) = B( lim
n→∞

x2n+1, lim
n→∞

y2n+1) = B(x∗,y∗),

and

lim
n→∞

B(y2n+1,x2n+1) = B( lim
n→∞

y2n+1, lim
n→∞

x2n+1) = B(y∗,x∗).

and the pair (B,T ) is compatible, we have

lim
n→∞

d(B(T (x2n−1,y2n−1),T (y2n−1,x2n−1)),T (B(x2n−1,y2n−1),B(y2n−1,x2n−1))) = 0.

=⇒ lim
n→∞

T (B(x2n−1,y2n−1),B(y2n−1,x2n−1)) = B(x∗,y∗).

Supposing A is continuous, we have

lim
n→∞

A(x2n,y2n) = A( lim
n→∞

x2n, lim
n→∞

y2n) = A(x∗,y∗)

and

lim
n→∞

A(y2n,x2n) = A( lim
n→∞

y2n, lim
n→∞

x2n) = A(y∗,x∗).

and the pair (A,S) is compatible, we obtain

lim
n→∞

d(A(S(x2n,y2n),S(y2n,x2n)),S(A(x2n−1,y2n−1),A(y2n−1,x2n−1))) = 0.
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=⇒ lim
n→∞

S(A(x2n−1,y2n−1),A(y2n−1,x2n−1)) = A(x∗,y∗).

Notice that

d2(S(x2n,y2n),T (x2n−1,y2n−1))

≤ φ(max{d(A(x2n,y2n),B(x2n−1,y2n−1))d(A(x2n,y2n),S(x2n,y2n)),

d(A(x2n,y2n),T (x2n−1,y2n−1))d(B(x2n−1,y2n−1),S(x2n,y2n)),

d(A(x2n,y2n),B(x2n−1,y2n−1))d(B(x2n−1,y2n−1),T (x2n−1,y2n−1))}).

Letting n→ ∞, we have

d2(A(x∗,y∗),B(x∗,y∗))≤ φ(max{0,d2(A(x∗,y∗),B(x∗,y∗)),0})

≤ φ(d2(A(x∗,y∗),B(x∗,y∗))).

By Lemma (1.8), we find that

d2(A(x∗,y∗),B(x∗,y∗)) = 0. =⇒ d(A(x∗,y∗),B(x∗,y∗)) = 0.

Therefore, we have

A(x∗,y∗) = B(x∗,y∗).

Similarly, we can obtain that

A(y∗,x∗) = B(y∗,x∗).

Again

d2(S(x2n,y2n),T (x∗,y∗))

≤ φ(max{d(A(x2n,y2n),B(x∗,y∗))d(A(x2n,y2n),S(x2n,y2n)),

d(A(x2n,y2n),T (x∗,y∗))d(B(x∗,y∗),S(x2n,y2n)),

d(A(x2n,y2n),B(x∗,y∗))d(B(x∗,y∗),T (x∗,y∗))}).

Notice that since φ(t) is non-decreasing. Letting n→ ∞, we find that

d2(A(x∗,y∗),T (x∗,y∗))≤ φ(0)≤ φ(d2(A(x∗,y∗),T (x∗,y∗))).
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By Lemma 2.8 (i), we have d2(A(x∗,y∗),T (x∗,y∗))= 0, which implies that A(x∗,y∗)=T (x∗,y∗).

Similarly, we have A(y∗,x∗) = T (y∗,x∗). Also

d2(S(x∗,y∗),T (x2n−1,y2n−1)

≤ φ(max{d(A(x∗,y∗),B(x2n−1,y2n−1))d(A(x∗,y∗),S(x∗,y∗)),

d(A(x∗,y∗),T (x2n−1,y2n−1))d(B(x2n−1,y2n−1),S(x∗,y∗)),

d(A(x∗,y∗),B(x2n−1,y2n−1))d(B(x2n−1,y2n−1),T (x2n−1,y2n−1))}).

.

Notice that since φ(t) is non-decreasing. Letting n→ ∞, we have

d2(S(x∗,y∗),B(x∗,y∗))≤ φ(0)≤ φ(d2(S(x∗,y∗),B(x∗,y∗))).

By Lemma 2.8 (i), we have d2(S(x∗,y∗),B(x∗,y∗))= 0, which implies that S(x∗,y∗)=B(x∗,y∗).

Similarly, we have S(y∗,x∗) = B(y∗,x∗). Hence (x*,y*) is a coupled common fixed point of

S,T,A and B. Next, we show the uniquess of fixed point. Suppose (x∗,y∗) and (x′,y′) are the

fixed points of S,T,A and B. Notice that

d2(S(x∗,y∗),T (x′,y′))

≤ φ(max{d(A(x∗,y∗),B(x′,y′))d(A(x∗,y∗),S(x∗,y∗)),d(A(x∗,y∗),T (x′,y′))

d(B(x′,y′),S(x∗,y∗)),d(A(x∗,y∗),B(x′,y′))d(B(x′,y′),T (x′,y′))})

= φ(max{d((x∗,y∗),(x′,y′))d((x∗,y∗),(x∗,y∗)),d((x∗,y∗)(x′,y′))

d((x′,y′),(x∗,y∗)),d((x∗,y∗),(x′,y′))d((x′,y′),(x′,y′))})

≤ φ(d2((x∗,y∗),(x,y))).

By Lemma 2.8 (i), we have d2((x∗,y∗),(x′,y′)) = 0, which implies that d((x∗,y∗),(x′,y′)) = 0.

Hence (x∗,y∗) = (x,y), the fixed point is unique. This completes the proof.

Corollary 3.2. Let (X ,d) be a complete metric space and let S and T be two mappings from

X×X into X satisfying conditions (i) and (ii) of Theorem 3.1 and the condition:

(iii) ∀ (x,y),(u,v) ∈ X×X

d2(S(x,y),T (u,v))≤ φ(max{d(x,S(x,y))d(u,T (u,v)),d(u,S(x,y))d(x,T (u,v)),

d(x,u)d(S(x,y),T (u,v))}).
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Then S and T have a unique coupled common fixed point in X.

Next, we give some examples to support our main results.

Example 3.3. Let X = [0,1] be a metric space with usual metric d(x,y) = |x− y| for every

x,y ∈ X . Define φ(t) = t
2 , ∀ t ∈ [0,∞), let≤ represents the usual order relation, the maps S,T,A

and B as follows:

S(x,y) =
x2 + y2

x+ y
,(x+ y 6= 0),T (x,y) =

x+3y
4

,A(x,y) = x, and B(x,y) =
3x+ y

4
.

The compatible pairs (S,A) and (B,T ) has mixed weakly monotone property.Now if we take

x = u and y = v then

d(S(x,y),T (x,y)) =
|x− y||3x− y|

4|x+ y|
,d(A(x,y),B(x,y)) =

|x− y|
4

,

d(A(x,y),S(x,y)) =
|y||x− y|
|x+ y|

,d(A(x,y),T (x,y)) =
3|x− y|

4
,

d(B(x,y),S(x,y)) =
∣∣y(x− y)
2(x+ y)

− (x+ y)
4

∣∣,d(B(x,y),T (x,y)) = |x− y|
4

.

Now

d(S(x,y),T (x,y)) =
|x− y||3x− y|

4|x+ y|

≤ φ(max{|y||x− y|2

4|x+ y|
,
3|x− y|

4

∣∣∣∣y(x− y)
2(x+ y)

− x+ y
4

∣∣∣∣, |x− y|2

16
}).

Let x = u = 1
6 , and y = v = 1

4 we have

d(S(
1
6
,
1
4
),T (

1
6
,
1
4
)) = (

1
80

)2

≤ φ(max{ 1
960

,
31

3840
,

1
2304

})

= φ(
31

3840
).

Then all the conditions of Theorem 2.1 satisfied for all x,y ∈ [0,1]. It is easy to show that the

point (1,1) is unique coupled common fixed point of S,T,A and B.

Example 3.4. Let X = [0,1] be a metric space with usual metric d(x,y) = |x− y| for every

x,y ∈ X . Define φ(t) = t
2 , ∀ t ∈ [0,∞), let ≤ represents the usual order relation, the maps S and
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T as follows:

S(x,y) =
x3 + y3

x2 + y2 ,(x
2 + y2 6= 0) and T (x,y) =

2x+3y
5

.

d(S(x,y),T (x,y)) =
|x− y||3x2−2y2|

5|x2 + y2|
and d(x,S(x,y)) =

|y|2|x− y|
|x2 + y2|

.

d(x,T (x,y)) =
3|x− y|

5
,d(x,x) = 0.

d2(S(x,y),T (x,y)) = (
|x− y||3x2−2y2|

5|x2 + y2|
)2

≤ φ(max{3|x− y|2|y|2

5|x2 + y2|
,0})

= φ(
3|x− y|2|y|2

5|x2 + y2|
).

A pair (S,T ) has mixed weakly monotone property and satisfyig all the conditions of Corollary

2.2 for all x,y ∈ [0,1]. It is easy to show that (1,1) is unique coupled common fixed point of S

and T in X .

Example 3.5. Consider (R,≤,d), where ≤ represents the usual order relation and d is a usual

metric on R and let S,T,A and B : R×R→ R be four functions defined by

S(x,y) =
4x−2y+22

24
,

T (x,y) =
6x−3y+33

36
,A(x,y) =

8x−4y+44
48

,

and

B(x,y) =
10x−5y+55

60
.

Then the pair (S,A) and (B,T ) has mixed monotone property, and satisfying all the conditions

of the theorem 2.1. Then (1,1) is a coupled common fixed point of S,T,A and B.
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