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Abstract. Recently, in the paper [J. Harjani, B. Lopez and K. Sadarangani; A fixed point theorem

for mappings satisfying a contractive condition of rational type on a partially ordered metric space,

Abstract and Applied Analysis, Volume (2010), Article ID 190701, 8pages], some fixed point theorems

were established for mappings satisfying a rational type contractive condition in partially ordered metric

space. In this paper, we obtain some corresponding coupled fixed point theorems in partially ordered

metric spaces by employing a rational type contractive condition. Our results generalize and extend some

recently announced results in the literature.
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The notion of coupled fixed points was introduced by Chang and Ma [3]. Since then,

the concept has been of interest to many researchers in metrical fixed point theory.

Bhaskar and Lakshmikantham [2] established coupled fixed point theorems in a metric

space endowed with partial order by employing the following contractivity condition: For

a mapping T : X ×X → X, there exists k ∈ (0, 1) such that

d(T (x, y), T (u, v)) ≤ k

2
[d(x, u) + d(y, v)],∀ x, y, u, v ∈ X, x ≥ u, y ≤ v. (1)

Harjani et al [5] estabished some fixed point theorem in partially ordered metric space

setting by using a contractive condition of rational type. That is, for a mapping T : X →

X, there exist some α, β ∈ [0, 1], with α + β < 1, such that

d(Tx, Ty) ≤ α
d(x, Tx).d(y, Ty)

d(x, y)
+ βd(x, y), (2)

∀ x, y ∈ X, x 6= y.

The results of Harjani et al [5] are extensions of those of Jaggi [6]. Motivated by the

works of Jaggi [6] and Harjani et al [5], in the present paper, we shall prove corresponding

coupled fixed point theorems in partially ordered metric space by employing some notions

of Bhaskar and Lakshmikantham [2] as well as a rational type contractive condition. The

result of [2] has also been generalized and extended by Lakshmikantham and Ciric [7]. In

the recent times, several papers have been devoted to the study of the concepts of coupled

fixed points in partially ordered metric space. We refer to the reference section for detail.

2. Preliminaries

We consider the following definitions:

Definition 1.1: Let (X, d) be a metric space. An element (x, y) ∈ X ×X is said to be

a coupled fixed point of the mapping T : X ×X → X if T (x, y) = x and T (y, x) = y.

For the definitions above, we refer to [2, 4, 7].

Definition 1.2 [2]: Let (X,� be a partially ordered set and T : X × X → X. We say

that T has the mixed monotone property if T (x, y) is monotone nondecreasing in x and
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monotone nonincreasing in y, that is, ∀ x, y ∈ X,

∀ x1, x2 ∈ X, x1 � x2 ⇒ T (x1, y) � T (x2, y)

and

∀ y1, y2 ∈ X, y1 � y2 ⇒ T (x, y1) � T (x, y2).

3. Main results

Let (X,� be a partially ordered set and d be a metric on X such that (X, d) is a com-

plete metric space. We also endow the product space X × X with the following partial

order:

for (x, y), (u, v) ∈ X ×X, (u, v) � (x, y) ⇐⇒ x � u, y � v.

Theorem 2.1: Let (X,�) be a partially ordered metric set and suppose that there

exists a metric d on X such that (X, d) is a complete metric space. Let T : X ×X → X

be a continuous mapping which has the mixed monotone property such that, for some

α, β ∈ [0, 1), ∀ x, y, u, v ∈ X, x 6= u, we have

d(T (x, y), T (u, v)) � α
d(x, T (x, y)).d(u, T (u, v))

d(x, u)
+ βd(x, u), α + β < 1. (3)

Then, T has a coupled fixed point.

Proof. Choose (x0, y0) ∈ X ×X and set x1 = T (x0, y0), y1 = T (y0, x0), and in general,

xn+1 = T (xn, yn), yn+1 = T (yn, xn).

With x0 � T (x0, y0) = x1 (say) and y0 � T (y0, x0) = y1 (say). By the iterative process

above, x2 = T (x1, y1) and y2 = T (y1, x1). Therefore,

T 2(x0, y0) = T (T (x0, y0), T (y0, x0)) = T (x1, y1) = x2,

and

T 2(y0, x0) = T (T (y0, x0), T (x0, y0)) = T (y1, x1) = y2.
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Due to the mixed monotone property of T, we obtain

x2 = T 2(x0, y0) = T (x1, y1) � T (x0, y0) = x1, y2 = T 2(y0, x0) = T (y1, x1) � T (y0, x0) = y1.

In general, we have that for n ∈ IN,

xn+1 = T n+1(x0, y0) = T (T n(x0, y0), T
n(y0, x0)), yn+1 = T n+1(y0, x0) = T (T n(y0, x0), T

n(x0, y0)).

It is obvious (as in [2]) that

x0 � T (x0, y0) = x1 � T 2(x0, y0) = x2 � · · · � T n(x0, y0) = xn � · · · ,

and

y0 � T (y0, x0) = y1 � T 2(y0, x0) = y2 � · · · � T n(y0, x0) = yn � · · · .

Therefore, we have by condition (3) that

d(xn+1, xn) = d(T (xn, yn), T (xn−1, yn−1))

� αd(xn,T (xn,yn)).d(xn−1,T (xn−1,yn−1))
d(xn,xn−1)

+ βd(xn, xn−1)

= αd(xn,xn+1).d(xn−1,xn)
d(xn,xn−1)

+ βd(xn, xn−1)

= αd(xn, xn+1) + βd(xn, xn−1),

from which it follows that

d(xn, xn+1) �
(

β

1− α

)
d(xn, xn−1). (4)

Similarly, we have by (3) again that

d(yn+1, yn) = d(T (yn, xn), T (yn−1, xn−1))

� αd(yn,T (yn,xn)).d(yn−1,T (yn−1,xn−1))
d(yn,yn−1)

+ βd(yn, yn−1)

= αd(yn, yn+1) + βd(yn, yn−1),

which yields

d(yn, yn+1) �
(

β

1− α

)
d(yn, yn−1). (5)

We have from (4) and (5) that

d(xn, xn+1) + d(yn, yn+1) �
(

β

1− α

)
[d(xn, xn−1) + d(yn, yn−1)] . (6)
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Let δn = d(xn, xn+1) + d(yn, yn+1) and λ = β
1−α . Then, we have from (6) that

δn � λδn−1 � λ2δn−2 � · · · � λnδ0. (7)

If δ0 = 0, then (x0, y0) is a coupled fixed point of T.

Suppose that δ0 > 0. Then, for each r ∈ IN, we obtain by (7) and the repeated application

of triangle inequality that

d(xn, xn+r) + d(yn, yn+r) � [d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+r−1, xn+r)]

+[d(yn, yn+1) + d(yn+1, yn+2) + · · ·+ d(yn+r−1, yn+r)]

= [d(xn, xn+1) + d(yn, yn+1)] + [d(xn+1, xn+2) + d(yn+1, yn+2)]

+ · · ·+ [d(xn+r−1, xn+r) + d(yn+r−1, yn+r)]

� δn + δn+1 + · · ·+ δn+r−1

� λn(1−λr)δ0
1−λ → 0 as n→∞. (8)

Therefore, {xn}, {yn} are Cauchy sequences in (X, d).

Since (X, d) is a complete metric space, there exist x∗, y∗ ∈ X such that lim
n→∞

xn = x∗

and lim
n→∞

yn = y∗. We now show that (x∗, y∗) is a coupled fixed point of T :

Let ε > 0. Continuity of T at (x∗, y∗) implies that, for a given ε
2
> 0, there exists a δ > 0,

such that d(x∗, u) + d(y∗, v) < δ implies d(T (x∗, y∗), T (u, v)) < ε
2
.

Since {xn} → x and {yn} → y, for ζ = min( ε
2
, δ
2
) > 0, there exist n0, m0, such that, for

n ≥ n0, m ≥ m0, we have d(xn, x
∗) ≺ ζ, and d(xm, x

∗) ≺ ζ.

Therefore, for n ∈ IN, n ≥ max{n0,m0},

d(T (x∗, y∗), x∗) � d(T (x∗, y∗), xn+1) + d(xn+1, x
∗)

= d(T (x∗, y∗), T (xn, yn)) + d(xn+1, x
∗) ≺ ε

2
+ ζ � ε,

from which it follows that T (x∗, y∗) = x∗. In a similar manner, we can show that

T (y∗, x∗) = y∗.

Hence, (x∗, y∗) is a coupled fixed point of T.

This complete the proof.

We state the next result without proof.

Theorem 2.2: Let the hypotheses of Theorem 2.1 hold. In addition, suppose that there

exists z ∈ X which is comparable to x and y, ∀ x, y ∈ X. Then, T has a unique coupled
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fixed point.

Suppose that there exist (x∗, y∗), (x′, y′) ∈ X ×X are coupled fixed points of T.

Case(I): If x∗, x′ are comparable and y∗, y′ are also comparable, and x∗ 6= x′, y∗ 6= y′, then

by the contractive condition, we have

d(x∗, x′) = d(T (x∗, y∗), T (x′, y′))

� αd(x
∗,T (x∗,y∗)·d(x′,T (x′,y′)))

d(x∗,x′)
+ βd(x∗, x′)

= αd(x
∗,x∗).d(x′,x′)
d(x∗,x′)

+ βd(x∗, x′)

= βd(x∗, x′),

which gives d(x∗, x′) � 0, β < 1 (a contradiction). Thus, x∗ = x′.

Also, d(y∗, y′) = d(T (y∗, x∗), T (y′, x′)) � α·d(y∗,T (y∗,x∗))·d(y′,T (y′,x′))
d(y∗,y′)

+ βd(y∗, y′),

from which it follows(as above) that d(y∗, y′) � 0 (a contradiction).

Hence, y∗ = y′. Therefore, (x∗, y∗) is a unique coupled fixed point of T.

Case II: If x∗ is not comparable to x′ and y∗ is not comparable to y′, then by the contractive

condition, there exists w comparable to x∗ and x′, and there exists v comparable to y∗

and y′.

Monotonicity implies that wn is comparable to x∗n = T (x∗n−1, y
∗
n−1) = x∗, and wn is

comparable to w1. Also, monotonicity implies that y∗n is comparable to v and y∗n is also

comparable to w2.

On the other hand, if x∗n 6= w1, x
′
n 6= w1, then by the contractive condition, we get

d(w1, x
∗
n) = d(T (w1, w2), T (x∗n−1, y

∗
n−1))

Case III: If (x∗, y∗) is not comparable to (x′, y′), then there exists (w, v) comparable to

(x∗, y∗) and (x′, y′). Monotonicity implies that (T n(w, v), T n(v, w))

d

 x∗

y∗

 ,

 x′

y′

 = d

 T n(x∗, y∗)

T n(y∗, x∗

 ,

 T n(x′, y′)

T n(y′, x′)
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� d

 T n(x∗, y∗)

T n(y∗, x∗

 ,

 T n(w, v)

T n(v, w)

+ d

 T n(w, v)

T n(v, w

 ,

 T n(x′, y′)

T n(y′, x′)


� d(T n(x∗, y∗), T n(w, v)) + d(T n(y∗, x∗), T n(v, w)) + d(T n(w, v), T n(x′, y′))

+d(T n(v, w), T n(y′, x′))

� αn·d(x∗,Tn(x∗,y∗))·d(w,Tn(w,v))
d(x∗,w)

+ βn · d(x∗, w) + αn·d(y∗,Tn(y∗,x∗))·d(v,Tn(v,w))
d(y∗,w)

+ βn · d(y∗, v)

+αn·d(x′,Tn(x′,y′))·d(w,Tn(w,v))
d(w,x′)

+ βn · d(w, x′) + αn·d(v,Tn(v,w))·d(y′,Tn(y′,x′))
d(v,y′)

+ βn · d(v, y′)

= βn [d(x∗, w) + d(y∗, v) + d(x′, w) + d(y′, v)]→ 0 as n→∞.

Hence, T has a unique coupled fixed point.

Remark 2.1: Our results extend the corresponding results of Harjani et al [5] from

fixed point setting to coupled fixed point sense and also a generalization of Theorem 2.1

of [2].
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