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1. Introduction

The existence of fixed points for certain mappings in ordered metric spaces has been studied

by Ran and Reurings [18]. In [13], Nieto and López extended the result of Ran and Reurings

[18] for nondecreasing mappings and applied their results to obtain a unique solution for a first

order differential equation. Afterwards, Huang and Zhang [8] introduced the concept of cone

metric spaces by replacing the set of real numbers by an ordered real Banach space with a cone.

So far, many researchers have established fixed point and common fixed point results for map-

pings under various contractive conditions in normal or non-normal cone metric spaces.Very
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recently, Cho et al. [5] introduced the concept of c-distance in cone metric spaces which is a

cone version of w-distance of Kada et al. [11] and proved some fixed point theorems by us-

ing c-distance in partially ordered cone metric spaces. In this paper we introduce the concept

of generalized c-distance in a partially ordered cone metric space and prove some fixed point

theorems by using this new concept of generalized c-distance. Our results will improve and

supplement some results in the existing literature.

2. Preliminaries

In this section we need to recall some basic notations, definitions, and necessary results from

existing literature. Let E be a real Banach space and θ denote the zero element in E. A cone P

is a subset of E such that

(i) P is closed, nonempty and P 6= {θ};

(ii) a,b ∈ R, a,b≥ 0, x,y ∈ P ⇒ ax+by ∈ P;

(iii) P∩ (−P) = {θ}.

For any cone P ⊆ E, we can define a partial ordering � on E with respect to P by x � y if and

only if y− x ∈ P. We shall write x≺ y (equivalently, y� x) if x� y and x 6= y, while x� y will

stand for y− x ∈ int(P), where int(P) denotes the interior of P. The cone P is called normal if

there is a number k > 0 such that for all x,y ∈ E,

θ � x� y implies ‖x‖ ≤ k‖y‖.

The least positive number satisfying the above inequality is called the normal constant of P.

Rezapour and Hamlbarani [16] proved that there are no normal cones with normal constant

k < 1.

Definition 2.1. [8] Let X be a nonempty set. Suppose the mapping d : X×X → E satisfies

(i) θ � d(x,y) f or all x,y ∈ X and d(x,y) = θ i f and only i f x = y ;

(ii) d(x,y) = d(y,x) f or all x,y ∈ X ;
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(iii) d(x,y)� d(x,z)+d(z,y) f or all x,y,z ∈ X .

Then d is called a cone metric on X , and (X ,d) is called a cone metric space.

Definition 2.2. [8] Let (X ,d) be a cone metric space. Let (xn) be a sequence in X and x ∈ X . If

for every c ∈ E with θ � c there is a natural number n0 such that for all n > n0, d(xn,x)� c,

then (xn) is said to be convergent and (xn) converges to x, and x is the limit of (xn). We denote

this by lim
n→∞

xn = x or xn→ x (n→ ∞).

Definition 2.3. [8] Let (X ,d) be a cone metric space, (xn) be a sequence in X . If for any c ∈ E

with θ � c, there is a natural number n0 such that for all n,m > n0, d(xn,xm)� c, then (xn) is

called a Cauchy sequence in X .

Definition 2.4. [8] Let (X ,d) be a cone metric space, if every Cauchy sequence is convergent

in X , then X is called a complete cone metric space.

Lemma 2.5. [19] Every cone metric space (X ,d) is a topological space. For c� θ , c ∈ E, x ∈

X let B(x,c) = {y∈ X : d(y,x)� c} and β = {B(x,c) : x ∈ X ,c� θ}. Then τc = {U ⊆ X : ∀x ∈

U,∃B ∈ β ,x ∈ B⊆U} is a topology on X.

Definition 2.6. [19] Let (X ,d) be a cone metric space. A map T : (X ,d)→ (X ,d) is called

sequentially continuous if xn ∈ X ,xn→ x implies T xn→ T x.

Lemma 2.7. [19] Let (X ,d) be a cone metric space, and T : (X ,d)→ (X ,d) be any map. Then,

T is continuous if and only if T is sequentially continuous.

Lemma 2.8. [17] Let E be a real Banach space with a cone P. Then

(i) If a� b and b� c, then a� c.

(ii) If a� b and b� c, then a� c.

Lemma 2.9. [8] Let E be a real Banach space with cone P. Then one has the following.

(i) If θ � c, then there exists δ > 0 such that ‖b‖< δ implies b� c.

(ii) If an, bn are sequences in E such that an→ a, bn→ b and an � bn for all n≥ 1, then a� b.

Proposition 2.10. [10] If E is a real Banach space with cone P and if a� λa where a ∈ P and

0≤ λ < 1 then a = θ .
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Definition 2.11. [5] Let (X ,d) be a cone metric space. Then a function q : X×X → E is called

a c-distance on X if the following are satisfied :

(i): θ � q(x,y) for all x, y ∈ X ;

(ii): q(x,z)� q(x,y)+q(y,z) for all x,y,z ∈ X ;

(iii): for each x ∈ X and n ≥ 1, if q(x,yn) � u for some u = ux ∈ P, then q(x,y) � u

whenever (yn) is a sequence in X converging to a point y ∈ X ;

(iv): for all c ∈ E with θ � c, there exists e ∈ E with θ � e such that q(z,x)� e and

q(z,y)� e imply d(x,y)� c.

Example 2.12. [5] Let (X ,d) be a cone metric space and P be a normal cone. Put q(x,y) =

d(x,y) for all x,y ∈ X . Then q is a c-distance.

Example 2.13. [5] Let (X ,d) be a cone metric space and P be a normal cone. Put q(x,y) =

d(u,y) for all x,y ∈ X , where u ∈ X is a fixed point. Then q is a c-distance.

Example 2.14. [5] Let E = R and P = {x ∈ E : x ≥ 0}. Let X = [0,∞) and define a mapping

d : X×X → E by d(x,y) =| x−y | for all x,y ∈ X . Then (X ,d) is a cone metric space. Define a

mapping q : X×X → E by q(x,y) = y for all x,y ∈ X . Then q is a c-distance.

Remark 2.15. [5] (1) q(x,y) = q(y,x) does not necessarily hold for all x,y ∈ X .

(2) q(x,y) = θ is not necessarily equivalent to x = y for all x,y ∈ X .

3. Main results

In this section we always suppose that E is a real Banach space, P is a cone in E with

int(P) 6= /0 and � is the partial ordering with respect to P.

We begin with a definition.

Definition 3.1. Let (X ,d) be a cone metric space and j ∈N. A function q : X×X → E is called

a generalized c-distance of order j on X if the following conditions are satisfied:

(q1): θ � q(x,y), for all x,y ∈ X ;

(q2): q(x,z)�
j

∑
i=0

q(xi,xi+1), for all x,z∈ X and for all distinct points xi ∈ X , i∈ {1,2,3, · ·

·, j} each of them different from x(= x0) and z(= x j+1);



106 SUSHANTA KUMAR MOHANTA

(q3): for each x ∈ X and n ≥ 1, if q(x,yn) � u for some u = ux ∈ P, then q(x,y) � u

whenever (yn) is a sequence in X converging to a point y ∈ X ;

(q4): for all c ∈ E with θ � c, there exists e ∈ E with θ � e such that q(z,x)� e and

q(z,y)� e imply d(x,y)� c.

It is to be noted that every c-distance is a generalized c-distance of order 1. In fact, every c-

distance may also be considered as a generalized c-distance of any order j ∈ N. However the

converse is not true, in general. In this connection we consider the following examples.

Example 3.2. Let E =R2, the Euclidean plane and P = {(x,y) ∈R2 : x,y≥ 0} a cone in E. Let

X = {α, β , γ, δ} ⊆ R and define d : X×X → E by

d(x,y) = (a | x− y |,b | x− y |)

for all x,y ∈ X , where a,b are positive constants. Then (X ,d) is a cone metric space. Let

q : X×X → E be defined by

q(α,β ) = q(β ,α) = (9,9), q(α,γ) = q(γ,α) = q(β ,γ) = q(γ,β ) = (3,3),

q(α,δ ) = q(δ ,α) = q(β ,δ ) = q(δ ,β ) = q(γ,δ ) = q(δ ,γ) = (5,5)

and q(x,x) = (0.6,0.6) f or every x ∈ X .

Then q satisfies condition (q2) of Definition 3.1 for j = 2. The conditions (q1) and (q3) are

immediate. To show (q4), for any c ∈ E with θ � c, put e = (1
2 ,

1
2). Then

q(z,x)� e and q(z,y)� e imply d(x,y)� c.

Thus q is a generalized c-distance of order 2 on X but it is not a c-distance on X since it lacks

the triangular property:

q(α,β ) = (9,9) 6� q(α,γ)+q(γ,β ) = (3,3)+(3,3) = (6,6).

Example 3.3. Let E =R and P = {x ∈ E : x≥ 0} a cone in E. Let X =N and define a mapping

d : X×X → E by

d(x,y) =| x− y |
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for all x,y ∈ X . Then (X ,d) is a cone metric space. Let q : X×X → E be defined by

q(x,y) =



0 i f x = y,

3 i f x,y ∈ {1,2} and x 6= y,

1 i f (x ∈ {1,2}c or y ∈ {1,2}c) and x 6= y.

Then q satisfies condition (q2) of Definition 3.1 for j ≥ 2. The conditions (q1) and (q3) are

immediate. To show (q4), for any c ∈ E with 0� c, put e = 1
2 . Then

q(z,x)� e and q(z,y)� e imply d(x,y)� c.

Thus q is a generalized c-distance of order j on X but it is not a c-distance on X since it lacks

the triangular property:

q(1,2) = 3 > q(1,3)+q(3,2) = 1+1 = 2.

Remark 3.4. Generalized c-distances form a bigger category than that of c-distances.

Lemma 3.5. Let (X ,d) be a cone metric space and q be a generalized c-distance of order j

on X. Let (xn) and (yn) be sequences in X. Suppose that (αn) and (βn) are sequences in P

converging to θ , and let x,y,z ∈ X. Then the following hold :

(i) If q(xn,yn)� αn and q(xn,z)� βn for any n ∈ N, then (yn) converges to z;

(ii) If q(xn,y)� αn and q(xn,z)� βn for any n ∈N, then y = z. In particular, if q(x,y) = θ and

q(x,z) = θ , then y = z;

(iii) If q(xn,xm)� αn for any n,m ∈ N with m > n, then (xn) is a Cauchy sequence.

Proof. (i) Let c ∈ E with θ � c. Then there exists δ > 0 such that ‖ x ‖< δ implies c− x ∈

int (P). Since (αn) and (βn) are converging to θ , there exists n0 ∈ N such that ‖ αn ‖< δ and

‖ βn ‖< δ for all n > n0. Thus c−αn ∈ int (P) and c−βn ∈ int (P) for all n > n0 and so αn� c

and βn � c for all n > n0. By hypothesis, q(xn,yn) � αn � c and q(xn,z) � βn � c for all

n > n0. Now from (q4) with e = c it follows that d(yn,z)� c for all n > n0. Therefore (yn)

converges to z.

Clearly, (ii) is immediate from (i).
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(iii) Let c ∈ E with θ � c. Then by the arguments similar to that used above, there exists a

positive integer n0 such that q(xn,xm) � αn � c for all m > n with n > n0. This implies that

q(xn,xn+1)� αn� c and q(xn,xm+1)� αn� c for all m > n with n > n0. From (q4) with e = c

it follows that d(xn+1,xm+1)� c for all m > n with n > n0. This shows that (xn) is a Cauchy

sequence in X .

Theorem 3.6. Let (X ,v) be a partially ordered set and suppose that (X ,d) is a complete cone

metric space. Let q be a generalized c-distance of order j on X and f : X → X be a continuous

and nondecreasing mapping with respect to v. Suppose that the following conditions hold:

(i) there exist a1, a2, a3 ≥ 0 with a1 +a2 +a3 < 1 such that

q( f x, f y)� a1 q(x,y)+a2 q(x, f x)+a3 q(y, f y) (3.1)

for all x,y ∈ X with xv y;

(ii) there exists x0 ∈ X such that x0 v f x0.

Then f has a fixed point in X. Moreover, if u = f u, then q(u,u) = θ .

Proof. Since x0 v f x0 and f is nondecreasing with respect to v, we have

x0 v f x0 v f 2x0 v · · · v f nx0 v f n+1x0 v · · ·. (3.2)

Let xn = f xn−1 = f nx0 for n = 1, 2, 3, · · ·. Then (xn) is a nondecreasing sequence in X with

respect tov. We can suppose that xn 6= xm for all distinct n,m∈ {0, 1, 2, · · ·}. In fact, if xn = xm

for some n,m ∈ {0, 1, 2, · · ·}, m 6= n then assuming m > n, it follows from (3.2) that

xn = xn+1 = · · ·= xm.

Now xn = xn+1 implies that xn = f xn. So, xn is a fixed point of f . Thus in the sequel of the

proof we can assume that xn 6= xm for all distinct n,m ∈ {0, 1, 2, · · ·}.

For any natural number n, we have by using condition (3.1) that

q(xn,xn+1) = q( f xn−1, f xn)

� a1 q(xn−1,xn)+a2 q(xn−1, f xn−1)+a3 q(xn, f xn)

= a1 q(xn−1,xn)+a2 q(xn−1,xn)+a3 q(xn,xn+1).
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So, it must be the case that

q(xn,xn+1)� r q(xn−1,xn) (3.3)

where r = a1+a2
1−a3

∈ [0,1).

By repeated application of (3.3), we obtain

q(xn,xn+1)� rn q(x0,x1). (3.4)

Let m,n ∈ N with m > n. Taking m = n+ p where p = 1, 2, 3, · · · and using (3.1) and (3.4),

we have

q(xn,xm) = q( f xn−1, f xm−1)

� a1q(xn−1,xm−1)+a2q(xn−1, f xn−1)+a3q(xm−1, f xm−1)

= a1q(xn−1,xm−1)+a2q(xn−1,xn)+a3q(xm−1,xm)

� a1q(xn−1,xm−1)+a2rn−1q(x0,x1)+a3rm−1q(x0,x1)

� a1q(xn−1,xm−1)+(a2 +a3)rn−1q(x0,x1),

since rm−1 ≤ rn−1.

Continuing in this way, we obtain at the n-th step that

q(xn,xm) � an
1q(x0,xp)+(a2 +a3)[rn−1 +a1rn−2 + · · ·+an−1

1 ]q(x0,x1)

= an
1q(x0,xp)+βnq(x0,x1),

(3.5)

where βn = (a2 +a3)[rn−1 +a1rn−2 + · · ·+an−1
1 ].

We now show that

q(x0,xp)�
1

1−a j
1

(
1

1− r
+β j

)
M,

where M = q(x0,x1)+q(x0,x2)+ · · ·+q(x0,x j) ∈ P.
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If p≤ j, then

q(x0,xp) � (1+β j)q(x0,xp)

� [(1+ r+ r2 + · · ·)+β j]q(x0,xp)

=

(
1

1− r
+β j

)
q(x0,xp)

�
(

1+a j
1 +(a j

1)
2 + · · ·

)( 1
1− r

+β j

)
q(x0,xp)

� 1

1−a j
1

(
1

1− r
+β j

)
M.

If p > j, then there exists s ∈ N such that p = s j+ t, where 0≤ t < j.

If t = 0, then by using conditions (3.4) and (3.5)

q(x0,xp) � q(x0,x1)+q(x1,x2)+ · · ·+q(x j−1,x j)+q(x j,xp)

� q(x0,x1)+ rq(x0,x1)+ · · ·+ r j−1q(x0,x1)

+a j
1q(x0,xp− j)+β jq(x0,x1)

=

(
j−1

∑
ν=0

rν +β j

)
q(x0,x1)+a j

1q(x0,xp− j).

(3.6)

By repeated application of (3.6), we obtain at (s−1)-th step that

q(x0,xp) �
[
1+a j

1 +(a j
1)

2 + · · ·+(a j
1)

s−2
]( j−1

∑
ν=0

rν +β j

)
q(x0,x1)

+(a j
1)

(s−1)q(x0,x j)

�
[
1+a j

1 +(a j
1)

2 + · · ·+(a j
1)

s−2
]( j−1

∑
ν=0

rν +β j

)
q(x0,x1)

+(a j
1)

(s−1)

(
j−1

∑
ν=0

rν +β j

)
q(x0,x j)

�
[
1+a j

1 +(a j
1)

2 + · · ·+(a j
1)

s−1
]( j−1

∑
ν=0

rν +β j

)
M

� 1

1−a j
1

(
1

1− r
+β j

)
M.
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If t 6= 0, then

q(x0,xp) � q(x0,x1)+q(x1,x2)+ · · ·+q(x j−1,x j)+q(x j,xp)

�

(
j−1

∑
ν=0

rν +β j

)
q(x0,x1)+a j

1q(x0,xp− j).

(3.7)

By repeated application of (3.7), we obtain at s-th step that

q(x0,xp) �
[
1+a j

1 +(a j
1)

2 + · · ·+(a j
1)

s−1
]( j−1

∑
ν=0

rν +β j

)
q(x0,x1)

+(a j
1)

sq(x0,xt)

�
[
1+a j

1 +(a j
1)

2 + · · ·+(a j
1)

s−1
]( j−1

∑
ν=0

rν +β j

)
q(x0,x1)

+(a j
1)

s

(
j−1

∑
ν=0

rν +β j

)
q(x0,xt)

�
[
1+a j

1 +(a j
1)

2 + · · ·+(a j
1)

s
]( j−1

∑
ν=0

rν +β j

)
M

� 1

1−a j
1

(
1

1− r
+β j

)
M.

Thus, for the case p > j, we have

q(x0,xp)�
1

1−a j
1

(
1

1− r
+β j

)
M.

It now follows from (3.5) that for all m,n ∈ N with m > n,

q(xn,xm) �
an

1

1−a j
1

(
1

1− r
+β j

)
M+βn q(x0,x1)

� bn M,

where bn =
an

1
1−a j

1

( 1
1−r +β j

)
+βn → 0 as n→ ∞. By using Lemma 3.5(iii), we conclude that

(xn) is a Cauchy sequence in X . Since X is complete, there exists an element u ∈ X such that

xn→ u as n→ ∞.

Since f is continuous,

f u = f (lim
n

xn) = lim
n

f xn = lim
n

xn+1 = u.
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Thus u is a fixed point of f .

Again,

q(u,u) = q( f u, f u) � a1 q(u,u)+a2 q(u, f u)+a3 q(u, f u)

= (a1 +a2 +a3)q(u,u).

Since a1 +a2 +a3 < 1, by Proposition 2.10, it follows that q(u,u) = θ .

Theorem 3.7. Let (X ,v) be a partially ordered set and suppose that (X ,d) is a complete

cone metric space. Let q be a generalized c-distance of order j on X and f : X → X be a

nondecreasing mapping with respect to v. Suppose that the following conditions hold:

(i) there exist a1, a2, a3 ≥ 0 with a1 +a2 +a3 < 1 such that

q( f x, f y)� a1 q(x,y)+a2 q(x, f x)+a3 q(y, f y) (3.8)

for all x,y ∈ X with xv y;

(ii) there exists x0 ∈ X such that x0 v f x0;

(iii) in f {q(x,y)+q( f x,y)+q(x, f x) : x ∈ X} � θ for all y ∈ X with y 6= f y. Then f has a fixed

point in X. Moreover, if u = f u, then q(u,u) = θ .

Proof. If we take xn = f nx0 = f xn−1, then as in the proof of Theorem 3.6 we have

x0 v x1 v x2 v · · · v xn v xn+1 v · · ·.

Moreover,

q(xn,xn+1)� rnq(x0,x1) (3.9)

where r = a1+a2
1−a3

∈ [0,1).

By an argument similar to that used in Theorem 3.6, for m,n ∈ N with m > n we have

q(xn,xm)� bnM (3.10)

where bn =
an

1
1−a j

1

( 1
1−r +β j

)
+βn, βn =(a2+a3)[rn−1+a1rn−2+ · · ·+an−1

1 ] and M = q(x0,x1)+

q(x0,x2)+ · · ·+q(x0,x j) ∈ P.

By using Lemma 3.5(iii), we conclude that (xn) is a Cauchy sequence in X . Since X is complete,
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there exists an element u ∈ X such that xn→ u as n→ ∞.

By (3.10) and (q3), we have

q(xn,u)� bn M, f or all n. (3.11)

If u 6= f u, then by hypothesis (iii), (3.9) and (3.11), we have

θ ≺ in f{q(x,u)+q( f x,u)+q(x, f x) : x ∈ X}

� in f{q(xn,u)+q( f xn,u)+q(xn, f xn) : n ∈ N}

= in f{q(xn,u)+q(xn+1,u)+q(xn,xn+1) : n ∈ N}

� in f{bn M+bn+1 M+ rn q(x0,x1) : n ∈ N}

= θ .

This is a contradiction. Therefore, u is a fixed point of f . We can prove q(u,u) = θ by the final

part of the proof of Theorem 3.6.

In the following theorem we omit the continuity assumption of f .

Theorem 3.8. Let (X ,v) be a partially ordered set and suppose that (X ,d) is a complete

cone metric space. Let q be a generalized c-distance of order j on X and f : X → X be a

nondecreasing mapping with respect to v. Suppose that the following conditions hold:

(i) there exist a1, a2 ≥ 0 with a1 +a2 < 1 such that

q( f x, f y)� a1 q(x,y)+a2 q(x, f x) (3.12)

for all x,y ∈ X with xv y;

(ii) there exists x0 ∈ X such that x0 v f x0;

(iii) if (xn) is a nondecreasing sequence in X such that xn→ x, then xn v x for all n.

Then f has a fixed point in X. Moreover, if u = f u, then q(u,u) = θ .

Proof. As in the proof of Theorem 3.6 we construct a nondecreasing sequence (xn) where

xn = f nx0 = f xn−1.

Moreover,

q(xn,xn+1)� rnq(x0,x1) (3.13)
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where r = a1 +a2 ∈ [0,1).

By an argument similar to that used in Theorem 3.6, for m,n ∈ N with m > n we have

q(xn,xm)� bnM (3.14)

where bn =
an

1
1−a j

1

( 1
1−r +β j

)
+ βn, βn = a2[rn−1 + a1rn−2 + · · ·+ an−1

1 ] and M = q(x0,x1) +

q(x0,x2)+ · · ·+q(x0,x j) ∈ P.

By Lemma 3.5(iii), (xn) is a Cauchy sequence in X . Since X is complete, there exists an element

u ∈ X such that xn→ u as n→ ∞.

By (3.14) and (q3), we have

q(xn,u)� bn M, f or all n. (3.15)

Since (xn) is nondecreasing and converges to u, by the given condition (iii), we have xn v u for

all n.

Thus for all n ∈ N, we have by using (3.13) and (3.15)

q(xn, f u) = q( f xn−1, f u) � a1q(xn−1,u)+a2q(xn−1, f xn−1)

= a1q(xn−1,u)+a2q(xn−1,xn)

� a1bn−1M+a2rn−1q(x0,x1)

� αnM,

(3.16)

where αn = a1bn−1 + a2rn−1 → 0 as n→ ∞. By using Lemma 3.5(ii), it follows from (3.15)

and (3.16) that f u = u. Hence u is a fixed point of f . We can prove q(u,u) = θ by the argument

similar to that used in Theorem 3.6.

Theorem 3.9. In addition to hypothesis of Theorem 3.6 or Theorem 3.7 or Theorem 3.8, suppose

that any two elements of X are comparable. Then there exists a unique fixed point of f .

Proof. We first note that the set of fixed points of f is nonempty. We will show that if u and v

are fixed points of f , then u = v. Since the elements of X are comparable, we may assume that
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uv v. In case of either Theorem 3.6 or Theorem 3.7, we have

q(u,v) = q( f u, f v) � a1q(u,v)+a2q(u, f u)+a3q(v, f v)

= a1q(u,v)+a2q(u,u)+a3q(v,v)

= a1q(u,v),

since q(u,u) = θ and q(v,v) = θ .

This gives that, q(u,v) = θ . By Lemma 3.5(ii), q(u,u) = θ and q(u,v) = θ imply that u = v.

In case of Theorem 3.8, we can obtain the same conclusion by taking a3 = 0 in above.
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