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1. Introduction

In 1997, Alben and Cuerre-Delabriere [1] first introduced the concept of ϕ-weak contraction-

s. Recently, Zhang and Song [2] further defined a new contractive which is generalized ϕ-weak

in 2009. Very recently, Moradi and Farajzadeh [3] introduced the (ψ −ϕ)-weak contraction

condition and generalized (ψ−ϕ)-weak contraction condition. In this paper, motivated by the

above work, we prove two fixed point theorems for (ψ −ϕ)-weak contraction condition and
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generalized (ψ−ϕ)-weak contraction condition mappings. The results presented in this paper

mainly extend of the corresponding results in Moradi and Farajzadeh [3].

2. Preliminaries

Let (X ,d) be a metric space. A mapping T : X −→ X is said to be ϕ-weak contraction, if

there exists a map ϕ : [0,∞)→ [0,∞) with ϕ(0) = 0 and ϕ(t)> 0 for all t > 0 such that for all

x,y ∈ X

d(T x,Ty)≤ d(x,y)−ϕ(d(x,y)). (2.1)

The mapping T : X → X is said to be generalized ϕ-weak contraction, if there exist a map

ϕ : [0,∞)→ [0,∞) with ϕ(0) = 0 and ϕ(t)> 0 for all t > 0 such that

for all x,y ∈ X

d(T x,Ty)≤ N(x,y)−ϕ(N(x,y)), (2.2)

where, N(x,y) = max{d(x,y),d(x,T x),d(y,Ty), 1
2 [d(x,Ty)+d(y,T x)]}.

The mappings T : X −→ X is said to be a (ψ−ϕ)-weak contraction, if there exist two maps

ψ,ϕ : [0,∞)→ [0,∞) with ψ(0) = ϕ(0) = 0, ψ(t) > 0 and ϕ(t) > 0 for all t > 0 such that for

all x,y ∈ X

ψ(d(T x,Ty))≤ ψ(d(x,y))−ϕ(d(x,y)). (2.3)

The mappings T : X → X is said to be generalized (ψ −ϕ)-weak contraction, if there exist

two maps ψ,ϕ : [0,∞)→ [0,∞) with ψ(0) = ϕ(0) = 0, ψ(t)> 0 and ϕ(t)> 0 for all t > 0 such

that for all x,y ∈ X ,

ψ(d(T x,Ty))≤ ψ(N(x,y))−ϕ(N(x,y)). (2.4)

Rhoades [4] proved the following fixed point theorem for ϕ-weak contraction single-valued

mappings.

Theorem 2.1. Let (X ,d) be a complete metric space and let T : X −→ X be a mapping such

that

d(T x,Ty)≤ d(x,y)−ϕ(d(x,y)), (2.5)

for all x,y ∈ X, where ϕ : [0,∞) −→ [0,∞) is a continuous and nondecreasing function with

ϕ(0) = 0 and ϕ(t)> 0 for all t > 0. Then T has a unique fixed point.
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Dutta and Choudhury [5] proved the following theorem on the existence of a fixed point for

ϕ-weak contraction mappings and extended Theorem 2.1.

Theorem 2.2. Let (X ,d) be a complete metric space and let T : X −→X be a mapping satisfying

the inequality

ψ(d(T x,Ty))≤ ψ(d(x,y))−ϕ(d(x,y)), (2.6)

for all x,y∈ X, where ψ,ϕ : [0,∞)−→ [0,∞) are both continuous nondecreasing mappings with

ϕ(0) = ψ(0) = 0 if and only if t = 0. Then T has a unique fixed point.

Moradi and Farajzadeh [3] extended Theorem 2.1 and Theorem 2.2 as the following:

Theorem 2.3. Let (X ,d) be a complete metric space and T : X −→ X is a mapping that satisfies

ψ(d(T x,Ty))≤ ψ(d(x,y))−ϕ(d(x,y)) (2.7)

for all x,y ∈ X where, ψ,ϕ : [0,∞)→ [0,∞) are two mappings with ψ(0) = ϕ(0) = 0, ϕ(t)> 0

and ψ(t)> 0 for all t > 0. Suppose also that either

(a) ψ is continuous and limn→∞ tn = 0 if lim
n→∞

ϕ(tn) = 0, or

(b) ψ is monotone nondecreasing and limn→∞ tn = 0 if {tn} is bounded and limn→∞ ϕ(tn) = 0.

Then T has a unique fixed point.

Doric [6] proved the following fixed point theorem for generalized ϕ-weak contraction single-

valued mappings.

Theorem 2.4. Let (X ,d) be a complete metric space and let T : X −→X be a mapping satisfying

the inequality

ψ(d(T x,Ty))≤ ψ(N(x,y))−ϕ(N(x,y)), (2.8)

for all x,y ∈ X, and

(a) ψ : [0,∞)→ [0,∞) is continuous monotone nondecreasing function with ψ(t) = 0 if and

only if t = 0.

(b) ϕ : [0,∞)→ [0,∞)is a lower semi-continuous function with ϕ(t) = 0 if and only if t = 0.

Then T has a unique fixed point.

Popescu [7] proved the following theorem on the existence of a fixed point for generalized

ϕ-weak contraction mappings and extended Theorem 2.3.
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Theorem 2.5. Let (X ,d) be a complete metric space and T : X −→ X is a mapping satisfying

for all x,y ∈ X,

ψ(d(T x,Ty))≤ ψ(N(x,y))−ϕ(N(x,y)), (2.9)

where,

(a) ψ : [0,∞)→ [0,∞) is a monotone nondecreasing function with ψ(t) = 0 if and only if t = 0.

(b) ϕ : [0,∞)→ [0,∞) is a function with ϕ(t) = 0 if and only if t = 0 and limn→∞ ϕ(tn) > 0 if

limn→∞ tn = t > 0.

(c) ϕ(a)> ψ(a)−ψ(a−) for any a > 0, where ψ(a−) is the left limit of ψ at a.

Then T has a unique fixed point.

Moradi and Farajzadeh [3] extended the Theorem 2.4 and Theorem 2.5 as following:

Theorem 2.6. Let (X ,d) be a complete metric space and let T : X −→ X be a mapping that

satisfies,

ψ(d(T x,Ty))≤ ψ(N(x,y))−ϕ(N(x,y)), (2.10)

for all x,y ∈ X, where, ϕ : [0,∞) −→ [0,∞) is a mapping with ϕ(0) = 0 and ϕ(t) > 0 for all

t > 0 and limn→∞ tn = 0, if {tn} is bounded and limn→∞ ϕ(tn) = 0, and ψ : [0,∞)−→ [0,∞) is a

mapping with ψ(0) = 0 and ψ(t)> 0 for all t > 0. Also, suppose that either

(a) ψ is continuous, or

(b) ψ is monotone nondecreasing and for all a > 0, ϕ(a)> ψ(a)−ψ(a−), where ψ(a−) is the

left limit of ψ at a.

Then T has a unique fixed point.

Recently, many authors have studied fixed point for (ψ −ϕ)-weak contraction conditions;

see [6,8-11] and the references therein.

We introduce two types of contraction as follows:

Definition 2.7. Two mappings S,T : X −→ X are said to be (ψ−ϕ)-weak contraction, if there

exist two maps ψ,ϕ : [0,∞) −→ [0,∞) with ψ(0) = ϕ(0) = 0 and ψ(t) > 0, ϕ(t) > 0 for all

t > 0 such that ψ(d(Sx,Ty))≤ ψ(d(x,y))−ϕ(d(x,y)), for all x,y ∈ X .
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Definition 2.8. Two mappings S,T : X −→ X are said to be generalized (ψ −ϕ)-weak con-

traction, if there exist two maps ψ,ϕ : [0,∞) −→ [0,∞) with ψ(0) = ϕ(0) = 0 and ψ(t) > 0,

ϕ(t)> 0 for all t > 0 such that ψ(d(Sx,Ty))≤ ψ(M(x,y))−ϕ(M(x,y)), for all x,y ∈ X where,

M(x,y) = max{d(x,y),d(x,Sx),d(y,Ty), 1
2 [d(x,Ty)+d(y,Sx)]}.

3. Main results

The following theorem extends Moradi and Farajzadeh Theorem’s (cf. [3] Theorem 3.1) to

two mappings.

Theorem 3.1. Let (X ,d) be a complete metric space and S,T : X −→ X be two continuous

mappings that satisfy

ψ(d(Sx,Ty))≤ ψ(d(x,y))−ϕ(d(x,y)), (3.1)

for all x,y∈ X where, ψ,ϕ : [0,∞)−→ [0,∞) are two mappings with ψ(0) = ϕ(0) = 0, ϕ(t)> 0

and ψ(t)> 0 for all t > 0. Suppose also that either

(a) ψ is continuous and lim
n→∞

tn = 0 if lim
n→∞

ϕ(tn) = 0, or

(b) ψ is monotone nondecreasing and lim
n→∞

tn = 0 if {tn} is bounded and limn→∞ ϕ(tn) = 0.

Then S and T have a common fixed point.

Proof. Let x0 ∈ X . Define a sequence {xn} by T x2n = x2n+1 and Sx2n+1 = x2n+2 for all n∈N∪{0}.

Obviously, if x2n = x2n+1 and x2n+1 = x2n+2 for some n∈N∪{0} then there is nothing to prove.

So we may assume that x2n 6= x2n+1 and x2n+1 6= x2n+2 for all n ∈ N∪{0}. From (3.1), we have

ψ(d(x2n+2 ,x2n+1))≤ ψ(d(x2n+1,x2n))−ϕ(d(x2n+1,x2n)), (3.2)

for all n∈N∪{0} and hence the sequence {ψ(d(xm+1,xm))} is monotone decreasing and bound-

ed below. Thus there exists r ≥ 0 such that

lim
n→∞

ψ(d(x2n+2 ,x2n+1)) = r.

Using (3.2), we deduce

0≤ ϕ(d(x2n+1,x2n))≤ ψ(d(x2n+1 ,x2n))−ψ(d(x2n+2,x2n+1)). (3.3)
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Letting n→ ∞ in the inequality (3.3), we get

lim
n→∞

ϕ(d(x2n+1,x2n)) = 0.

If (a) holds, then by hypothesis

lim
n→∞

d(x2n+1,x2n) = 0. (3.4)

We claim that {xn} is a Cauchy sequence. Indeed, if it is false, then there exist ε > 0 and the

subsequences {xm(k)} and {xn(k)} of {xn} such that n(k) is minimal in the sense that n(k) >

m(k) > k and d(xm(k),xn(k)) > ε . Therefore, d(xm(k),xn(k)−1) ≤ ε and by using the triangle

inequality, we obtain

ε < d(xm(k),xn(k))

≤ d(xm(k),xm(k)−1)+d(xm(k)−1,xn(k)−1)+d(xn(k)−1,xn(k))

≤ d(xm(k),xm(k)−1)+d(xm(k)−1,xm(k))+d(xm(k),xn(k)−1)+d(xn(k)−1,xn(k))

≤ 2d(xm(k),xm(k)−1)+ ε +d(xn(k)−1,xn(k)).

(3.5)

Letting k→ ∞ in the above inequality and using (3.4), we get

lim
n→∞

d(xm(k),xn(k)) = lim
n→∞

d(xm(k)−1,xn(k)−1) = ε. (3.6)

From (3.1), for all k ∈ N, we find that

ψ(d(xm(k),xn(k)))≤ ψ(d(xm(k)−1,xn(k)−1))−ϕ(d(xm(k)−1,xn(k)−1)). (3.7)

If (a) holds, then

lim
n→∞

ψ(d(xm(k)−1,xn(k)−1)) = lim
n→∞

ψ(d(xm(k),xn(k))) = ψ(ε)

and hence from (3.7), we conclude that limn→∞ ϕ(d(xm(k)−1,xn(k)−1)) = 0. By hypothesis, we

have

lim
n→∞

d(xm(k)−1,xn(k)−1) = 0.

This a contradiction. If (b) holds, then from (3.7)

ε < d(xm(k),xn(k))< d(xm(k)−1,xn(k)−1),
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and so d(xm(k),xn(k))→ ε+ and d(xm(k)−1,xn(k)−1)→ ε+ as k −→ ∞. Hence, we have

lim
n→∞

ψ(d(xm(k)−1,xn(k)−1)) = lim
n→∞

ψ(d(xm(k),xn(k))) = ψ(ε+),

where ψ(ε+) is the right limit of ψ . Therefore from (3.7), limn→∞ ϕ(d(xm(k)−1,xn(k)−1)) = 0

by hypothesis, we find that

lim
n→∞

d(xm(k)−1,xn(k)−1) = 0.

This is a contradiction. Thus {xn} is Cauchy. Since (X ,d) is complete and {xn} is Cauchy, it

follows that there exists z ∈ X such that limn→∞ xn = z. We now show that z is a common fixed

point of S and T . If (a) is holds, then from (3.1), for all n ∈ N∪{0}

ψ(d(x2n+2,T z))≤ ψ(d(x2n+1,z))−ϕ(d(x2n+1,z)). (3.8)

Letting n→ ∞ in (3.8), using condition (a) and limn→∞ xn = z, we get that

ψ(d(z,T z))≤ ψ(d(z,z)) = ψ(0) = 0

and so d(z,T z) = 0, (note that ϕ and ψ are nonnegative with ψ(0) = ϕ(0) = 0), which implies

z = T z. Similarly,

ψ(d(Sz,x2n+1))≤ ψ(d(z,x2n))−ϕ(d(z,x2n)). (3.9)

Letting n→∞ in (3.9), using condition (a) and limn→∞ xn = z, we get ψ(d(Sz,z))≤ψ(d(z,z))=

ψ(0) = 0 and so d(Sz,z) = 0, which implies Sz = z. Since S and T are continuous. Therefore

z = limn→∞ x2n+2 = limn→∞ Sx2n+1 = Sz and z = limn→∞ x2n+1 = limn→∞ T x2n = T z. So, z is a

common fixed point of S and T . Let z∗ be another common fixed point of S and T (i.e., T z∗ = z∗

and Sz∗ = z∗),

ψ(d(z,z∗)) = ψ(d(Sz,T z∗))≤ ψ(d(z,z∗))−ϕ(d(z,z∗)),

which implies that d(z,z∗) = 0, that is z = z∗. Thus we have the uniqueness of the fixed point

of S and T . This complete the prove.

The following theorem extends Moradi and Farajzadeh theorem’s (cf. [6] Theorem 3.3) to

two mappings as the following.
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Theorem 3.2. Let (X ,d) be a complete metric space and S,T : X −→ X be two continuous

mappings that satisfy

ψ(d(Sx,Ty))≤ ψ(M(x,y))−ϕ(M(x,y)), (3.10)

where, M(x,y) = max{d(x,y),d(x,Sx),d(y,Ty), 1
2 [d(x,Ty) + d(y,Sx)]}. for all x,y ∈ X, ϕ :

[0,∞)→ [0,∞) is a mapping with ϕ(0) = 0 and ϕ(t)> 0 for all t > 0 and limn→∞ tn = 0, if {tn}

is bounded and limn→∞ ϕ(tn) = 0, and ψ : [0,∞)→ [0,∞) is a mappings with ψ(0) = 0 and

ψ(t)> 0 for all t > 0. Also, suppose that either

(a) ψ is continuous, or

(b) ψ is monotone nondecreasing and for all a > 0, ϕ(a)> ψ(a)−ψ(a−), where ψ(a−) is the

left limit of ψ at a.

Then S and T have a common fixed point.

Proof. Let x0 ∈ X . Define the sequence {xn} by T x2n = x2n+1 and Sx2n+1 = x2n+2 for all n ∈

N ∪ {0}. Obviously, if x2n = x2n+1 and x2n+1 = x2n+2 for some n ∈ N ∪ {0}, then there is

nothing to prove. So we may assume that x2n 6= x2n+1 and x2n+1 6= x2n+2 for all n ∈ N∪{0}. From

(3.10), we have

ψ(d(x2n+2,x2n+1))≤ ψ(M(x2n+1,x2n))−ϕ(M(x2n+1,x2n)), (3.11)

where

M(x2n+1,x2n) = max{d(x2n+1,x2n),d(x2n+1,x2n+2),d(x2n,x2n+1),

1
2
[d(x2n,x2n+1)+d(x2n+1,x2n+2)]}.

If d(x2n+1,x2n)< d(x2n+2,x2n+1), then from (3.11), we have

ψ(d(x2n+2,x2n+1))≤ ψ(d(x2n+1,x2n+2))−ϕ(d(x2n+1,x2n+2))

< ψ(d(x2n+1,x2n+2)),
(3.12)

and this is a contradiction, so d(x2n+1 ,x2n+2)< d(x2n,x2n+1) and hence, the sequence {d(x2n,x2n+1)}

is monotone nondecreasing and hence bounded. Also, from (3.11) and (3.12), we have

ψ(d(x2n+2,x2n+1))≤ ψ(d(x2n+1,x2n))−ϕ(d(x2n+1,x2n)). (3.13)
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Therefore the sequence {d(x2n+2,x2n+1)} is monotone nondecreasing and bounded below. Thus

there exists r ≥ 0 such that limn→∞ ψ(d(x2n,x2n+1)) = r. It follows from (3.13) that

lim
n→∞

ϕ(d(x2n,x2n+1)) = 0.

Since {d(x2n,x2n+1)} is bounded and limn→∞ ϕ(d(x2n ,x2n+1)) = 0, we see that

lim
n→∞

d(x2n,x2n+1) = 0. (3.14)

We now prove that {xn} is a Cauchy sequence. Indeed, if the conclusion does not hold,

then there exist ε > 0 for which we can find subsequences {xm(k)} and {xn(k)} of {xn} such

that n(k) is minimal in the sense that n(k) > m(k) > k and d(xm(k),xn(k)) > ε . Therefore,

d(xm(k),xn(k)−1)≤ ε .Using the triangle inequality,

ε < d(xm(k),xn(k))

≤ d(xm(k),xm(k)−1)+d(xm(k)−1,xn(k)−1)+d(xn(k)−1,xn(k))

≤ d(xm(k),xm(k)−1)+d(xm(k)−1,xm(k))+d(xm(k),xn(k)−1)+d(xn(k)−1,xn(k))

≤ 2d(xm(k),xm(k)−1)+ ε +d(xn(k)−1,xn(k)).

(3.15)

Letting k→ ∞ in the above inequality, we get

lim
n→∞

d(xm(k),xn(k)) = lim
n→∞

d(xm(k)−1,xn(k)−1) = ε. (3.16)

By use of (3.10), we find that

ψ(d(xm(k),xn(k)))≤ ψ(M(xm(k)−1,xn(k)−1))−ϕ(M(xm(k)−1,xn(k)−1)), (3.17)

where
d(xm(k)−1,xn(k)−1)

≤M(xm(k)−1,xn(k)−1)

= max{d(xm(k)−1,xn(k)−1),d(xm(k)−1,xm(k)),d(xn(k)−1,xn(k)),

1
2
[d(xm(k)−1,xn(k))+d(xn(k)−1,xm(k))]}.

(3.18)

Since (3.16) and (3.18) hold, we conclude that limn→∞ M(xm(k)−1,xn(k)−1) = ε. If ψ is contin-

uous, then

lim
n→∞

ψ(d(xm(k),xn(k))) = lim
n→∞

ψ(M(xm(k)−1,xn(k)−1)) = ψ(ε)



488 H. M. ABU-DONIA, M. S. BAKRY

and hence from (3.17), we conclude that

lim
n→∞

ϕ(M(xm(k)−1,xn(k)−1)) = 0.

Since {M(xm(k)−1,xn(k)−1)} is bounded, we conclude that

lim
n→∞

M(xm(k)−1,xn(k)−1) = 0.

This is a contradiction. If ψ is monotone nondecreasing, then from (3.17), we find

ε < d(xm(k),xn(k))< M(xm(k)−1,xn(k)−1),

for all k ∈ N ∪{0}. Therefore d(xm(k),xn(k))→ ε+ and M(xm(k)−1,xn(k)−1)→ ε+ as k→ ∞.

Hence limn→∞ ψ(d(xm(k),xn(k))) = limn→∞ ψ(M(xm(k)−1,xn(k)−1)) = ψ(ε+). So from (3.17),

limn→∞ ϕ(M(xm(k)−1,xn(k)−1)) = 0. Since {M(xm(k)−1,xn(k)−1)} is bounded, we find that

lim
n→∞

M(xm(k)−1,xn(k)−1) = 0.

This is a contradiction. Thus {xn} is Cauchy. Since (X ,d) is complete and {xn} is Cauchy, it

follows that there exists z ∈ X such that limn→∞ xn = z. We now show that z is a common fixed

point of S and T . For all n ∈ N∪{0}, we have

M(x2n ,z)) = max{d(x2n,z),d(x2n,x2n+1),d(z,T z),
1
2
[d(x2n,T z)+d(z,x2n+1)]}. (3.19)

If T z 6= z, then from the above inequality, there exist n∗ ∈N such that for all n≥ n∗, M(xn ,z)) =

d(z,T z). So for all n≥ n∗, from (3.19)

M(xn,z)) = d(z,T z). (3.20)

Hence from (3.10) and (3.20), for all n≥ n∗, we have

ψ(d(x2n+1,T z))≤ ψ(d(z,T z))−ϕ(d(z,T z)). (3.21)

If ψ is continuous, then

ψ(d(z,T z))≤ ψ(d(z,T z))−ϕ(d(z,T z))

< ψ(d(z,T z))

and this is a contradiction. If ψ is monotone, then from (3.21) we get, d(x2n+1,T z) < d(z,T z)

for all n≥ n∗. Letting n→ ∞ in (3.21), we get ψ(a−)≤ ψ(a)−ϕ(a), where a = d(z,T z), and
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this is a contradiction. Consequently, z is a fixed point of T . Similarly z is a fixed point of S.

Let z∗ be another common fixed point of S and T (i. e., T z∗ = z∗ and Sz∗ = z∗),

ψ(d(z,z∗)) = ψ(d(Sz,T z∗))

≤ ψ(M(z,z∗))−ϕ(M(z,z∗))

≤ ψ(d(z,z∗))−ϕ(d(z,z∗))

< ψ(d(z,z∗)),

which implies that d(z,z∗) = 0, that is z = z∗. Thus we have the uniqueness of the fixed point

of S and T . This completes the theorem.
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