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Abstract. In [2], Agyingi proved that every generalized contractive mapping defined in a q-spherically complete

T0-ultra-quasi-metric space has a unique fixed point. In this article, we give and prove a fixed point theorem for

C-contractive and S-contractive mappings in a bicomplete di-metric space. The connection between q-spherically

complete T0-ultra-quasi-metric spaces and bicomplete di-metric spaces is pointed out in Proposition 3.1.
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1. Introduction

If we delete, in the usual definition of the pseudometric d on a set X , the symmetry condi-

tion d(x,y) = d(y,x) whenever x,y ∈ X , we are led to the concept of quasi-pseudometric. In

this context, we recall, as mentioned in [7] (see the Kullback-Leibler distance in information

theory) that most of the distance functions considered in science are not necessarily symmet-

ric. Hence, many results established for metric spaces have their equivalent formulation for

quasi-pseudometric spaces, the technicality of the proof being completely different.
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Definition 1.1. (Compare [3]) Let (X ,m) be a metric space. A map T : X → X is called a

C-contraction if there exists 0≤ k < 1
2 such that for all x,y ∈ X , the following inequality holds:

mT x,Ty)≤ k[m(x,T x)+m(y,Ty)].

Definition 1.2. (Compare[3]) Let (X ,m) be a metric space. A map T : X → X is called a

S-contraction if there exists 0≤ k < 1
3 such that for all x,y ∈ X , the following inequality holds:

m(T x,Ty)≤ k[m(x,T x)+m(y,Ty)+m(x,y)].

2. Preliminaries

In this section, we recall some elementary definitions and terminology from the asymmetric

topology which are necessary for a good understanding of the work below. For recent results in

the area of Asymmetric Topology, the reader is advised to consult [1, 2, 5, 6, 9].

Definition 2.1. Let X be a non empty set. A function d : X ×X → [0;∞) is called a quasi-

pseudometric on X if:

i) d(x,x) = 0 ∀ x ∈ X ,

ii) d(x,z)≤ d(x,y)+d(y,z) ∀ x,y,z ∈ X .

Moreover, if d(x,y) = 0 = d(y,x) =⇒ x = y, then d is said to be a it T0-quasi-pseudometric or a

di-metric. The latter condition is referred as the T0-condition.

Example 2.1. [1] On R×R, we define the real valued map d given by

d(a,b) = a−̇b = max{a−b,0}.

Then (R,d) is a di-metric space.

Remark 2.1.

• Let d be a quasi-pseudometric on X , then the map d−1 defined by d−1(x,y) = d(y,x)

whenever x,y ∈ X is also a quasi-pseudometric on X , called the conjugate of d. (In the

literature, it is also denoted by dt or d̄).
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• It is easy to verify that the function ds defined by ds := d∨d−1, i.e.

ds(x,y) = max{d(x,y),d(y,x)}

defines a metric on X whenever d is a T0-quasi-pseudometric.

• In some cases, we need to replace [0,∞) by [0,∞] (where for a d attaining the value

∞, the triangle inequality is interpreted in the obvious way). In such case, we speak of

extended quasi-pseudometric.

Definition 2.2. The di-metric space (X ,d) is said to be bicomplete if the metric space (X ,ds) is

complete.

Example 2.2. (Compare [9, Example 3]) Let X = [0;∞). Define for each x,y ∈ X , n(x,y) = x if

x > y, and n(x,y) = 0 if x≤ y. It is not difficult to check that (X ,n) is a T0-quasi-pseudometric

space.

Notice also that for x,y ∈ [0;∞), we have ns(x,y) = max{x,y} if x 6= y and ns(x,y) = 0 if

x = y. The metric ns is complete on [0,∞).

Definition 2.3. Let (X ,d) be a quasi-pseudometric space. For x ∈ X and ε > 0,

Bd(x,ε) = {y ∈ X : d(x,y)< ε}

denotes the open ε-ball at x. The collection of all such balls is a base for a topology τ(d)

induced by d on X . Similarly, for x ∈ X and ε ≥ 0,

Cd(x,ε) = {y ∈ X : d(x,y)≤ ε}

denotes the closed ε-ball at x.

Definition 2.4. (Compare[1, Definition 5]) Let (X ,d) be a quasi-pseudometric space. Let (xi)i∈I

be a family of points of X and let (ri)i∈I and (si)i∈I be families of non-negative real numbers.

We say that the family (Cd(xi,ri),Cd−1(xi,si))i∈I has the mixed binary intersection property

provided that

Cd(xi,ri)∩Cd−1(x j,s j) 6= /0,

for all i, j ∈ I.
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Definition 2.5. (Compare[1, Definition 6]) Let (X ,d) be a quasi-pseudometric space. We say

that (X ,d) is Isbell complete provided that each family (Cd(xi,ri),Cd−1(xi,si))i∈I that has the

mixed binary intersection property is such that

∩
i∈I

((Cd(xi,ri)∩Cd−1(xi,si))) 6= /0.

Proposition 2.1. (Compare[1, Proposition 2]) If (X ,d) is an extended Isbell-complete quasi-

pseudometric space, then (X ,ds) is hypercomplete.

An interesting class of quasi-pseudometric spaces for which we investing a type of complete-

ness are the ultra-quasi-pseudometric.

Definition 2.6. (Compare [8, page 2]) Let X be a set and d : X ×X → [0;∞) be a function

mapping into the set [0;∞) of non-negative reals. Then d is an ultra-quasi-pseudometric on X

if

i) d(x,x) = 0 for all x ∈ X , and

ii) d(x,z)≤ max{d(x,y),d(y,z)} whenever x,y,z ∈ X .

The conjugate d−1 of d where d−1(x,y) = d(y,x) whenever x,y ∈ X is also an ultra-quasi-

pseudometric on X ..

If d also satisfies the T0-condition, then d is called a T0-ultra-quasi-metric on X . Notice that

ds = sup{d,d−1}= d∨d−1 is an ultra metric on X whenever d is a T0-ultra-quasi-metric.

In the literature, T0-ultra-quasi-metric spaces are also know as non Archimedean T0-quasi-

metric spaces.

3. q-spherical completeness

In this section we shall recall some results about q-spherical completeness belonging mainly

to [8].

Definition 3.2. (Compare [8, Definition 2]) Let (X ,d) be an ultra-quasi-pseudometric space.

Let (xi)i∈I be a family of points in X and let (ri)i∈I and (si)i∈I be families of non-negative real
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numbers. We say that (X ,d) is q-spherically complete provided that each family

(Cd(xi,ri),Cd−1(xi,si))i∈I

satisfying

d(xi,x j)≤max{ri,s j}

whenever i, j ∈ I, is such that ⋂
i∈I

(Cd(xi,ri)∩Cd−1(xi,si)) 6= /0.

For an example of a q-spherically complete ultra-quasi-metric space, the reader is advised to

check [8, Example 2].

Proposition 3.1. (Compare [8, Proposition 3]) Each q-spherically complete T0-ultra-quasi-

metric space (X ,d) is bicomplete.

4. Main results

We recall the following interesting results respectively due to Chatterja in [3] and to Shukla

in [4].

Theorem 4.a. (Compare [3]) A C-contraction on a complete metric space has a unique fixed

point.

Theorem 4.b.(Compare [4]) An S-contraction on a complete metric space has a unique fixed

point.

The following results generalize the above theorems to the setting of a bicomplete di-metric

space.

Definition 4.1. Let (X ,d) be a quasi-pseudometric space. A map T : X → X is called a C-

pseudocontraction if there exists 0 ≤ k < 1
2 such that for all x,y ∈ X , the following inequality

holds:

d(T x,Ty)≤ k[d(T x,x)+d(y,Ty)].

Definition 4.2. Let (X ,d) be a quasi-pseudometric space. A map T : X → X is called an S-

pseudocontraction if there exists 0 ≤ k < 1
3 such that for all x,y ∈ X , the following inequality
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holds:

d(T x,Ty)≤ k[d(T x,x)+d(y,Ty)+d(x,y)].

Theorem 4.1. Let (X ,d) be a bicomplete di-metric space and let T : X→X be a C-pseudocontraction.

Then T has a unique fixed point.

Proof. Since T : X → X is a C-pseudocontraction, then there exists 0 ≤ k < 1
2 such that for all

x,y ∈ X , the following inequality holds:

d(T x,Ty)≤ k[d(T x,x)+d(y,Ty)].

We shall first show that T : (X ,ds)→ (X ,ds) is a C-contraction.

Since for any x,y ∈ X , we have

d−1(T x,Ty) = d(Ty,T x)≤ k[d(Ty,y)+d(x,T x)]≤ k[d−1(y,Ty)+d−1(T x,x)],

i.e

d−1(T x,Ty)≤ k[d−1(T x,x)+d−1(y,Ty)],

and we see that T : (X ,d−1)→ (X ,d−1) is a C-pseudocontraction.

Therefore

d(T x,Ty)≤ k[d(T x,x)+d(y,Ty)]≤ k[ds(x,T x)+ds(y,Ty)],

and

d−1(T x,Ty)≤ k[d−1(y,Ty)+d−1(T x,x)]≤ k[ds(x,T x)+ds(y,Ty)],

for all x,y ∈ X . Hence

ds(T x,Ty)≤ k[ds(x,T x)+ds(y,Ty)],

for all x,y ∈ X and so, T : (X ,ds)→ (X ,ds) is a C-contraction.

By assumption, (X ,d) is bicomplete, hence (X ,ds) is complete. Therefore, by Theorem 4.a.,

T has a unique fixed point. This completes the proof.

Corollary 4.2. Let (X ,d) be a T0-Isbell-complete quasi-pseudometric space and T : X → X be

a C-pseudocontraction. Then T has a unique fixed point.
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Proof. The proof follows from Proposition 2.1.

Corollary 4.3. Any C-pseudocontraction on a q-spherically complete T0-ultra-quasi-metric

space has a unique fixed point.

Proof. The proof follows from Proposition 3.1.

Theorem 4.4. Let (X ,d) be a bicomplete di-metric space and T : X→X be an S-pseudocontraction.

Then T has a unique fixed point.

Proof. As in the previous proof, it is enough to prove that T : (X ,ds) → (X ,ds) is an S-

contraction.

Since T : X → X is an S-pseudocontraction, then there exists 0 ≤ k < 1
3 such that for all

x,y ∈ X , the following inequality holds:

d(T x,Ty)≤ k[d(T x,x)+d(y,Ty)+d(x,y)].

We shall first show that T : (X ,ds)→ (X ,ds) is a C-contraction. Since for any x,y ∈ X , we have

d−1(T x,Ty) = d(Ty,T x)≤ k[d(Ty,y)+d(x,T x)+d(y,x)]

≤ k[d−1(y,Ty)+d−1(T x,x)+d−1(x,y)],

i.e

d−1(T x,Ty)≤ k[d−1(T x,x)+d−1(y,Ty)+d−1(x,y)],

and we see that T : (X ,d−1)→ (X ,d−1) is a C-pseudocontraction.

Therefore

d(T x,Ty)≤ k[d(T x,x)+d(y,Ty)+d(x,y)]≤ k[ds(x,T x)+ds(y,Ty)+ds(x,y)],

and

d−1(T x,Ty)≤ k[d−1(y,Ty)+d−1(T x,x)+d−1(x,y)]≤ k[ds(x,T x)+ds(y,Ty)+ds(x,y)],

for all x,y ∈ X . Hence

ds(T x,Ty)≤ k[ds(x,T x)+ds(y,Ty)+ds(x,y)],
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for all x,y ∈ X and so, T : (X ,ds)→ (X ,ds) is an S-contraction. By assumption, (X ,d) is

bicomplete, hence (X ,ds) is complete. Therefore, by Theorem 4.b., T has a unique fixed point.

This completes the proof.

Corollary 3.5. Let (X ,d) be a T0-Isbell-complete quasi-pseudometric space and T : X → X be

an S-pseudocontraction. Then T has a unique fixed point.

Corollary 4.6. Any S-pseudocontraction on a q-spherically complete T0-ultra-quasi-metric

space has a unique fixed point.
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