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Abstract. In this paper, we define (ε,k)−uniformly locally contractive mappings and η-chainable concept and

prove a fixed point theorem for these concepts in a complete modular metric spaces.
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1. Introduction

The beginning of fixed point theory in metric spaces is related to Banach Contraction Prin-

ciple, published in 1922 [5], which in particular situation was already obtained by Liouville,

Picard and Goursat. Since its simplicity and usefullness, it has become a very popular tool in

solving existence problems in many branches of mathematical analiysis. Following the Banach

Contraction Principle many authors introduced various concepts of locally contraction map-

pings, or of weakly contraction mappings. In 1961, Edelstein [13] defined (ε,λ )-uniformly
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locally contractive mappings and proved a fixed point theorem in a complete metric ε-chainable

spaces.

The notion of modular space was introduced by Nakano [17] and was intensively developed

by Koshi, Shimogaki, Yamamuro (see [14, 19]) and others. A lot of mathematicians are in-

terested fixed point of modular space. In 2008, Chistyakov introduced the notion of modular

metric space generated by F-modular and developed the theory of this space [8], on the same

idea was defined the notion of a modular on an arbitrary set and developed the theory of metric

space generated by modular such that called the modular metric spaces in 2010 [9]. Afrah A.

N. Abdou [1] studied and proved some new fixed points theorems for pointwise and asymptotic

pointwise contraction mappings in modular metric spaces. Azadifer et. al. [2] introduced the

notion of modular G-metric spaces and proved some fixed point theorems of contractive and

Azadifer et. al. [4] proved the existence and uniqueness of a common fixed point of compatible

mappings of integral type in this space. Recently, many authors studied on different fixed point

results for modular metric spaces; see [3, 6, 7, 12, 10, 16].

In this article, we study and prove some fixed point theorems for extensions and generaliza-

tions of contraction mappings in modular metric spaces.

2. Preliminaries

In this section, we will give some basic concepts and facts in modular metric spaces.

Definition 2.1. Let X be a vector space over R (or C). A functional ρ : X → [0,∞] is called a

modular if for arbitrary x and y, elements of X satisfies the following three conditions:

(A1) ρ(x) = 0 iff x = 0;

(A2) ρ(αx) = ρ(x) for all scalar α with |α|= 1;

(A3) ρ (αx+βy)≤ ρ (x)+ρ (y), whenever α, β ≥ 0 and α +β = 1.

Let X be nonempty set, λ ∈ (0,∞) and due to the disparity of the arguments, function w :

(0,∞)×X×X → [0,∞] will be written as wλ (x,y) = w(λ ,x,y) for all λ > 0 and x,y ∈ X .

Definition 2.2. [9] Let X be a nonempty set, a function w : (0,∞)×X×X → [0,∞] is said to be

a metric modular on X if satisfying, for all x,y,z ∈ X the following condition holds:
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(i) wλ (x,y) = 0 for all λ > 0⇔ x = y;

(ii) wλ (x,y) = wλ (y,x) for all λ > 0;

(iii) wλ+µ (x,y) ≤ wλ (x,z) +wµ (z,y) for all λ ,µ > 0.

If instead of (i), we have only the condition

(i) wλ (x,x) = 0 for all λ > 0, then w is said to be a (metric) pseudomodular on X .

Definition 2.3 [16] Let Xw be a modular metric space. Then following definitions exist:

(1) The sequence (xn)n∈N in Xw is said to be convergent to x ∈ Xw if wλ (xn,x)→ 0, as

n→ ∞ for all λ > 0.

(2) The sequence (xn)n∈N in Xw is said to be Cauchy if wλ (xm,xn)→ 0, as m,n→ ∞ for all

λ > 0.

(3) A subset C of Xw is said to be closed if the limit of a convergent sequence of C always

belong to C.

(4) A subset C of Xw is said to be complate if any Cauchy sequence in C is a convergent

sequence and its limit is in C.

(5) A subset C of Xw is said to be bounded if for all λ > 0,

δw (C) = sup{wλ (x,y) ; x,y ∈C}< ∞.

3. Main results

In this section, we will give an extension and a generalization of Banach contraction mapping

in modular metric space.

Definition 3.1. Let w be a metric modular on X and Xw be a modular metric space induced by

w and T : Xw → Xw is an arbitrary mapping. A mapping T is called a contraction if for each

x,y ∈ Xw and for all λ > 0 there exists 0 < k < 1 such that

(3.1) wλ (T x,Ty)≤ kwλ (x,y) .
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Definition 3.2. A mapping T of Xw into itself is said to be locally contractive if for every x∈ Xw

there exist ε and k (ε > o, 0≤ k < 1), which may depend on x, such that:

(3.2) p,q ∈ S (x,ε) = {y : wλ (x,y)< ε} .

T is said to be (ε,k)−uniformly locally contractive if it is locally contractive and both ε and

k do not depend on x.

Definition 3.3. (Extended Contraction principle) A modular metric space Xw is said to be η-

chainable if for every a, b ∈ Xw there exists an η-chain, that is a finite set of points a =

x0, x1, ..., xn = b (n may depend on both a and b) such that wλ (xi−1,xi)< η .

Theorem 3.1. Let w be a metric modular on X and Xw be a complete modular metric

ε−chainable space, T a mapping of Xw into itself which is (ε,k)−uniformly locally contractive,

then there exists a uniuqe x ∈ Xw such that T x = x.

Proof. Let x be an arbitrary pointof Xw. Consider the ε−chain:

x = x0 , x1 , ..., xn = T x; by the triangle inequality

wλ (x,T x)≤
n

∑
i=1

w λ

n
(xi−1, xi)< n · ε.

Hence, denoting T (T mx) = T m+1x, (m = 1,2, ...) we have

wλ (T xi−1, T xi)≤ kwλ (xi−1, xi)< k · ε.

By induction, we find that

(3.3) wλ (T
mxi−1, T mxi)< k ·wλ

(
T m−1xi−1, T m−1xi

)
< ... < kmwλ (xi−1, xi)< km

ε.

By the last inequality we obtain

wλ

(
T mx,T m+1x

)
≤

m

∑
i=1

w λ

m
(T mxi−1, T mxi)< km ·n · ε.
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It follows that the sequence of iterates (T mx) is a Cauchy sequence. Indeed if j and t ( j < t)

are positive integers,

wλ

(
T jx,T tx

)
≤

t−1

∑
i= j

w λ

t− j

(
T ix, T i+1x

)
< n · ε ·

(
k j + · · ·+ kt−1)

≤ n · ε k j

1− t
→ 0, j→ ∞.

By the completeness of Xw there exists lim
i→∞

T ix. From the contiunity of T it follows that

T
(

lim
i→∞

T ix.
)
= lim

i→∞
T i+1x = lim

i→∞
T ix.

Thus lim
i→∞

T ix is a fixed point of T .

Now, we are in a position to show u = lim
i→∞

T ix is unique. Suppose that there exists v 6= u with

the property v = T v and let u = x0, x1, ...,xk = v be an ε−chain. Using (3.3) we obtain

wλ (Tu,T v)≤
r

∑
i=1

w λ

r

(
T ixi−1, T ixi

)
< kirε , lim

i→∞
kirε = 0.

In view of (i), we find the contradiction. Hence u = v and this completes the proof.

Remark 3.4 The theorem above does not guarantee the existence of fixed point. Indeed let

T : Xw → Xw, T x = x + 1
x with the modular metric wλ (x,y) = max{|xi− yi|} for Xw = Rn,

where x, y ∈ Rn then we obtain

wλ (T x,Ty) = max
1≤i≤n

{∣∣∣∣xi +
1
xi
− yi−

1
yi

∣∣∣∣}
= max

1≤i≤n

{∣∣∣∣(xiyi)−
(

xi− yi

xi · yi

)∣∣∣∣}
= max

1≤i≤n

{
|xi− yi| ·

∣∣∣∣1− 1
xi · yi

∣∣∣∣}
≤ max

1≤i≤n
{|xi− yi|}︸ ︷︷ ︸

wλ (x,y)

· max
1≤i≤n

{∣∣∣∣1− 1
xi · yi

∣∣∣∣}︸ ︷︷ ︸ ,

k(x,y)

k (x,y)< 1.

But there is not any x ∈ Xw such that T x = x.

From this reason we will give a new generalization of contraction mappings in modular metric

spaces which is given by Rakotch for metric spaces in 1962; see [18] and the references therein.
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Definition 3.5 If there exists a mapping k : (0,∞)→ [0,1), sup{k (r) : 0 < p≤ r ≤ q}< 1 and

(3.4) wλ (T x,Ty)≤ k [wλ (x,y)] ·wλ (x,y) .

T : Xw→ Xw is said to be a weak contraction mapping.

Theorem 3.2 Let w be a metric modular on X and Xw be a complete modular metric space. Let

T : Xw→ Xw be a weak contraction mapping. Then, T has a unique fixed point in Xw.

Proof. Let x ∈ Xw be arbitrary. Consider (T nx) iteration sequence. If wλ

(
T nx,T n+1x

)
= 0 for

some n∈N, then T T nx=T nx. Hence T nx is a fixed point of T . Now consider wλ

(
T nx,T n+1x

)
>

0 for all n ∈ N. Then since k (r)< r, T is contraction for r > 0 by (3.4) . Hence

wλ

(
T nx,T n+1x

)
= wλ

(
T T n−1x,T T nx

)
≤ k

[
wλ

(
T n−1x,T nx

)]
·wλ

(
T n−1x,T nx

)
< wλ

(
T n−1x,T nx

)
.

Hence the sequence
{

wλ

(
T nx,T n+1x

)}
is monotone decreasing and it is bounded below with

0. Hence it is convergent. Let lim
n→∞

wλ

(
T nx,T n+1x

)
= a. Then we obtain

a < wλ

(
T nx,T n+1x

)
≤ wλ (x,T x) .

Now we show that a = 0. Suppose that a > 0. k = sup{k (r) : 0 < a≤ r ≤ wλ (x,T x)}. Then

k
(
wλ

(
T nx,T n+1x

))
≤ k

0 < a < wλ

(
T nx,T n+1x

)
≤ k
(
wλ

(
T n−1x,T nx

))
≤ ...≤ knwλ (x,T x) ,

lim
n→∞

knwλ (x,T x) = 0. But it is impossible. Thus a = 0. Now we will show (T nx) is a Cauchy

sequence. Let ε > 0 and 0 < k (ε) = sup
{

k (r) : ε

2 ≤ r ≤ ε
}

. Since lim
n→∞

wλ

(
T nx,T n+1x

)
= 0

and 1− k (ε)> 0 there exists n0 ∈ N such that for all n≥ n0

(3.5) w λ

2

(
T nx,T n+1x

)
<

1− k (ε)
2

· ε

n≥ n0 be a positive integer. We will show for all m > n≥ n0

(3.6) wλ (T
nx,T mx)< ε
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with induction method. For m = n+ 1, (3.6) is satisfied from (3.5) . Suppose that (3.5) is

satisfied for m > n+1. If wλ (T nx,T mx)≥ ε

2 , then by (3.4) we get

w λ

2
(T T nx,T T mx)

≤ k
[
w λ

2
(T nx,T mx)

]
·wλ

2
(T nx,T mx)< k (ε) · ε.

Using triangle inequality and (3.5), we find that

wλ

(
T nx,T m+1x

)
≤ w λ

2
(T nx,T T nx)+w λ

2

(
T T nx,T m+1x

)
<

1− k (ε)
2

· ε + k (ε) · ε < ε.

If wλ (T nx,T mx)≤ ε

2 , then by triangle inequality and (3.5) we get

wλ

(
T nx,T m+1x

)
≤ wλ

2
(T nx,T mx)+w λ

2

(
T mx,T m+1x

)
<

ε

2
+

1− k (ε)
2

· ε < ε.

Thus we get wλ

(
T nx,T m+1x

)
< ε. By (3.6), (T nx) is a Cauchy sequence. Since Xw is complete

there exists u ∈ Xw such that lim
n→∞

T nx = u. By the contuinity of T we get

Tu = T
(

lim
n→∞

T nx
)
= lim

n→∞
T n+1x = lim

n→∞
T nx = u.

Thus u is a fixed point of T . Now we show the uniqueness of u. Suppose that v is another fixed

point of T such that u 6= v. Then wλ (u,v) 6= 0, thus we get

0 < wλ (u,v) = wλ (Tu,T v)≤ k [wλ (u,v)] ·wλ (u,v)

(1− k [wλ (u,v)]) ·wλ (u,v)≤ 0

wλ (u,v) = 0.

From (i), we see that it is impossible. Thus u = v. This completes the proof.
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