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Abstract. In this article, the problem of finding a common element of the set of solutions of a variational problem

and the set of fixed points of nonexpansive mappings. Our results improve and extend the recent ones announced

by many others.
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1. Introduction

Optimization theory has emerged as a powerful and effective tool for studying a wide class

of problems which arise in economics, finance, image reconstruction, ecology, transportation,

network, elasticity and optimization; see [1-25] and the references therein. The computation of

solutions of variational inequalities (fixed points of nonexpansive mappings) is important in the

study of many real world problems. The aim of this paper is to investigate a solution problem
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of a family of nonexpansive mappings and relaxed cocoercive mappings. In Section 2, strong

convergence theorems of common solutions are established in a Hilbert space.

2. Preliminaries

Let H be a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,

respectively. Let C be a closed convex subset of H and let A : C→ H be a nonlinear map. Let

PC be the projection of H onto the convex subset C. The classical variational inequality which

denoted by V I(C,A) is to find u ∈ C such that 〈Au,v− u〉 ≥ 0, v ∈ C. One can see that the

variational inequality is equivalent to a fixed point problem. The function u ∈ C is a solution

of the variational inequality if and only if u ∈C satisfies the relation u = PC(u−λAu), where

λ > 0 is a constant.

Recall that A is said to be inverse-strongly monotone if there exists a constants u > 0 such

that

〈Ax−Ay,x− y〉 ≥ u‖Ax−Ay‖2, ∀x,y ∈C.

A mapping S : C→C is said to be nonexpansive if ‖Sx− Sy‖ ≤ ‖x− y‖ for all x,y ∈C. Next,

we denote by F(S) the set of fixed points of S. A mapping f : C→C is said to be a contraction

if there exists a coefficient α (0 < α < 1) such that

‖ f (x)− f (y)‖ ≤ α‖x− y‖,

for ∀x,y ∈C. A linear bounded operator B is strongly positive if there exists a constant γ̄ > 0

with the property 〈Bx,x〉 ≥ γ̄‖x‖2, x ∈H. A set-valued mapping T : H→ 2H is called monotone

if for all x,y∈H, f ∈ T x and g∈ Ty imply 〈x−y, f−g〉≥ 0. A monotone mapping T : H→ 2H is

maximal if the graph of G(T ) of T is not properly contained in the graph of any other monotone

mapping. It is known that a monotone mapping T is maximal if and only if for (x, f ) ∈ H×H,

〈x−y, f −g〉 ≥ 0 for every (y,g) ∈G(T ) implies f ∈ T x. Let A be a monotone map of C into H

and let NCv be the normal cone to C at v ∈C, i.e., NCv = {w ∈ H : 〈v−u,w〉 ≥ 0, ∀u ∈C} and

define

T v =


Av+NCv, v ∈C

/0, v /∈C.
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Then T is maximal monotone and 0 ∈ T v if and only if v ∈V I(C,A); see [1] and the references

therein.

Recently iterative methods for nonexpansive mappings have been applied to solve convex

minimization problems. A typical problem is to minimize a quadratic function over the set of

the fixed points a nonexpansive mapping on a real Hilbert space H:

min
x∈C

1
2
〈Bx,x〉−〈x,b〉, (2.1)

where B is a linear bounded operator, C is the fixed point set of a nonexpansive mapping S and b

is a given point in H. In [11], it is proved that the sequence {xn} defined by the iterative method

below, with the initial guess x0 ∈ H chosen arbitrarily,

xn+1 = (I−αnB)Sxn +αnb, n≥ 0,

converges strongly to the unique solution of the minimization problem (2.1) provided the se-

quence {αn} satisfies certain conditions. More recently, Marino and Xu [12] introduced a new

iterative scheme by the viscosity approximation method:

xn+1 = (I−αnB)Sxn +αnγ f (xn), n≥ 0.

They proved the sequence {xn} generated by above iterative scheme converges strongly to the

unique solution of the variational inequality

〈(B− γ f )x∗,x− x∗〉 ≥ 0, x ∈C,

which is the optimality condition for the minimization problem minx∈C
1
2〈Bx,x〉− h(x), where

C is the fixed point set of a nonexpansive mapping S, h is a potential function for δ f (i.e.,

h′(x) = δ f (x) for x ∈ H.)

Concerning a family of nonexpansive mappings has been considered by many authors. The

well-known convex feasibility problem reduces to finding a point in the intersection of the fixed

point sets of a family of nonexpansive mappings. The problem of finding an optimal point that

minimizes a given cost function over common set of fixed points of a family of nonexpansive

mappings is of wide interdisciplinary interest and practical importance. A simple algorithmic

solution to the problem of minimizing a quadratic function over common set of fixed points
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of a family of nonexpansive mappings is of extreme value in many applications including set

theoretic signal estimation.

Recently Yao et al. [13] considered a general iterative algorithm for an infinite family of non-

expansive mapping in the framework of Hilbert spaces. To be more precisely, they introduced

the following general iterative algorithm.

xn+1 = λnγ f (xn)+βnxn +((1−βn)I−λnA)Wnx,

where f is a contraction on H, A is a stronglyy positive bounded linear operator, Wn are nonex-

pansive mappings which are generated by an finite family of nonexpansive mapping T1,T2, . . ..

To be more precisely,

Un,n+1 = I,

Un,n = γnTnUn,n+1 +(1− γn)I,

...

Un,k = γkTkUn,k+1 +(1− γk)I,

un,k−1 = γk−1Tk−1Un,k +(1− γk−1)I,

...

Un,2 = γ2T2Uu,3 +(1− γ2)I,

Wn =Un,1 = γ1T1Un,2 +(1− γ1)I,

(2.2)

where {γ1},{γ2}, . . . are real numbers such that 0 ≤ γ ≤ 1, T1,T2, . . . be an infinite family of

mappings of C into itself. Nonexpansivity of each Ti ensures the nonexpansivity of Wn.

Concerning Wn we have the following lemmas which are important to prove our main results.

Lemma 2.1 [14] Let C be a nonempty closed convex subset of a strictly convex Banach space

E. Let T1,T2, . . . be nonexpansive mappings of C into itself such that ∩∞
n=1F(Tn) is nonempty,

and let γ1,γ2, . . . be real numbers such that 0 < γn ≤ η < 1 for any n≥ 1. Then, for every x ∈C

and k ∈ N, the limit limn→∞Un,kx exists.
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Using Lemma 2.1, one can define the mapping W of C into itself as follows. Wx= limn→∞Wnx=

limn→∞Un,1x, for every x ∈C. Such a W is called the W -mapping generated by T1,T2, . . . and

γ1,γ2, . . .. Throughout this paper, we will assume that 0 < γn ≤ η < 1 for all n≥ 1.

Lemma 2.2 [14] Let C be a nonempty closed convex subset of a strictly convex Banach space E.

Let T1,T2, . . . be nonexpansive mappings of C into itself such that ∩∞
n=1F(Tn) is nonempty, and

let γ1,γ2, . . . be real numbers such that 0 < γn≤ η < 1 for any n≥ 1. Then, F(W ) =∩∞
n=1F(Tn).

In this paper, we introduce a composite iterative process as following:
x1 ∈C

yn = PC
(
βnγ f (xn)+(I−βnB)WnPC(I− rnA)xn

)
,

xn+1 = PC
(
αnxn +(1−αn)yn + en

)
, n≥ 1,

(2.3)

where A is an inverse-strongly monotone mapping, B is a strongly positive linear bounded

operator, f is a contraction on C and Wn is a mapping generated by (2.2).

We prove the sequence {xn} generated by the above iterative scheme converges strongly to a

common element of the set of common fixed points of an infinite nonexpansive mappings and

the set of solutions of the variational inequalities for an inverse-strongly mapping, which solves

another variation inequality 〈γ f (q)−Bq,q− p〉 ≤ 0, p ∈ ∩∞
i=1F(Ti)∩V I(C,A) and is also

the optimality condition for the minimization problem minx∈C
1
2〈Bx,x〉− h(x), where C is the

intersection of the common fixed points set of a nonexpansive mappings and the set of solutions

of the variational inequalities for relaxed (γ,r)-cocoercive maps, h is a potential function for

δ f (i.e., h′(x) = δ f (x) for x ∈ H.)

In order to prove our main results, we need the following lemmas.

Lemma 2.3 [11] Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤ (1− γn)αn +δn,

where γn is a sequence in (0,1) and {δn} is a sequence such that

(i) ∑
∞
n=1 γn = ∞;

(ii) limsupn→∞ δn/γn ≤ 0 or ∑
∞
n=1 |δn|< ∞.

Then limn→∞ αn = 0.
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Lemma 2.4 [12] Assume B is a strongly positive linear bounded operator on a Hilbert space H

with coefficient γ̄ > 0 and 0 < ρ ≤ ‖B‖−1. Then

‖I−ρB‖ ≤ 1−ργ̄.

Lemma 2.5 [15] Let {xn} and {yn} be bounded sequences in a Banach space X and let βn be a

sequence in [0,1] with

0 < liminf
n→∞

βn ≤ limsup
n→∞

βn < 1.

Suppose xn+1 = (1−βn)yn +βnxn for all integers n≥ 0 and

limsup
n→∞

(‖yn+1− yn‖−‖xn+1− xn‖)≤ 0.

Then limn→∞ ‖yn− xn‖= 0.

Lemma 2.6. In a real Hilbert space H, there holds the the following inequality

‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉,

for all x,y ∈ H.

3. Main results

Theorem 3.1. Let H be a real Hilbert space, let C be a nonempty closed convex subset of H and

let A : C→H be an u-inverse-strongly monotone mapping. Let f : C→C be a contraction with

the coefficient α (0 < α < 1) and {Ti}∞
i=1 be an infinite nonexpansive mappings from C into

itself generated by (2.2) such that F =
⋂

∞
i=1 F(Ti)∩V I(C,A) 6= /0. Let B be a strongly positive

linear bounded self-adjoint operator of C into itself with coefficient γ̄ > 0 such that ‖B‖ ≤ 1.

Assume that 0 < γ < γ̄/α . Assume that x1 ∈C and {xn} is generated by
x1 ∈C

yn = PC
(
βnγ f (xn)+(I−βnB)WnPC(I− rnA)xn

)
,

xn+1 = PC
(
αnxn +(1−α)yn + en

)
, n≥ 1,
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where en is a bounded sequence in H, {αn} and {βn} are sequences in (0,1). If {αn}, {βn} and

{rn} are chosen such that

(a) 0 < liminfn→∞ αn ≤ limsupn→∞ αn < 1;

(b) limn→∞ βn = 0, ∑
∞
n=1 βn = ∞;

(c) limn→∞ |rn+1− rn|= 0, ∑
∞
n=1 ‖en‖< ∞;

(d) {rn} ⊂ [a,b] f or some a,b with 0 < a < b < 2u.

Then {xn} converges strongly to q ∈ F, where q = PF(γ f +(I−B))(q), which solves the varia-

tion inequality 〈γ f (q)−Bq, p−q〉 ≤ 0, ∀p ∈ F.

Proof. From the definition of inverse-strongly monotone mappings, we find that I − rnA is

nonexpansive. Since the condition (a), we may assume, with no loss of generality, that βn <

‖B‖−1 for all n. From Lemma 2.4, we know that if 0 < ρ ≤ ‖B‖−1, then ‖I−ρB‖ ≤ 1−ργ̄ .

Letting p ∈ F , we have

‖yn− p‖ ≤ βn‖γ f (xn)−Bp‖+(1−βnγ̄)‖WnPC(I− rnA)xn− p‖

≤ βnγ‖ f (xn)− f (p)‖+βn‖γ f (p)−Bp‖+(1−βnγ̄)‖xn− p‖

= [1−βn(γ̄− γα)]‖xn− p‖+βn‖γ f (p)−Bp‖.

On the other hand, we have

‖xn+1− p‖ ≤ αn‖xn− p‖+(1−αn)‖yn− p‖+‖en‖

≤ αn‖xn− p‖+(1−αn)[(1−βn(γ̄− γα))‖xn− p‖

+βn‖γ f (p)−Bp‖]+‖en‖.

By simple inductions, we have that the sequence {xn} is bounded. Putting ρn = PC(I− rnA)xn,

we have

‖ρn−ρn+1‖ ≤‖(I− rnA)xn− (I− rn+1A)xn+1‖

=‖(xn− rnAxn)− (xn+1− rnAxn+1)+(rn+1− rn)Axn+1‖

≤‖xn− xn+1‖+ |rn+1− rn|M1,

(3.1)
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where M1 is an appropriate constant. It follows that

‖yn− yn+1‖ ≤ (1−βn+1γ̄)(‖ρn+1−ρn‖+‖Wn+1ρn−Wnρn‖)

+ |βn+1−βn|M2 + γβn+1α‖xn+1− xn‖,
(3.2)

where M2 is an appropriate constant. Since both Ti and Un,i are nonexpansive, we find from

(2.2) that

‖Wn+1ρn−Wnρn‖ ≤ γ1‖Un+1,2ρ−Un,2ρn‖

= γ1‖γ2T2Uu+1,3ρn− γ2T2Un,3ρn‖

≤ γ1γ2‖Uu+1,3ρn−Un,3ρn‖

≤ · · ·

≤ γ1γ2 · · ·γn‖Un+1,n+1ρn−Un,n+1ρn‖

≤M3

n

∏
i=1

γi,

(3.3)

where M3 ≥ 0 is an appropriate. Therefore, we have

‖yn− yn+1‖ ≤ [1−βn+1(γ̄−αγ)]‖xn+1− xn‖

+M4(|rn+1− rn|+ |βn+1−βn|+
n

∏
i=1

γi),

where M4 is an appropriate appropriate constant. It follows that

limsup
n→∞

{‖yn+1− yn‖− |xn+1− xn‖} ≤ 0. (3.4)

Using Lemma 2.6, we obtain that

lim
n→∞
‖yn− xn‖= 0. (3.5)

It follows that

lim
n→∞
‖xn+1− xn‖= 0 (3.6)

and

lim
n→∞
‖Wnρn− yn‖= 0. (3.7)
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For p ∈ F , we have

‖ρn− p‖2

= ‖PC(I− rnA)xn−PC(I− rnA)p‖2

≤ ‖(xn− p)− rn(Axn−Ap)‖2

= ‖xn− p‖2−2rn〈xn− p,Axn−Ap〉+ r2
n‖Axn−Ap‖2

≤ ‖xn− p‖2−2rn[−γ‖Axn−Ap‖2 + r‖xn− p‖2]+ r2
n‖Axn−Ap‖2

≤ ‖xn− p‖2 +2rnγ‖Axn−Ap‖2−2rnr‖xn− p‖2 + r2
n‖Axn−Ap‖2

≤ ‖xn− p‖2 +(2rnγ + r2
n−

2rnr
µ2 )‖Axn−Ap‖2.

(3.8)

Since

‖yn− p‖2 = ‖βn(γ f (xn)−Bp)+(I−βnB)(Wnρn− p)‖2

≤ (βn‖γ f (xn)−Bp‖+(1−βnγ̄)‖ρn− p‖)2

≤ βn‖γ f (xn)−Bp‖2 +‖ρn− p‖2 +2βn‖γ f (xn)−Bp‖‖ρn− p‖,

(3.9)

we see that

‖xn+1− p‖2 ≤ 2‖αn(xn− p)+(1−αn)(yn− p)‖2 +2‖en‖2

≤ 2αn‖xn− p‖2 +2(1−αn)‖yn− p‖2 +2‖en‖2

≤ 2αn‖xn− p‖2 +2(1−αn)[βn‖γ f (xn)−Bp‖2 +2‖ρn− p‖2

+4βn‖γ f (xn)−Bp‖‖ρn− p‖]+2‖en‖2.

(3.10)

Substituting (3.8) into (3.10), we have

‖xn+1− p‖2

≤ ‖xn− p‖2 +βn‖γ f (xn)−Bp‖2 +(2rnγ + r2
n−

2rnr
µ2 )‖Axn−Ap‖2

+2βn‖γ f (xn)−Bp‖‖ρn− p‖+‖en‖2.

(3.11)

This obtains that

lim
n→∞
‖Axn−Ap‖= 0. (3.12)
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On the other hand, we have

‖ρn− p‖2 =‖PC(I− rnA)xn−PC(I− rnA)p‖2

≤〈(I− rnA)xn− (I− rnA)p,ρn− p〉

=
1
2
{‖(I− rnA)xn− (I− rnA)p‖2 +‖ρn− p‖2

−‖(I− rnA)xn− (I− rnA)p− (ρn− p)‖2}

≤1
2
{‖xn− p‖2 +‖ρn− p‖2−‖(xn−ρn)− rn(Axn−Ap)‖2}

=
1
2
{‖xn− p‖2 +‖ρn− p‖2−‖xn−ρn‖2− r2

n‖Axn−Ap‖2

+2rn〈xn−ρn,Axn−Ap〉},

which yields that

‖ρn− p‖2 ≤‖xn− p‖2−‖ρn− xn‖2 +2rn‖ρn− xn‖‖Axn−Ap‖. (3.13)

Therefore, we have

(1−αn)‖ρn− xn‖2

≤ ‖xn− p‖2−‖xn+1− p‖2 +βn‖γ f (xn)−Bp‖2 +2rn‖ρn− xn‖‖Axn−Ap‖

+2βn‖γ f (xn)−Bp‖‖ρn− p‖

≤ (‖xn− p‖+‖xn+1− p‖)‖xn− xn+1‖+βn‖γ f (xn)−Bp‖2

+2rn‖ρn− xn‖‖Axn−Ap‖+2βn‖γ f (xn)−Bp‖‖ρn− p‖.

From the conditions (i), (ii), (3.6) and (3.12), we have

lim
n→∞
‖ρn− xn‖= 0. (3.14)

On the other hand, we have ‖ρn−Wnρn‖ ≤ ‖xn−ρn‖+‖xn−yn‖+‖yn−Wnρn‖. Therefore, we

have limn→∞ ‖Wρn−Wnρn‖= 0. Since

‖Wρn−ρn‖ ≤ ‖Wnρn−ρn‖+‖Wnρn−Wρn‖,

we have

lim
n→∞
‖Wρn−ρn‖= 0. (3.15)
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Since PF(γ f +(I−B)) is a contraction, we find that PF(γ f +(I−B)) has a unique fixed point,

say q∈H. That is, q = PF(γ f +(I−B))(q). To show it, we choose a subsequence {xni} of {xn}

such that limsupn→∞〈γ f (q)−Bq,xn−q〉 = limi→∞〈γ f (q)−Bq,xni−q〉. As {xni} is bounded,

we have that there is a subsequence {xni j
} of {xni} converges weakly to p. We may assume

that without loss of generality that xni ⇀ p. Hence we have p ∈ F . Indeed, let us first show that

p ∈V I(C,A). Put

Tw1 =


Aw1 +NCw1, w1 ∈C

/0, w1 /∈C.

Since A is inverse-strongly monotone, we have T is maximal monotone. Let (w1,w2) ∈ G(T ).

Since w2−Aw1 ∈ NCw1 and ρn ∈C, we have 〈w1−ρn,w2−Aw1〉 ≥ 0. On the other hand, from

ρn = PC(I− rnA)xn, we have 〈w1−ρn,ρn− (I− rnA)xn〉 ≥ 0 and hence 〈w1−ρni,w2〉 ≥ 〈w1−

ρni,Aρni−Axni〉− 〈w1−ρni,
ρni−xni

rni
〉, which implies that 〈w1− p,w2〉 ≥ 0. We have p ∈ T−10

and hence p ∈ V I(C,A). Next, let us show p ∈
⋂

∞
i=1 F(Ti). Since Hilbert spaces are Opial’s

spaces, from (3.15), we have

liminf
i→∞

‖ρni− p‖< liminf
i→∞

‖ρni−W p‖

= liminf
i→∞

‖ρni−Wρni +Wnρni−W p‖

≤ liminf
i→∞

‖Wρni−W p‖

≤ liminf
i→∞

‖ρni− p‖,

which derives a contradiction. Thus, we have p ∈ F(W ) =
⋂

∞
i=1 F(Ti). On the other hand, we

have

limsup
n→∞

〈γ f (q)−Bq,xn−q〉= lim
n→∞
〈γ f (q)−Bq,xni−q〉

=〈γ f (q)−Bq, p−q〉 ≤ 0.
(3.16)
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It follows from Lemma 2.5 that

‖yn−q‖2 ≤(1−βnγ̄)2 +βnγα

1−βnγα
‖xn−q‖2 +

2βn

1−αnγα
〈γ f (q)−Bq,yn−q〉

=
(1−2βnγ̄ +βnαγ)

1−βnγα
‖xn−q‖2 +

β 2
n γ̄2

1−βnγα
‖xn−q‖2

+
2βn

1−βnγα
〈γ f (q)−Bq,yn−q〉

≤[1− 2βn(γ̄−αγ)

1−βnγα
]‖xn−q‖2

+
2βn(γ̄−αγ)

1−βnγα
[

1
γ̄−αγ

〈γ f (q)−Bq,yn−q〉+ αnγ̄2

2(γ̄−αγ)
M5],

where M5 is an appropriate constant. On the other hand, we have

‖xn+1− p‖2 ≤ ‖αn(xn− p)+(1−αn)(yn− p)‖2 +‖en‖2

≤ 2αn‖xn− p‖2 +2(1−αn)‖yn− p‖2 +2‖en‖2.

Hence, we have

‖xn+1− p‖2 ≤ [1− (1−αn)
2βn(γ̄−αγ)

1−βnγα
]‖xn−q‖2

+(1−αn)
2βn(γ̄−αγ)

1−βnγα
[

1
γ̄−αγ

〈γ f (q)−Aq,yn−q〉+ βnγ̄2

2(γ̄−αγ)
M5].

Using Lemma 2.3, we find that xn→ q as n→ ∞. This completes the proof.

Corollary 3.2. Let H be a real Hilbert space, let C be a nonempty closed convex subset of H

and let A : C→ H be an u-inverse-strongly monotone mapping. Let f : C→C be a contraction

with the coefficient α (0<α < 1) and {Ti}∞
i=1 be an infinite nonexpansive mappings from C into

itself generated by (2.2) such that F =
⋂

∞
i=1 F(Ti)∩V I(C,A) 6= /0. Let B be a strongly positive

linear bounded self-adjoint operator of C into itself with coefficient γ̄ > 0 such that ‖B‖ ≤ 1.

Assume that 0 < γ < γ̄/α . Assume that x1 ∈C and {xn} is generated by
x1 ∈C

yn = PC
(
βnγ f (xn)+(I−βnB)WnPC(I− rnA)xn

)
,

xn+1 = αnxn +(1−α)yn, n≥ 1,

where , {αn} and {βn} are sequences in (0,1). If {αn}, {βn} and {rn} are chosen such that

(a) 0 < liminfn→∞ αn ≤ limsupn→∞ αn < 1;
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(b) limn→∞ βn = 0, ∑
∞
n=1 βn = ∞;

(c) limn→∞ |rn+1− rn|= 0;

(d) {rn} ⊂ [a,b] f or some a,b with 0 < a < b < 2u.

Then {xn} converges strongly to q ∈ F, where q = PF(γ f +(I−B))(q), which solves the varia-

tion inequality 〈γ f (q)−Bq, p−q〉 ≤ 0, ∀p ∈ F.

Corollary 3.3. Let H be a real Hilbert space, let C be a nonempty closed convex subset of H

and let A : C→ H be an u-inverse-strongly monotone mapping. Let f : C→C be a contraction

with the coefficient α (0 < α < 1) and {Ti}∞
i=1 be an infinite nonexpansive mappings from C

into itself generated by (2.2) such that F =
⋂

∞
i=1 F(Ti)∩V I(C,A) 6= /0. Assume that x1 ∈C and

{xn} is generated by 
x1 ∈C

yn = βn f (xn)+(1−βn)WnPC(I− rnA)xn
)
,

xn+1 = PC
(
αnxn +(1−α)yn + en

)
, n≥ 1,

where en is a bounded sequence in H, {αn} and {βn} are sequences in (0,1). If {αn}, {βn} and

{rn} are chosen such that

(a) 0 < liminfn→∞ αn ≤ limsupn→∞ αn < 1;

(b) limn→∞ βn = 0, ∑
∞
n=1 βn = ∞;

(c) limn→∞ |rn+1− rn|= 0, ∑
∞
n=1 ‖en‖< ∞;

(d) {rn} ⊂ [a,b] f or some a,b with 0 < a < b < 2u.

Then {xn} converges strongly to q∈ F, where q = PF f (q), which solves the variation inequality

〈 f (q)−q, p−q〉 ≤ 0, ∀p ∈ F.
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