
Available online at http://scik.org

Adv. Fixed Point Theory, 4 (2014), No. 2, 280-309

ISSN: 1927-6303

A FIXED POINT APPROACH TO THE STABILITY OF AN ADDITIVE CUBIC
FUNCTIONAL EQUATION IN PARANORMED SPACES

K. RAVI1,∗, J.M. RASSIAS2, R. JAMUNA3

1Department of Mathematics, Sacred Heart College, Tirupattur - 635601, Tamilnadu, India

2Pedagogical Department E.E., Section of Mathematics and Informatics, National and Capodistrain University of

Athens, 4, Agamemnonos str, Aghia Paraskevi, Athens 15342, Greece

3Department of Mathematics, R.M.K. College of Engineering and Technology, R.S.M. Nagar, Puduvoyal,

Gummidipoondi Taluk, Tiruvallur Dist., Tamilnadu, India - 601206

Copyright c© 2014 Ravi, Rassias and Jamuna. This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, using fixed point methods, we prove the generalized Hyers-Ulam stability of the additive

cubic functional equation

f (x+ ky)+ f (x− ky) = k2[ f (x+ y)+ f (x− y)]+2(1− k2) f (x)

for fixed integers k with k 6= 0, ±1 in paranormed spaces.
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A basic question in the theory of functional equations araised as follows: When is it true

that a function, which approximately satisfies a functional equation, must be close to an exact

solution of the equation? If the problem accepts a unique solution, we say the equation is stable.

The first stability problem concerning group homomorphisms is related to a question of Ulam

[30] in 1940.

“Let G be a group and G′ be a metric group with metric d(·, ·). Given ε > 0 does there exists

a δ > 0 such that if a function f : G→G′ satisfies the inequality d( f (xy), f (x) f (y))< δ for all

x,y ∈ G, then there exists homomorphism H : G→ G′ with d( f (x),H(x))< ε for all x ∈ G?”

In 1941, Hyers [11] gave the first affirmative partial answer to the question of Ulam for

Banach spaces. To be more precise, he proved the following celebrated theorem.

Theorem 1.1. [11] Let X ,Y be Banach spaces and let f : X → Y be a mapping satisfying

(1) ‖ f (x+ y)− f (x)− f (y)‖ ≤ ε

for all x,y ∈ X. Then the limit

(2) a(x) = lim
n→∞

f (2nx)
2n

exists for all x ∈ X and a : X → Y is the unique additive mapping satisfying

(3) ‖ f (x)−a(x)‖ ≤ ε

for all x ∈ X.

Aoki [2] generalized Hyers theorem for additive mappings. In 1978, a generalized version of

the theorem of Hyers for approximately linear mappings was given by Rassias [24]. He proved

the following:

Theorem 1.2. [24] Let X be a normed vector space and Y be a Banach space. If a function

f : X → Y satisfies the inequality.

(4) ‖ f (x+ y)− f (x)− f (y)‖ ≤ θ(‖x‖p +‖y‖p) for all x,y ∈ X ,

where θ and p are constants and θ > 0 and 0≤ p < 1, then the limit

(5) T (x) = lim
n→∞

f (2nx)
2n
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exists for all x ∈ X and T : X → Y is the unique additive mapping which satisfies

(6) ‖ f (x)−T (x)‖ ≤ 2θ

2−2p‖x‖
p

for all x ∈ X. Moreover, if f (tx) is continuous in t for each x ∈ X, then T is linear.

The theorem of Rassias was later extended to all p 6= 1 and generalized by many mathemati-

cians; see, e.g., [9, 10, 12, 17]. This concept is known as the Hyers-Ulam-Rassias stability.

In 1982, Rassias [25] provided a stability result from the innovative approach of Rassias

[24] for the unbounded Cauchy difference, in which he replaced the factor (‖x‖p + ‖y‖p) by

(‖x‖p‖y‖q) for p,q ∈ R with p+q 6= 1.

In 1994, a generalization of Rassias’ theorem was obtained by Gavruta [9], who replaced

θ(‖x‖p +‖y‖p) and θ(‖x‖p‖y‖p) by a general control function φ(x,y). Recently Rassias [27]

generalized the Hyers stability by replacing the bound θ(||x||p||y||q) in [9], by a mixed one

involving the product and sum of powers of norms, that is, θ{||x||p||y||p +(||x||2p + ||y||2p)}.

The functional equation

(7) f (x+ y)+ f (x− y) = 2 f (x)+2 f (y)

is said to be a quadratic functional equation because the quadratic function f (x) = ax2 is a solu-

tion of the functional equation (7). In fact every solution of the quadratic functional equation is

said to be a quadratic mapping. A quadratic functional equation was used to characterize inner

product spaces; see [1, 14].

In [13], Jun and Kim considered the following cubic functional equation

(8) f (2x+ y)+ f (2x− y) = 2 f (x+ y)+2 f (x− y)+12 f (x).

It is easy to show f (x) = x3 satisfies the function equation (8) and therefore every solution of

the cubic functional equation is said to be a cubic mapping.

In [18], Lee et al. considered the following quartic functional equation

(9) f (2x+ y)+ f (2x− y) = 4 f (x+ y)+4 f (x− y)+24 f (x)−6 f (y).

It is easy to show that the function f (x) = x4 satisfies the functional equation (9), and every

solution of the quartic functional equation is said to be a quartic mapping.
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The functional equation

f (x+2y)+ f (x−2y) = 4 f (x+ y)+4 f (x− y)−6 f (x)+ f (2y)+ f (−2y)

−4 f (y)−4 f (−y)(10)

is called additive-quadratic-cubic-quartic functional equation (briefly, AQCQ - functional equa-

tion). The generalized Hyers-Ulam stability of the AQCQ functional equation was proved by

Park in Non-Archimedean spaces [21] and Paranormed spaces [22].

In [26], Ravi et al. investigated the AQCQ - functional equation

f (x+ ky)+ f (x− ky) = k2 f (x+ y)+ k2 f (x− y)+2(1− k2) f (x)

+
(k4− k2)

12
[ f (2y)+ f (−2y)−4 f (y)−4 f (−y)],(11)

which is a generalized form of AQCQ - functional equation (10) and obtained its general so-

lution and generalized Hyers-Ulam stability for a fixed integer k with k 6= 0, ±1 in Banach

spaces.

In this paper, using the fixed point method, we prove the generalized Hyers-Ulam stability of

the additive cubic functional equation

f (x+ ky)+ f (x− ky) = k2[ f (x+ y)+ f (x− y)]+2(1− k2) f (x),(12)

which is obtained from (11) when f (2y)+ f (−2y)− 4 f (y)− 4 f (−y) = 0, that is, when f is

odd, in Paranormed spaces. Before giving the main results, we present here some basic facts

concerning Paranormed spaces and some preliminary results.

The concept of statistical convergence for sequence of real numbers was introduced by Fast

[7] and Steinhaus [29] independently, and since then several generalizations and applications of

this notion have been investigated by various authors (see [8, 15, 28]). This notion was defined

in normed spaces by Kolk [16].

Definition 1.2. [31] Let X be a vector space. A paranorm P : X → [0,∞) is a function such that

(1) P(0) = 0;

(2) P(−x) = P(x);

(3) P(x+ y)≤ P(x)+P(y) (triangle inequality);
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(4) If {tn} is a sequence of scalars with tn→ t and {xn} ⊂ X with

P(x0− x)→ 0, then P(tnxn− tx)→ 0 (continuity of multiplication).

The pair (X ,P) is called a paranormed space if P is a paranorm on X .

The Paranorm is called total if, in addition, we have

(5) P(x) = 0 implies x = 0.

A Fréchet space is a total and complete - Paranormed space.

Let X be a set. A function d : X×X→ [0,∞) is called a generalized metric on X if d satisfies

(1) d(x,y) = 0 if and only if x = y;

(2) d(x,y) = d(y,x) for all x,y ∈ X ;

(3) d(x,z)≤ d(x,y)+d(y,z) for all x,y,z ∈ X .

We recall a fundamental result in fixed point theory.

Theorem 1.4. ([3, 5]) Let (X ,d) be a complete generalized metric space and let J : X → X be

a strictly contractive mapping with a Lipschitz constant L < 1. Then for each given element

x ∈ X, either

(13) d(Jnx,Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx,Jn+1x)< ∞, for all n≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X |d(Jn0x,y)< ∞};

(4) d(y,y∗)≤
(

1
(1−L)

)
d(y,Jy) for all y ∈ Y .

By using fixed point methods, the stability problems of several functional equations have been

extensively investigated by a number of authors (see [4, 20, 23]).

Throughout this paper, assume that (X ,P) is a Fréchet space and (Y, || · ||) is a Banach space.

One can easily show that an odd mapping f : X → Y satisfies (11) if and only if the odd

mapping f : X → Y is an additive-cubic mapping. It was shown in [6, Lemma 2.2] that g(x) :=

f (2x)− 2 f (x) and h(x) := f (2x)− 8 f (x) are cubic and additive respectively and that f (x) =
1
6g(x)− 1

6h(x).
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2. Generalized Hyers-Ulam Stability of the Functional Equation (12)

For a given mapping f , we define

D f (x,y) := f (x+ ky)+ f (x− ky)− k2[ f (x+ y)+ f (x− y)]−2(1− k2) f (x).

Note that P(2x)≤ 2P(x) for all x ∈ Y .

Theorem 2.1. Let φ : X2→ [0,∞) be a function such that there exists an L < 1 with

(14) φ(x,y)≤ 8Lφ

(x
2
,

y
2

)
for all x,y ∈ X. Let f : X → Y be an odd mapping with f (0) = 0 which satisfies the inequality

(15) ||D f (x,y)|| ≤ φ(x,y).

Then there exists a unique cubic mapping C : X → Y such that

(16) || f (2x)−2 f (x)−C(x)|| ≤ 1
8−8L

Φa(x)

for all x ∈ X, where

Φa(x) =
1

k4− k2

[
(5−4k2)φ(x,x)+ k2

φ(2x,2x)+2k2
φ(2x,x)

+(4−2k2)φ(x,2x)+φ(x,3x)+2φ((1+ k)x,x)+2φ((1− k)x,x)

+φ((1+2k)x,x)+φ((1−2k)x,x)] .(17)

Proof. Replacing y by x in (15), we obtain∥∥∥ f ((1+ k)x)+ f ((1− k)x))− k2 f (2x)−2(1− k2) f (x)
∥∥∥≤ φ(x,x)(18)

for all x,y ∈ X . Replacing x by 2x in (18), we get

(19)
∥∥ f (2(1+ k)x)+ f (2(1− k)x)− k2 f (4x)−2(1− k2) f (2x)

∥∥≤ φ(2x,2x)

for all x ∈ X . Again replacing (x,y) by (2x,x) in (15), we obtain∥∥∥ f ((2+ k)x)+ f ((2− k)x)− k2 f (3x)− k2 f (x)−2(1− k2) f (2x)
∥∥∥≤ φ(2x,x)(20)
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for all x ∈ X . Replacing y by 2x in (15), we get

(21)
∥∥ f ((1+2k)x)+ f ((1−2k)x)− k2 f (3x)+ k2 f (x)−2(1− k2) f (x)

∥∥≤ φ(x,2x)

for all x ∈ X . Replacing y by 3x in (15), we obtain∥∥∥ f ((1+3k)x)+ f ((1−3k)x)− k2 f (4x)+ k2 f (2x)−2(1− k2) f (x)
∥∥∥≤ φ(x,3x)(22)

for all x ∈ X . Replacing (x,y) by ((1+ k)x,x) in (15), we get

‖ f ((1+2k)x)+ f (x)− k2 f ((2+ k)x)− k2 f (kx)−2(1− k2) f ((1+ k)x)‖ ≤ φ((1+ k)x,x)

(23)

for all x ∈ X . Again replacing (x,y) by ((1− k)x,x) in (15), we obtain

(24) ‖ f ((1−2k)x)+ f (x)−k2 f ((2−k)x)+k2 f (kx)−2(1−k2) f ((1−k)x)‖ ≤ φ((1−k)x,x)

for all x ∈ X . Adding (23) and (24), we arrive at

‖ f ((1+2k)x)+ f ((1−2k)x)+2 f (x)− k2 f ((2+ k)x)− k2 f ((2− k)x)

−2(1− k2) f ((1+ k)x)−2(1− k2) f ((1− k)x)‖

≤ φ((1+ k)x,x)+φ((1− k)x,x)(25)

for all x ∈ X . Replacing (x,y) by ((1+2k)x,x) in (15), we get

(26)

‖ f ((1+3k)x)+ f ((1+k)x)−k2 f (2(1+k)x)−k2 f (2kx)−2(1−k2) f ((1+2k)x)‖≤ φ((1+2k)x,x)

for all x ∈ X . Again replacing (x,y) by ((1−2k)x,x) in (15), we obtain

(27)

‖ f ((1−3k)x)+ f ((1−k)x)−k2 f (2(1−k)x)+k2 f (2kx)−2(1−k2) f ((1−2k)x)‖≤ φ((1−2k)x,x)

for all x ∈ X . Adding (26) and (27), we arrive at

‖ f ((1+3k)x)+ f ((1−3k)x)+ f ((1+ k)x)+ f ((1− k)x)− k2 f (2(1+ k)x)

− k2 f (2(1− k)x)−2(1− k2) f ((1+2k)x)−2(1− k2) f ((1−2k)x‖

≤ φ((1+2k)x,x)+φ((1−2k)x,x)(28)
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for all x ∈ X . Now multiplying (18) by 2(1− k2), (20) by k2 and adding (21) and (25), we have

(k4− k2)‖ f (3x)−4 f (2x)+5 f (x)‖

= ‖{2(1− k2) f ((1+ k)x)+2(1− k2) f ((1− k)x)−2k2(1− k2) f (2x)−4(1− k2)2 f (x)}

+{k2 f ((2+ k)x)+ k2 f ((2− k)x)− k4 f (3x)− k4 f (x)−2k2(1− k2) f (2x)}

+{− f ((1+2k)x)− f ((1−2k)x)+ k2 f (3x)− k2 f (x)−2(1− k2) f (x)}

+{ f ((1+2k)x)+ f ((1−2k)x)+2 f (x)− k2 f ((2+ k)x)− k2 f ((2− k)x)

−2(1− k2) f ((1+ k)x)−2(1− k2) f ((1− k)x)}‖

≤ 2(1− k2)φ(x,x)+ k2
φ(2x,x)+φ(x,2x)+φ((1+ k)x,x)+φ((1− k)x,x)

for all x ∈ X . Hence from the above inequality, we get

‖ f (3x)−4 f (2x)+5 f (x)‖ ≤ 1
(k4− k2)

[
2(1− k2)φ(x,x)+ k2

φ(2x,x)

+φ(x,2x)+φ((1+ k)x,x)+φ((1− k)x,x)
]

(29)

for all x ∈ X . Now multiplying (19) by k2, (21) by 2(1− k2) and adding (18), (22) and (28), we

have

(k4− k2)‖ f (4x)−2 f (3x)−2 f (2x)+6 f (x)‖

= ‖{− f ((1+ k)x)− f ((1− k)x)+ k2 f (2x)+2(1− k2) f (x)}

+{k2 f (2(1+ k)x)+ k2 f (2(1− k)x)− k4 f (4x)−2k2(1− k2) f (2x)}

+{2(1− k2) f ((1+2k)x)+2(1− k2) f ((1−2k)x)−2k2(1− k2) f (3x)

+2k2(1− k2) f (x)−4(1− k2)2 f (x)}

+{− f ((1+3k)x)− f ((1−3k)x)+ k2 f (4x)− k2 f (2x)+2(1− k2) f (x)}‖

+{ f ((1+3k)x)+ f ((1−3k)x)+ f ((1+ k)x)+ f ((1− k)x)− k2 f (2(1+ k)x)

− k2 f (2(1− k)x)−2(1− k2) f ((1+2k)x)−2(1− k2) f ((1−2k)x)}‖

≤ φ(x,x)+ k2
φ(2x,2x)+2(1− k2)φ(x,2x)+φ(x,3x)+φ((1+2k)x,x)

+φ((1−2k)x,x)
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for all x ∈ X . Hence from the above inequality, we get

‖ f (4x)−2 f (3x)−2 f (2x)+6 f (x)‖ ≤ 1
(k4− k2)

[
φ(x,x)+ k2

φ(2x,2x)

+2(1− k2)φ(x,2x)+φ(x,3x)+φ((1+2k)x,x)+φ((1−2k)x,x)
]

(30)

for all x ∈ X . From (29) and (30), we arrive at

‖ f (4x)−10 f (2x)+16 f (x)‖

= ‖2 f (3x)−8 f (2x)+10 f (x)+ f (4x)−2 f (3x)−2 f (2x)+6 f (x)‖

≤ 2‖ f (3x)−4 f (2x)+5 f (x)‖+‖ f (4x)−2 f (3x)−2 f (2x)+6 f (x)‖

≤ 1
(k4− k2)

[
(5−4k2)φ(x,x)+ k2

φ(2x,2x)+2k2
φ(2x,x)

+(4−2k2)φ(x,2x)+φ(x,3x)+2φ((1+ k)x,x)+2φ((1− k)x,x)

+φ((1+2k)x,x)+φ((1−2k)x,x)
]

(31)

for all x ∈ X . From (31), we have

(32) ‖ f (4x)−10 f (2x)+16 f (x)‖ ≤Φa(x),

where

Φa(x) =
1

(k4− k2)

[
(5−4k2)φ(x,x)+ k2

φ(2x,2x)+2k2
φ(2x,x)

+(4−2k2)φ(x,2x)+φ(x,3x)+2φ((1+ k)x,x)+2φ((1− k)x,x)

+φ((1+2k)x,x)+φ((1−2k)x,x)
]

for all x ∈ X . It is easy to see from (32),

(33) ‖ f (4x)−2 f (2x)−8( f (2x)−2 f (x))≤Φa(x)

for all x ∈ X . Now, define g : X → Y by

(34) g(x) := f (2x)−2 f (x)
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for all x ∈ X . Using (34) in (33), we obtain

(35) ‖g(2x)−8g(x)‖ ≤Φa(x)

for all x ∈ X . From (35), we have

(36)
∥∥∥∥g(x)− g(2x)

8

∥∥∥∥≤ Φa(x)
8

for all x ∈ X . Consider the set

S := {h : X → Y}

and introduce the generalized metric on S :

d(k,h) = inf{µ ∈ R+ : ‖k(x)−h(x)‖ ≤ µΦa(x), ∀ x ∈ X},

where, as usual, infφ =+∞. It is easy to show that (S,d) is a complete generalized metric space

(See [19, Lemma 2.1]).

Now we consider the linear mapping J : S→ S such that

J h(x) :=
1
8

h(2x)

for all x ∈ X . Let k,h ∈ S be given such that d(k,h) = β ; by the definition

‖k(x)−h(x)‖ ≤ βΦa(x), ∀ x ∈ X .

Hence, we have

‖J k(x)− J h(x)‖= 1
8
‖k(2x)−h(2x)‖ ≤ 1

8
βΦa(2x)

≤ 1
8

β8LΦa(x)

= βLΦa(x)

for all x ∈ X . By definition d(Jk,Jh)≤ Lβ . Therefore,

d(Jk,Jh)≤ Ld(k,h), ∀ k,h ∈ S.

This means that J is a strictly contractive self-mapping of S with a Lipschitz constant L. It

follows from (36) that d(g,Jg) ≤ 1 and therefore, by Theorem 1.3, there exists a mapping
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C : X → Y satisfying the following:

(1) C is a unique fixed point of J in the set

∆ = {k ∈ S : d(h,k)< ∞}, i.e.,

(37) C(2x) = 8C(x).

This implies that C is a unique mapping satisfying (37) such that there exists a µ ∈ (0,∞)

satisfying

‖g(x)−C(x)‖ ≤ µ
Φa(x)

8

for all x ∈ X . Since g : X → Y is odd, C : X → Y is an odd mapping;

(2) d(Jng,C)→ 0 as n→ ∞. This implies the equality

lim
n→∞

1
8n g(2nx) =C(x)

for all x ∈ X ;

(3) Moreover, d(g,C)≤ 1
1−Ld(g,Jg)≤ 1

1−L .

This implies that the inequality (16), holds true. It follows from (15) and (14) that

‖DC(x,y)‖= lim
n→∞

∥∥∥∥ 1
8n Dg(2nx,2ny)

∥∥∥∥
≤ lim

n→∞

1
8n (φ(2

n.2x,2n.2y)+2φ(2nx,2ny))

≤ lim
n→∞

(
8nLn

8n φ(2x,2y)+
2
8n 8nLn

φ(x,y)
)

= 0

for all x ∈ X and n ∈ N. So DC(x,y) = 0 for all x,y ∈ X . By [6, Lemma 2.2], the function

x→C(2x)−2C(x) is cubic. Hence C(2x) = 8C(x) implies that C is an cubic function.

To prove the uniqueness assertion, let us assume that there exists an cubic function T : X→Y

which satisfies (16). Then, T is a fixed point of J in ∆. However, by Theorem 1.3, J has only

one fixed point in ∆, and hence C = T . This completes the proof.

The following corollaries are immediate consequence of Theorem 2.1 concerning stability of

(12).
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Corollary 2.2. Let r be a positive real number with r < 3, and let f : X→Y be an odd mapping

with f (0) = 0 such that

(38) ‖D f (x,y)‖ ≤ P(x)r +P(y)r

for all x,y ∈ X. Then there exists a unique cubic mapping C : X → Y such that

(39) ‖ f (2x)−2 f (x)−C(x)‖ ≤ λ1P(x)r

8−2r ,

where

(40)

λ1 =
1

(k4− k2)

{
21−8k2 +2r(2k2 +4)+3r +2(1+ k)r +2(1− k)r +(1+2k)r +(1−2k)r

}
for all x ∈ X.

Proof. Taking φ(x,y) = P(x)r +P(y)r for all x,y ∈ X and choosing L = 2r

8 in Theorem 2.1, we

get the desired result.

Corollary 2.3. Let f : X → Y be an odd mapping with f (0) = 0 satisfying

(41) ‖D f (x,y)‖ ≤ P(x)rP(y)s +(P(x)r+s +P(y)r+s)

for all x,y ∈ X, where r,s are non negative real numbers such that λ := r+ s ∈ (0,3). Then,

there exists a unique cubic function C : X → Y such that

(42) ‖ f (2x)−2 f (x)−C(x)‖ ≤ λ2P(x)λ

8−2λ
,

where

λ2 =
1

(k4− k2)
{26−12k2 +2λ (3k2 +4)+3λ +2(1+ k)λ +2(1− k)λ

+(1+2k)λ +(1−2k)λ +4(2s)+3s +2(1+ k)r +2(1− k)r

+(1+2k)r +(1−2k)r +2k2[2r−2s]}(43)

for all x ∈ X.

Proof. Let φ : X2 → [0,∞) be defined by φ(x,y) = P(x)rP(y)s +(P(x)r+s +P(y)r+s) for all

x,y ∈ X . Then, the corollary is followed from Theorem 2.1 by L = 2λ

8 < 1.
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Theorem 2.4. Let φ : Y 2→ [0,∞) be a function such that there exists an L < 1 with

(44) φ(x,y)≤ L
8

φ(2x,2y)

for all x,y ∈ Y . Let f : Y → X be an odd mapping with f (0) = 0 such that

(45) P(D f (x,y))≤ φ(x,y)

for all x,y ∈ Y . Then there exists a unique cubic mapping C : Y → X such that

(46) P( f (2x)−2 f (x)−C(x))≤ L
8−8L

Φa(x)

for all x ∈ Y .

Proof. Along similar lines to those in the proof of Theorem 2.1, from (45), we have

(47) P( f (4x)−10 f (2x)+16 f (x))≤Φa(x),

where

Φa(x) =
1

k4− k2

[
(5−4k2)φ(x,x)+ k2

φ(2x,2x)+2k2
φ(2x,x)

+(4−2k2)φ(x,2x)+φ(x,3x)+2φ((1+ k)x,x)+2φ((1− k)x,x)

+φ((1+2k)x,x)+φ((1−2k)x,x)
]

for all x ∈ Y . It is easy to see from (47),

(48) P( f (4x)−2 f (2x)−8( f (2x)−2 f (x)))≤Φa(x)

for all x ∈ Y . Replacing x by x
2 and letting g(x) := f (2x)−2 f (x) in (48), we get

(49) P
(

g(x)−8g
(x

2

))
≤Φa

(x
2

)
≤ L

8
Φa(x)

for all x ∈ Y . Consider the set

S := {h : Y → X}

and introduce the generalized metric on S:

d(k,h) = inf{µ ∈ R+ : P(k(x)−h(x))≤ µΦa(x), ∀ x ∈ Y},

where, as usual, infφ =+∞. It is easy to show that (S,d) is complete (see [19, Lemma 2.1]).
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Now we consider the linear mapping J : S→ S such that

Jh(x) := 8h
(x

2

)
, ∀x ∈ Y.

Let k,h ∈ S be given such that d(k,h) = β ; by the definition

P(k(x)−h(x))≤ βΦa(x), ∀ x ∈ Y.

Hence, we have

P(Jk(x)− Jh(x)) = P
(

8k
(x

2

)
−8h

(x
2

))
≤ 8βΦa

(x
2

)
≤ 8β

L
8

Φa(x)

= βLΦa(x)

for all x ∈ Y . By definition d(Jk,Jh)≤ Lβ . Therefore,

d(Jk,Jh)≤ Ld(k,h), ∀ k,h ∈ S.

This means that J is a strictly contractive self-mapping of S with a Lipschitz constant L.

It follows from (49) that d(g,Jg) ≤ L. By Theorem 1.3, there exists a mapping C : Y → X

satisfying the following:

(1) C is a unique fixed point of J in the set

∆ = {k ∈ S : d(h,k)< ∞}, i.e.,

(50) C
(x

2

)
=

1
8

C(x)

for all x ∈ Y . This implies that C is a unique mapping satisfying (50) such that there exists a

µ ∈ (0,∞) satisfying

P(g(x)−C(x))≤ µ
Φa(x)

8

for all x ∈ Y . Since g : Y → X is odd, C : Y → X is an odd mapping;

(2) d(Jng,C)→ 0 as n→ ∞. This implies the equality

lim
n→∞

8ng
( x

2n

)
=C(x)
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for all x ∈ Y ;

(3) Moreover, d(g,C)≤ 1
1−Ld(g,Jg)≤ 1

1−L .

This implies that the inequality (46) holds true. It follows from (45) and (44) that

P(DC(x,y)) = lim
n→∞

P
(

8nDg
( x

2n ,
y
2n

))
≤ lim

n→∞
8n
(

φ

(
2x
2n ,

2y
2n

)
+2φ

( x
2n ,

y
2n

))
≤ lim

n→∞

(
8nLn

8n φ(2x,2y)+2
8nLn

8n φ(x,y)
)

= 0

for all x,y ∈ Y and n ∈ N. So DC(x,y) = 0 for all x,y ∈ Y . By [6, Lemma 2.2], the function

x→C(2x)−2C(x) is cubic. Hence C(x) = 8C
( x

2

)
implies that C is a cubic function, as desired.

The uniqueness assertion follows in the same way as in Theorem 2.1.

As applications of Theorem 2.4, one can get the following Corollaries 2.5 and 2.6 concerning

the stability of (12).

Corollary 2.5. Let r,θ be a positive real numbers with r > 3, and let

f : Y → X be an odd mapping with f (0) = 0 such that

(51) P(D f (x,y))≤ θ(‖x‖r +‖y‖r)

for all x,y ∈ Y . Then there exists a unique cubic mapping C : Y → X such that

(52) P( f (2x)−2 f (x)−C(x))≤ λ1θ‖x‖r

2r−8

for all x ∈ Y , where λ1 is given in Corollary 2.2.

Proof. Taking φ(x,y) = θ(‖x‖r +‖y‖r) for all x,y ∈Y and choosing L = 8
2r in Theorem 2.4, we

get the desired result.

Corollary 2.6. Let f : Y → X be an even mapping with f (0) = 0 satisfying

(53) P(D f (x,y))≤ θ(‖x‖r‖y‖r)
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for all x,y ∈ Y , where r,θ are non negative real numbers such that r > 3
2 . Then, there exists a

unique cubic function C : Y → X such that

(54) P( f (2x)−2 f (x)−C(x))≤ λ3θ‖x‖2r

22r−8
,

where

λ3 =
1

(k4− k2)

{
5−4k2 + k222r +4(2r)+3r +2(1+ k)r +2(1− k)r

+(1+2k)r +(1−2k)r
}

(55)

for all x ∈ Y .

Proof. Let φ : Y 2 → [0,∞) be defined by φ(x,y) = θ(‖x‖r‖y‖r) for all

x,y ∈ Y . Then, the corollary is followed from Theorem 2.4 by choosing L = 8
22r < 1.

Theorem 2.7. Let φ : X2→ [0,∞) be a function such that there exists an L < 1 with

(56) φ(x,y)≤ 2Lφ

(x
2
,

y
2

)
for all x,y ∈ X. Let f : X → Y be an odd mapping with f (0) = 0, satisfying the inequality (15)

for all x,y ∈ X. Then there exists a unique additive mapping A : X → Y such that

(57) ‖ f (2x)−8 f (x)−A(x)‖ ≤ 1
2−2L

Φa(x)

for all x,y ∈ X.

Proof. Following along similar lines to those in the proof of Theorem 2.1, from (32), we arrive

(58) ‖( f (4x)−8 f (2x))−2( f (2x)−8 f (x))‖ ≤Φa(x)

for all x ∈ X . Let g : X → Y by

(59) g(x) := f (2x)−8 f (x)

for all x ∈ X . Using (59) in (58), we obtain

(60) ‖g(2x)−2g(x)‖ ≤Φa(x)
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for all x ∈ X . From (60), we have

(61)
∥∥∥∥g(x)− 1

2
g(2x)

∥∥∥∥≤ Φa(x)
2

for all x ∈ X .

Consider the set

S := {h : X → Y}

and introduce the generalized metric on S

d(k,h) = inf{µ ∈ R+ : ‖k(x)−h(x)‖ ≤ µΦa(x), ∀ x ∈ X},

where, as usual, infφ =+∞. It is easy to show that (S,d) is a complete generalized metric space

(See [19, Lemma 2.1]).

Now we consider the linear mapping J : S→ S such that

Jh(x) :=
1
2

h(2x)

for all x ∈ X . Let k,h ∈ S be given such that d(k,h) = β ; by the definition

‖k(x)−h(x)‖ ≤ βΦa(x), ∀ x ∈ X .

Hence,

‖Jk(x)− Jh(x)‖= 1
2
‖k(2x)−h(2x)‖

≤ 1
2

βΦa(2x)

≤ 1
2

β2LΦa(x)

= βLΦa(x)

for all x ∈ X . By definition d(Jk,Jh)≤ Lβ . Therefore,

d(Jk,Jh)≤ Ld(k,h), ∀ k,h ∈ S.

This means that J is a strictly contractive self-mapping of S with a Lipschitz constant L. It fol-

lows from (61) that d(g,Jg)≤ 1. By Theorem 1.3, there exists a mapping A : X → Y satisfying
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the following:

(1) A is a unique fixed point of J in the set

∆ = {k ∈ S : d(h,k)< ∞}, i.e.,

(62) A(2x) = 2A(x).

This implies that A is a unique mapping satisfying (62) such that there exists a µ ∈ (0,∞)

satisfying

‖g(x)−A(x)‖ ≤ µ
Φa(x)

2
.

for all x ∈ X . Since g : X → Y is odd, A : X → Y is an odd mapping;

(2) d(Jng,A)→ 0 as n→ ∞. This implies the equality

lim
n→∞

1
2n g(2nx) = A(x)

for all x ∈ X ;

(3) Moreover, d(g,A)≤ 1
1−Ld(g,Jg)≤ 1

1−L .

This implies that the inequality (57), holds true. It follows from (15) and (56) that

‖DA(x,y)‖= lim
n→∞

∥∥∥∥ 1
2n Dg(2nx,2ny)

∥∥∥∥
≤ lim

n→∞

1
2n (φ(2

n.2x,2n.2y)+8φ(2nx,2ny))

≤ lim
n→∞

(
2nLn

2n φ(2x,2y)+8
2nLn

2n φ(x,y)
)

= 0

for all x,y ∈ X . So DA(x,y) = 0 for all x,y ∈ X . By [6, Lemma 2.2], the function x→ f (2x)−

8 f (x) is additive. Hence A(2x) = 2A(x) implies that A is an additive function. The uniqueness

assertion follows in the same way as in Theorem 2.1.

The following corollaries are immediate consequence of Theorem 2.7 concerning the stability

of (12).

Corollary 2.8. Let r be a positive real number with r < 1, and let f : X→Y be an odd mapping

satisfying f (0) = 0 and (38) for all x,y ∈ X. Then there exists a unique additive mapping
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A : X → Y such that

(63) ‖ f (2x)−8 f (x)−A(x)‖ ≤ λ1P(x)r

2−2r

for all x ∈ X, where λ1 is given in Corollary 2.2.

Proof. Taking φ(x,y) = P(x)r +P(y)r for all x,y ∈ X and choosing L = 2r

2 in Theorem 2.7, we

get the desired result.

Corollary 2.9. Let f : X →Y be an even mapping with f (0) = 0 satisfying (41) for all x,y ∈ X,

where r,s are non negative real numbers such that λ := r+s∈ (0,1). Then there exists a unique

additive function A : X → Y such that

(64) ‖ f (2x)−8 f (x)−A(x)‖ ≤ λ2P(x)λ

2−2λ

for all x ∈ X, where λ2 is given in Corollary 2.3.

Proof. Let φ : X2 → [0,∞) be defined by φ(x,y) = P(x)rP(y)s +(P(x)r+s +P(y)r+s) for all

x,y ∈ X . Then, the corollary is followed from Theorem 2.7 by L = 2λ

2 < 1.

Theorem 2.10. Let φ : Y 2→ [0,∞) be a function such that there exists an L < 1 with

(65) φ(x,y)≤ L
2

φ(2x,2y)

for all x,y ∈ Y . Let f : Y → X be an odd mapping with f (0) = 0 satisfying (45) for all x,y ∈ Y .

Then there exists a unique additive mapping A : Y → X such that

(66) P( f (2x)−8 f (x)−A(x))≤ L
2−2L

Φa(x)

for all x ∈ Y .

Proof. Following along similar lines to those in the proof of Theorem 2.1, from (47), we obtain

(67) P(( f (4x)−8 f (2x))−2( f (2x)−8 f (x)))≤Φa(x)

for all x ∈ Y . Replacing x by x
2 and letting g(x) := f (2x)−8 f (x) in (67), we get

(68) P
(

g(x)−2g
(x

2

))
≤Φa

(x
2

)
≤ L

2
Φa(x)

for all x ∈ Y .



THE STABILITY OF AN ADDITIVE CUBIC FUNCTIONAL EQUATION 299

Consider the set

S := {h : Y → X}

and introduce the generalized metric on S

d(k,h) = inf{µ ∈ R+ : P(k(x)−h(x))≤ µΦa(x), ∀ x ∈ Y},

where, as usual, infφ =+∞. It is easy to show that (S,d) is complete (see [19, Lemma 2.1]).

Now we consider the linear mapping J : S→ S such that

Jh(x) := 2h
(x

2

)
for all x ∈ Y . Let k,h ∈ S be given such that d(k,h) = β ; by the definition

P(k(x)−h(x))≤ βΦa(x), ∀x ∈ Y.

Hence,

P(Jk(x)− Jh(x)) = P
(

2k
(x

2

)
−2h

(x
2

))
≤ 2βΦa

(x
2

)
≤ 2β

L
2

Φa(x)

= βLφa(x)

for all x ∈ Y . By definition d(Jk,Jh)≤ Lβ . Therefore,

d(Jk,Jh)≤ Ld(k,h), ∀ k,h ∈ S.

This means that J is a strictly contractive self-mapping of S with a Lipschitz constant L. It fol-

lows from (68) that d(g,Jg)≤ 1. By Theorem 1.3, there exists a mapping A : Y → X satisfying

the following:

(1) A is a unique fixed point of J in the set

∆ = {k ∈ S : d(h,k)< ∞}, i.e.,

(69) A
(x

2

)
=

1
2

A(x)
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for all x ∈ Y . This implies that A is a unique mapping satisfying (69) such that there exists a

µ ∈ (0,∞) satisfying

P(g(x)−A(x))≤ µ
Φa(x)

2

for all x ∈ Y . Since g : Y → X is odd, C : Y → X is an odd mapping;

(2) d(Jng,A)→ 0 as n→ ∞. This implies the equality

lim
n→∞

2ng
( x

2n

)
= A(x)

for all x ∈ Y ;

(3) d(g,A)≤ 1
1−Ld(g,Jg)≤ 1

1−L .

This implies that the inequality (66) holds true. It follows from (45) and (65) that

P(DA(x,y)) = lim
n→∞

P
(

2nDg
( x

2n ,
y
2n

))
≤ lim

n→∞
2nP

(
Dg
( x

2n ,
y
2n

))
≤ lim

n→∞
2n
(

φ

(
2x
2n ,

2y
2n

)
+8φ

( x
2n ,

y
2n

))
≤ lim

n→∞

(
2nLn

2n φ(2x,2y)+8
2nLn

2n φ(x,y)
)

= 0

for all x,y ∈ Y . So DA(x,y) = 0 for all x,y ∈ Y . By [6, Lemma 2.2], A : Y → X is an additive

mapping, as desired. The rest of the proof is similar to Theorem 2.1.

The following corollaries are immediate consequence of Theorem 2.10 concerning the sta-

bility of (12).

Corollary 2.11. Let r,θ be a positive real number with r > 1, and let f : Y → X be an odd

mapping with f (0) = 0 satisfying (51) for all x,y ∈ Y . Then there exists a unique additive

mapping A : Y → X such that

(70) P( f (2x)−8 f (x)−A(x))≤ λ1θ‖x‖r

2r−2

for all x ∈ Y , where λ1 is given in Corollary 2.2.
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Proof. Taking φ(x,y) = θ(‖x‖r +‖y‖r) for all x,y ∈ Y and choosing L = 2
2r in Theorem 2.10,

we get the desired result.

Corollary 2.12. Let f : Y → X be an odd mapping with f (0) = 0 satisfying (53) for all x,y ∈Y ,

where r,θ are non-negative real numbers such that r > 1
2 . Then, there exists a unique additive

mapping A : Y → X such that

(71) P( f (2x)−8 f (x)−A(x))≤ λ3θ‖x‖2r

22r−2

for all x ∈ Y , where λ3 is given in Corollary 2.6.

Proof. Let φ : Y 2 → [0,∞) be defined by φ(x,y) = θ(‖x‖r‖y‖r) for all x,y ∈ Y . Then, the

corollary is followed from Theorem 2.10 by choosing L = 2
22r < 1.

The generalized Hyers-Ulam stability problem for the case r = 3 and r = 1 was excluded in

Corollaries 2.2, 2.5, 2.8 and 2.11. The following example illustrates the fact that the functional

equation (12) is not stable for r = 3 in Corollaries 2.2 and 2.5.

Example 2.13. Let φ : C→ C be defined by

φ(x) =


x3, |x|< 1,

1, |x| ≥ 1.

Consider the function g(x) = f (2x)−2 f (x) : C→ C be defined by

(72) g(x) =
∞

∑
j=0

φ(α jx)
α3 j

for all x ∈ C, where α > max{|k|,1}. Then the mapping g satisfies the functional inequality

(73) |Dg(x,y)| ≤ 4α3

α3−1
(
|x|3 + |y|3

)
for all x,y ∈ C, where

Dg(x,y) = g(x+ ky)+g(x− ky)− k2[g(x+ y)+g(x− y)]−2(1− k2)g(x)

but there do not exist a cubic mapping C : C→C and a constant d > 0 such that |g(x)−C(x)| ≤

d|x|3 for all x ∈C.
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Proof. Consider

|g(x)| ≤
∞

∑
j=0

|φ(α jx)|
|α3 j|

=
∞

∑
j=0

1
α3 j =

(
1− 1

α3

)−1

=
α3

α3−1
.

Hence g is bounded by α3

α3−1 on C. If |x|3 + |y|3 = 0 or |x|3 + |y|3 ≥ 1
α3 , then

Dg(x,y)≤ 4α3

α3−1
(
|x|3 + |y|3

)
.

Now suppose that 0 < |x|3 + |y|3 < 1
α3 . Then there exists an integer n≥ 1 such that

(74)
1

α3(n+1)
< |x|3 + |y|3 < 1

α3n .

Hence

α
3n(|x|3 + |y|3)< 1

or

α
3n|x|3 < 1, α

3n|y|3 < 1.

Consequently, we find

α
nx < 1, α

ny < 1.
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Hence α j|x + ky| < 1, α j|x − ky| < 1, α j|x + y| < 1, α j|x − y| < 1,

α j|2y| < 1, α j|y| < 1, for all j = 0,1, . . . ,n− 1. From the definition of g and (74), we ob-

tain that

|Dg(x,y)|
|x|3 + |y|3

≤

∣∣∣∣∣ ∞

∑
j=n

α−3 j

|x|3 + |y|3
[
φ(α j(x+ ky))+φ(α j(x− ky))

−k2{
φ(α j(x+ y))+φ(α j(x− y))

}
−2(1− k2)φ(α jx)

]∣∣
≤

∞

∑
j=n

1
α3 j(|x|3 + |y|3)

[
1+1+ k2(1+1)+2(1− k2)

]
≤

∞

∑
j=n

4
α3 j(|x|3 + |y|3)

≤
∞

∑
`=0

4
α3`α3n(|x|3 + |y|3)

≤
∞

∑
`=0

4
α2`

≤ 4α3

α3−1
.

Therefore, g satisfies (73). Now, we claim that the functional equation (12) is not stable for

r = 3 in Corollaries 2.2 and 2.5. Suppose, on the contrary, that there exist a cubic mapping

C : C→ C and a constant d > 0 such that |g(x)−C(x)| ≤ d|x|3 for all x ∈C. Then there exists

a constant c ∈ C such that C(x) = cx3 for all rational numbers x. So, we obtain

(75) |g(x)| ≤ (d + |c|)|x|3

for all rational numbers x. Let s ∈ N with s+1 > d + |c|. If x is a rational number in (0,α−s),

then α jx ∈ (0,1) for all j = 0,1, . . . ,s and for this x, we get

g(x) =
∞

∑
j=0

φ(α jx)
α3 j ≥

s

∑
j=0

φ(α jx)
α3 j = (s+1)x3 > (d + |c|)x3,

which contradicts (75).

The following example illustrates the fact that the functional equation (12) is not stable for

r = 1 in Corollaries 2.8 and 2.11.
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Example 2.14. Let φ : C→ C be defined by

φ(x) =


x, |x|< 1,

1, |x| ≥ 1.

Consider the function g(x) = f (2x)−8 f (x) : C→ C be defined by

(76) g(x) =
∞

∑
j=0

φ(α jx)
α j

for all x ∈ C, where α > max{|k|,1}. Then the mapping g satisfies the functional inequality

(77) |Dg(x,y)| ≤ 4α

α−1
(|x|+ |y|)

for all x,y ∈ C, where

Dg(x,y) = g(x+ ky)+g(x− ky)− k2[g(x+ y)+g(x− y)]−2(1− k2)g(x)

but there do not exist an additive mapping A : C → C and a constant d > 0 such that

|g(x)−A(x)| ≤ d|x| for all x ∈ C.

Proof. Consider

|g(x)| ≤
∞

∑
j=0

|φ(α jx)|
|α j|

=
∞

∑
j=0

1
α j =

(
1− 1

α

)−1

=
α

α−1
.

Hence g is bounded by α

α−1 on C. If |x|+ |y|= 0 or |x|+ |y| ≥ 1
α

, then

|Dg(x,y)| ≤ 4α

α−1
(|x|+ |y|) .

Now suppose that 0 < |x|+ |y|< 1
α

. Then there exists an integer n≥ 1 such that

(78)
1

α(n+1)
< |x|+ |y|< 1

αn .

Hence

α
n(|x|+ |y|)< 1

or

α
nx < 1, α

ny < 1.
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Hence α j|x + ky| < 1, α j|x − ky| < 1, α j|x + y| < 1, α j|x − y| < 1,

α j|2y| < 1, α j|y| < 1, for all j = 0,1, . . . ,n− 1. From the definition of g and (78), we ob-

tain that

|Dg(x,y)|
|x|+ |y|

≤

∣∣∣∣∣ ∞

∑
j=n

α− j

|x|+ |y|
[
φ(α j(x+ ky))+φ(α j(x− ky))

−k2{
φ(α j(x+ y))+φ(α j(x− y))

}
−2(1− k2)φ(α jx)

]∣∣
≤

∞

∑
j=n

1
α j(|x|+ |y|)

[
1+1+ k2(1+1)+2(1− k2)

]
≤

∞

∑
j=n

4
α j(|x|+ |y|)

≤
∞

∑
`=0

4
α`αn(|x|+ |y|)

≤
∞

∑
`=0

4
α`

≤ 4α

α−1
.

Therefore, g satisfies (77). Now, we claim that the functional equation (12) is not stable for

r = 1 in Corollaries 2.8 and 2.11. Suppose, on the contrary, that there exist a additive mapping

A : C→ C and a constant d > 0 such that |g(x)−A(x)| ≤ d|x| for all x ∈ C. Then there exists a

constant c ∈ C such that A(x) = cx for all rational numbers x.

So, we obtain

(79) |g(x)| ≤ (d + |c|)|x|

for all rational numbers x. Let s ∈ N with s+1 > d + |c|. If x is a rational number in (0,α−s),

then α jx ∈ (0,1) for all j = 0,1, . . . ,s and for this x, we get

g(x) =
∞

∑
j=0

φ(α jx)
α j ≥

s

∑
j=0

φ(α jx)
α j = (s+1)x > (d + |c|)x

which contradicts (79). Hence, the above theorems and corollaries can be summarized as fol-

lows.
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3. Generalised Hyers-Ulam Stability of the Functional Equation (12) :
General Mapping Case

Theorem 3.1. Let φ : X2→ [0,∞) be a function such that there exists an L < 1 with

φ(x,y)≤ 2Lφ

(x
2
,

y
2

)
for all x,y ∈ X. Let f : X → Y be an odd mapping satisfying f (0) = 0 and (15). Then there

exists a unique additive mapping A : X → Y and a unique cubic mapping C : X → Y such that

(80)
∥∥∥∥ f (x)− 1

6
A(x)− 1

6
C(x)

∥∥∥∥≤ ( 1
12−12L

+
1

48−48L

)
Φa(x)

for all x ∈ X, where Φa(x) is given in Theorem 2.1.

Proof. Since φ(x,y)≤ 2Lφ
( x

2 ,
y
2

)
, φ(x,y)≤ 8Lφ

( x
2 ,

y
2

)
.

The result follows from Theorems 2.1 and 2.7.

Corollary 3.2. Let r be a positive real number with r < 1. Let f : X → Y be an odd mapping

satisfying f (0) = 0 and (38). Then there exists a unique additive mapping A : X → Y and a

unique cubic mapping C : X → Y such that

(81)
∥∥∥∥ f (x)− 1

6
A(x)− 1

6
C(x)

∥∥∥∥≤{ λ1

6(2−2r)
+

λ1

6(8−2r)

)
P(x)r

for all x ∈ X, where λ1 is given in Corollary 2.2.

Corollary 3.3. Let f : X→Y be an odd mapping satisfying f (0) = 0 and (41) where λ = r+s∈

(0,1). Then there exists a unique additive mapping A : X → Y , and a unique cubic mapping

C : X → Y such that

(82)
∥∥∥∥ f (x)− 1

6
A(x)− 1

6
C(x)

∥∥∥∥≤{ λ2

6(2−2λ )
+

λ2

6(8−2λ )

)
P(x)λ

for all x ∈ X, where λ2 is given in Corollary 2.3.

Theorem 3.4. Let φ : Y 2→ [0,∞) be a function such that there exists an L < 1 with

φ(x,y)≤ L
8

φ(2x,2y)
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for all x,y ∈ Y . Let f : Y → X be an odd mapping satisfying f (0) = 0 and (45). Then there

exists a unique additive mapping A : Y → X and a unique cubic mapping C : Y → X such that

(83) P
(

f (x)− 1
6

A(x)− 1
6

C(x)
)
≤
(

L
12−12L

+
L

48−48L

)
Φa(x)

for all x ∈ Y .

Proof. Since φ(x,y)≤ L
8 φ(2x,2y), φ(x,y)≤ L

2 φ(2x,2y). The result follows from Theorems 2.4

and 2.10.

Corollary 3.5. Let r,θ be positive real numbers with r > 3. Let f : Y → X be an odd mapping

satisfying f (0) = 0 and (51). Then there exists an unique additive mapping A : Y → X and a

unique cubic mapping C : Y → X such that

(84) P
(

f (x)− 1
6

A(x)− 1
6

C(x)
)
≤
(

λ1

6(2r−2)
+

λ1

6(2r−8)

)
θ‖x‖r

for all x ∈ Y , where λ1 is given in Corollary 2.2.

Corollary 3.6. Let f : Y → X be an odd mapping satisfying f (0) = 0 and (53) for all x,y ∈ Y ,

where r,θ are non-negative real numbers such that r > 3
2 . Then there exists an unique additive

mapping A : Y → X and a unique cubic mapping C : Y → X such that

(85) P
(

f (x)− 1
6

A(x)− 1
6

C(x)
)
≤
(

λ3

6(22r−2)
+

λ3

6(22r−8)

)
θ‖x‖2r

for all x ∈ Y , where λ3 is given in Corollary 2.6.
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