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1. Introduction

Fixed points of nonlinear operators as an important research branch of nonlinear analysis and

optimization has been applied in the study of nonlinear phenomena. During the six decades,

many famous existence theorems of fixed points were established. However, from the stand-

point of real world applications it is not only to know the existence of fixed points of nonlinear

mappings, but also to be able to construct an iterative process to approximate their fixed points.
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The computation of fixed points is important in the study of many real world problems,

including inverse problems; for instance, it is not hard to show that the split feasibility problem

and the convex feasibility problem in signal processing and image reconstruction can both be

formulated as a problem of finding fixed points of certain operators, respectively; see [1-6] and

the references therein.

Recently, the study of the convergence of various iterative processes for solving various non-

linear mathematical models forms the major part of numerical mathematics. Among these

iterative processes, Krasnoselski-Mann iterative process and Ishikwa iterative process are pop-

ular and hot. Let C be a nonempty, closed, and convex subset of a underlying space X , and

T : C→ C a mapping. Krasnoselski-Mann iterative process generates a sequence {xn} in the

following manner:

x0 ∈C, xn+1 = αnxn +(1−αn)T xn, ∀n≥ 0,

where x0 is an initial. Ishikawa iterative process generates a sequence {xn} in the following

manner: 
x0 ∈C,

yn = βnT xn +(1−αn)xn,

xn+1 = αnTyn +(1−αn)xn, ∀n≥ 0,

where x0 is an initial.

Ishikawa iterative process is indeed more general thanKrasnoselski-Mann iterative process.

But research has been concentrated on the latter due probably to the reasons that the formulation

of Krasnoselski-Mann iterative process is simpler than that of Ishikawa iterative process and

that a convergence theorem for Krasnoselski-Mann iterative process may possibly lead to a

convergence theorem for Ishikawa iterative process provided the sequence {βn} satisfies certain

appropriate conditions. However, the introduction of the process Ishikawa iterative process has

its own right. As a matter of fact, process Krasnoselski-Mann iterative process may fail to

converge while Ishikawa iterative process can still converge for a Lipschitz pseudo-contractive

mapping in a Hilbert space; see [7]. Both Krasnoselski-Mann iterative process and Ishikawa

iterative process have only weak convergence, in general; see [8] and [9].
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In many disciplines, including economics [10], quantum physics [11], and control theory

[12], problems arises in infinite dimension spaces. In such problems, strong convergence (norm

convergence) is often much more desirable than weak convergence, for it translates the physical-

ly tangible property that the energy ‖xn−x‖ of the error between the iterate xn and the solution x

eventually becomes arbitrarily small. The important of strong convergence is also underlined in

[13], where a convex function f is minimized via the proximal-point algorithm: it is shown that

the rate of convergence of the value sequence { f (xn)} is better when {xn} converges strongly

that it converges weakly. Such properties have a direct impact when the process is execut-

ed directly in the underlying infinite dimensional space. To improve the weak convergence of

Krasnoselski-Mann iterative process and Ishikawa iterative process, so called hybrid projections

have been considered; see [14-20] for more details and the references therein. Halpern iterative

process was initially introduced in [21]; see [21] for more details and the references therein.

Halpern iterative process generates a sequence {xn} in the following manner:
x0 ∈C,

xn+1 = αnu+(1−αn)T xn, ∀n≥ 0,

where x0 is an initial and u is a fixed element in C.

Halpern showed that the following conditions

(C1) limn→∞ αn = 0;

(C2) ∑
∞
n=0 αn = ∞,

are necessary in the sense that if Halpern iterative process is strongly convergent for all nonemp-

ty, closed, and convex subsets of a Hilbert space H and all nonexpansive mappings on C, then

the sequence {xn}must satisfy conditions (C1), and (C2). Due to the restriction of (C2), Halpern

iterative process is widely believed to have slow convergence though the rate of convergence

has not be determined. Thus to improve the rate of convergence of Halpern iterative process,

one can not rely only on the process itself; instead, some additional step of iteration should be

taken.

One of the purposes of this paper is to show (HIP) is strong convergence under (C1) only

with the help of projections.
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The purposes of this paper is to study Halpern iterative process with the help of additional

projections. We prove Halpern iterative process is strong convergence under (C1) only with

the help of projections. The organization of this paper is as follows. In Section 2, we provide

some necessary preliminaries. In Section 3, Halpern iterative process is studied with the help

of projections. A strong convergence theorem is established in a Banach space.

2. Preliminaries

Let E be a Banach space with the dual E∗. We denote by J the normalized duality mapping

from E to 2E∗ defined by

Jx = { f ∗ ∈ E∗ : 〈x, f ∗〉= ‖x‖2 = ‖ f ∗‖2},

where 〈·, ·〉 denotes the generalized duality pairing.

A Banach space E is said to be strictly convex if ‖ x+y
2 ‖< 1 for all x,y∈ E with ‖x‖= ‖y‖= 1

and x 6= y. It is said to be uniformly convex if limn→∞ ‖xn− yn‖ = 0 for any two sequences

{xn} and {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and limn→∞ ‖ xn+yn
2 ‖ = 1. Let UE = {x ∈ E :

‖x‖ = 1} be the unit sphere of E. Then the Banach space E is said to be smooth provided

limt→0
‖x+ty‖−‖x‖

t exists for all x,y ∈UE . It is also said to be uniformly smooth if the limit is

attained uniformly for all x,y ∈UE . It is well known that if E is uniformly smooth, then J is

uniformly norm-to-norm continuous on each bounded subset of E. It is also well known that if

E is uniformly smooth if and only if E∗ is uniformly convex.

Let ⇀ and → denote the weak and strong convergence, respectively. Recall that a Banach

space E has the Kadec-Klee property if for any sequence {xn} ⊂ E and x ∈ E with xn ⇀ x and

‖xn‖ → ‖x‖, then ‖xn− x‖ → 0 as n→ ∞. It is well known that if E is a uniformly convex

Banach spaces, then E enjoys the Kadec-Klee property.

Let C be a nonempty closed and convex subset of a Banach space E, and T :C→C a mapping.

The mapping T is said to be asymptotically regular on C if

lim
n→∞

sup
x∈C
‖T n+1x−T nx‖= 0.
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A point x ∈C is a fixed point of T provided T x = x. In this paper, we use F(T ) to denote the

fixed point set of T .

As we all know that if C is a nonempty closed convex subset of a Hilbert space H, and

PC : H → C is the metric projection of H onto C, then PC is nonexpansive. This fact actually

characterizes Hilbert spaces and consequently, it is not available in more general Banach spaces.

In this connection, Alber [22] recently introduced a generalized projection operator ΠC in a

Banach space E which is an analogue of the metric projection in Hilbert spaces. Consider the

functional defined by

φ(x,y) = ‖x‖2−2〈x,Jy〉+‖y‖2 for x,y ∈ E.

The generalized projection ΠC : E → C is a map that assigns to an arbitrary point x ∈ E the

minimum point of the functional φ(x,y), that is, ΠCx = x̄, where x̄ is the solution to the min-

imization problem φ(x̄,x) = min
y∈C

φ(y,x). Existence and uniqueness of the operator ΠC follows

from the properties of the functional φ(x,y) and strict monotonicity of the mapping J. It is

obvious from the definition of function φ that

(‖y‖−‖x‖)2 ≤ φ(y,x)≤ (‖y‖+‖x‖)2, ∀x,y ∈ E.

Indeed, if E is a reflexive, strictly convex and smooth Banach space, then for x,y ∈ E,

φ(x,y) = 0 if and only if x = y. A point p in C is said to be an asymptotic fixed point of T [23]

if C contains a sequence {xn} which converges weakly to p such that limn→∞ ‖xn−T xn‖ = 0.

The set of asymptotic fixed points of T will be denoted by F̃(T ).

T is said to be nonexpansive if

‖T x−Ty‖ ≤ ‖x− y‖, ∀x,y ∈C.

It is well known that if C is a nonempty, bounded, closed and convex subset of a uniformly con-

vex Banach space E, then every nonexpansive self-mapping T on C has a fixed point. Further,

the fixed point set of T is closed and convex.

T is said to be quasi-nonexpansive if F(T ) 6= /0 and

‖p−T x‖ ≤ ‖p− x‖, ∀p ∈ F(T ),x ∈C.
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T is said to be relatively nonexpansive [24] if F̃(T ) = F(T ) 6= /0 and

φ(p,T x)≤ φ(p,x), ∀p ∈ F(T ),x ∈C.

T is said to be φ -nonexpansive [25] if

φ(T x,Ty)≤ φ(x,y), ∀x,y ∈C.

Remark 2.1. In Hilbert spaces, the class of φ -nonexpansive mappings is reduced to the class

of nonexpansive mappings.

T is said to be quasi-φ -nonexpansive [25] if F(T ) 6= /0 and

φ(p,T x)≤ φ(p,x), ∀p ∈ F(T ),x ∈C.

Remark 2.2. The class of quasi-φ -nonexpansive mappings is more general than the class of

relatively nonexpansive mappings which requires the restriction: F(T ) = F̃(T ).

Remark 2.3. In Hilbert spaces, the class of quasi-φ -nonexpansive mappings is reduced to the

class of quasi-nonexpansive mappings.

T is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with

kn→ 1 as n→ ∞ such that

‖T nx−T ny‖ ≤ kn‖x− y‖, ∀x,y ∈C,∀n≥ 1.

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [26] in

1972. Since 1972, a host of authors have studied the weak and strong convergence of iterative

processes for such a class of mappings.

T is said to be asymptotically quasi-nonexpansive if F(T ) 6= /0 and there exists a sequence

{kn} ⊂ [1,∞) with kn→ 1 as n→ ∞ such that

‖p−T nx‖ ≤ kn‖p− x‖, ∀p ∈ F(T ),x ∈C,∀n≥ 1.

T is said to be relatively asymptotically nonexpansive [27] if F̃(T ) = F(T ) 6= /0 and there

exists a sequence {kn} ⊂ [1,∞) with kn→ 1 as n→ ∞ such that

φ(p,T nx)≤ knφ(p,x), ∀p ∈ F(T ),x ∈C,∀n≥ 1.
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T is said to be asymptotically φ -nonexpansive [28] if there exists a sequence {kn} ⊂ [1,∞)

with kn→ 1 as n→ ∞ such that

φ(T nx,T ny)≤ knφ(x,y), ∀x,y ∈C,∀n≥ 1.

Remark 2.4. In Hilbert spaces, the class of asymptotically φ -nonexpansive mappings is reduced

to the class of asymptotically nonexpansive mappings.

T is said to be asymptotically quasi-φ -nonexpansive [28] if F(T ) 6= /0 and there exists a

sequence {kn} ⊂ [1,∞) with kn→ 1 as n→ ∞ such that

φ(p,T nx)≤ knφ(p,x), ∀p ∈ F(T ),x ∈C,∀n≥ 1.

Remark 2.5. The class of asymptotically quasi-φ -nonexpansive mappings is more general than

the class of relatively asymptotically nonexpansive mappings which requires the restriction:

F(T ) = F̃(T ).

Remark 2.6. In Hilbert spaces, the class of asymptotically quasi-φ -nonexpansive mappings is

reduced to the class of asymptotically quasi-nonexpansive mappings.

T is said to be an generalized asymptotically quasi-φ -nonexpansive mapping if F(T ) 6= /0,

and there exist two nonnegative sequences {µn} ⊂ [0,∞) with µn→ 0, and {ξn} ⊂ [0,∞) with

ξn→ 0 as n→ ∞ such that

φ(p,T nx)≤ (1+µn)φ(p,x)+ξn, ∀x ∈C,∀p ∈ F(T ),∀n≥ 1.

Next, we provide two examples.

Let C = [− 1
π
, 1

π
] and define a mapping T by

T x =


x
2 sin 1

x , x 6= 0,

0, x = 0.

Then T nx → 0 uniformly but T is not Lipschitz. On the other hand, it is easy to see that

F(T ) = {0}. For each fixed n, define

fn(x) = ‖T nx‖2−‖x‖2, ∀x ∈C,
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and set ξn = supx∈C{ fn(x),0}. Then limn→∞ ξn = 0, and

φ(0,T nx) = ‖T nx‖2 ≤ ‖x‖2 +ξn = φ(0,x)+ξn

This show that T is generalized asymptotically quasi-φ -nonexpansive but it is not asymptotical-

ly quasi-φ -nonexpansive.

Let E be any smooth Banach space, and x0 a non-zero point in E. We define a mapping

T : E→ E as follows

T x =


−x, x 6=

(1
2 +

1
2n

)
x0,(1

2 +
1

2n+1

)
x0, x =

(1
2 +

1
2n

)
x0,

for all n ≥ 1. Then T is generalized asymptotically quasi-φ -nonexpansive with the constant

sequence µn = 0. But it is not relatively nonexpansive mapping. Let

xn =
(1

2
+

1
2n

)
x0, ∀n≥ 1.

We see from the the definition of T that

T xn =
(1

2
+

1
2n+1

)
x0, ∀n≥ 1.

This implies that

lim
n→∞
‖xn−T xn‖= 0, lim

n→∞
xn = x0.

This shows that x0 ∈ F̃(T ). However, F(T ) = {0}. That is, x0 /∈ F(T ).

Remark 2.7. The class of generalized asymptotically quasi-φ -nonexpansive mappings is a

generalization of the class of generalized asymptotically quasi-nonexpansive mappings in the

framework of Banach spaces.

In 2007, Qin and Su [29] considered modifying Halpern iteration for a relatively nonexpan-

sive mapping. To be more precise, they obtained the following results.

Theorem 2.1. Let E be a uniformly convex and uniformly smooth Banach space, let C be

a nonempty closed convex subset of E, let T : C→ C be a relatively nonexpansive mapping.

Assume that {αn} is a sequence in (0,1) such that limn→∞ αn = 0. Define a sequence {xn} in C
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by the following algorithm:

x0 ∈C chosen arbitrarily,

yn = J−1(αnJx0 +(1−αn)JT xn),

Cn = {v ∈C : φ(v,yn)≤ αnφ(v,x0)+(1−αn)φ(v,xn),

Qn = {v ∈C : 〈Jx0− Jxn,xn− v〉 ≥ 0},

xn+1 = ΠCn∩Qnx0, ∀n≥ 0,

where J is the single-valued duality mapping on E. If F(T ) is nonempty, then {xn} converges

to ΠF(T )x0.

Recently, Qin, Cho, Kang and Zhou [30] further improved Theorem QS by considering quasi-

φ -nonexpansive mappings. To be more precise, they proved the following.

Theorem 2.2. Let C be a nonempty closed convex subset of a uniformly convex and uniformly

smooth Banach space E and T : C→C a closed and quasi-φ -nonexpansive mapping such that

F(T ) 6= /0. Let {xn} be a sequence generated in the following manner:

x0 ∈ E chosen arbitrarily,

C1 =C,

x1 = ΠC1x0,

yn = J−1(αnJx1 +(1−αn)JT xn),

Cn+1 = {z ∈Cn : φ(z,yn)≤ αnφ(z,x1)+(1−αn)φ(z,xn)},

xn+1 = ΠCn+1x1.

Assume that the control sequence satisfies the restriction: limn→∞ αn = 0. Then {xn} converges

strongly to ΠF(T )x1.

Very recently, Cho, Qin and Kang [31] reconsidered Halpern iteration for an asymptotically

quasi-φ -nonexpansive mapping. To be more precise, they proved the following.

Theorem 2.3. Let C be a nonempty closed convex subset of a uniformly convex and uniformly

smooth Banach space E and T : C→C a closed asymptotically quasi-φ -nonexpansive mapping

with a sequence {kn} ⊂ [1,∞) such that kn → 1 as n→ ∞. Assume that T is asymptotically
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regular on C, F(T ) 6= /0 and F(T ) is bounded. Let {xn} be a sequence generated in the following

manner: 

x0 ∈ E chosen arbitrarily,

C1 =C,

x1 = ΠC1x0,

yn = J−1[αnJx1 +(1−αn)JT nxn],

Cn+1 = {z ∈Cn : φ(z,yn)≤ φ(z,xn)+αnM},

xn+1 = ΠCn+1x1, ∀n≥ 0,

where M is an appropriate constant such that M ≥ φ(w,x1) for all w ∈ F(T ). Assume that the

control sequence {αn} in (0,1) satisfies the following restrictions:

(a) limn→∞ αn = 0,

(b) (1−αn)kn ≤ 1 for all n≥ 0.

Then {xn} converges strongly to ΠF(T )x1.

In this paper, motivated by the above research, we modify Halpern iterative process on based

on hybrid projection methods for a family of generalized asymptotically quasi-φ -nonexpansive

mappings. A Strong convergence theorem is established in a uniformly smooth and strictly

convex Banach space which also enjoys the Kadec-Klee property.

In order to our main results, we need the following lemmas.

Lemma 2.1. [22] Let E be a reflexive, strictly convex and smooth Banach space, C a nonempty

closed convex subset of E and x ∈ E. Then

φ(y,ΠCx)+φ(ΠCx,x)≤ φ(y,x) ∀y ∈C.

Lemma 2.2 [22] Let C be a nonempty closed convex subset of a smooth Banach space E and

x ∈ E. Then, x0 = ΠCx if and only if

〈x0− y,Jx− Jx0〉 ≥ 0 ∀y ∈C.
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Lemma 2.3. [32] Let E be a uniformly smooth and strictly convex Banach space which also

enjoys the Kadec-Klee property, C a nonempty closed convex subset of E and T : C→C a closed

and asymptotically quasi-φ -nonexpansive mapping. Then F(T ) is a closed convex subset of C.

3. Main results

Theorem 3.1. Let E be a uniformly smooth and strictly convex Banach space which also enjoys

the Kadec-Klee property, and C a nonempty closed convex subset of E. Let Ti : C → C be

an asymptotically regular, closed and asymptotically quasi-φ -nonexpansive mapping with the

sequences {kn,i} ⊂ [1, 1
1−αn,i

] for each i≥ 1. Assume that F(Ti) is bounded for each i≥ 1, and

F = ∩∞
i=1F(Ti) is nonempty. Let {xn} be a sequence generated in the following manner:

x0 ∈ E chosen arbitrarily,

C1,i =C,

C1 = ∩∞
i=1C1,i,

x1 = ΠC1x0,

yn,i = J−1(αn,iJx1 +(1−αn,i)JT n
i xn
)
, n≥ 1,

Cn+1,i = {z ∈Cn,i : φ(z,yn,i)≤ φ(z,xn)+αn,iM+ξn,i},

Cn+1 = ∩∞
i=1Cn+1,i,

xn+1 = ΠCn+1x1,∀n≥ 0,

where M = sup{φ(z,x1) : z ∈F}. Assume that the control sequence {αn,i} is chosen such that

limn→∞ αn,i = 0 for each i≥ 1. Then the sequence {xn} converges strongly to ΠF x1.

Proof. First, we show that Cn is closed and convex so that the projection on Cn is well defined.

It suffices to claim that, ∀i≥ 1, Cn,i is closed and convex for every n≥ 1. This can be proved by

induction on n.

In fact, for n = 1, C1,i = C is closed and convex. Assume that Ch,i is closed and convex for

some h. For z ∈Ch,i, we see that φ(z,yh,i)≤ φ(z,xh)+αh,iM is equivalent to

2〈z,Jxh− Jyh,i〉 ≤ ‖xh‖2−‖yh,i‖2 +αh,iM.
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Hence Ch+1,i is closed and convex for each i. Hence, for ∀i≥ 1 Cn,i is closed and convex. This

proves that Cn is closed and convex for each n≥ 1.

Next, we prove that F ⊂Cn for each n≥ 1. It suffices to claim that F ⊂Cn,i for each n≥ 1

and for each i ≥ 1. Note that F ⊂ C1,i = C. Suppose that F ⊂ Ch,i for some h and for all i.

Then, for ∀w ∈F ⊂Ch,i, we have

φ(w,yh,i)

= φ

(
w,J−1(

αh,iJx1 +(1−αh,i)JT h
i xh
))

= ‖w‖2−2〈w,αh,iJx1 +(1−αh,i)JT h
i xh〉+‖αh,iJx1 +(1−αh,i)JT h

i xh‖2

≤ ‖w‖2−2αh,i〈w,Jx1〉−2(1−αh,i)〈w,JT h
i xh〉+αh,i‖x1‖2 +(1−αh,i)‖T h

i xh‖2

= αh,iφ(w,x1)+(1−αh,i)φ(w,T h
i xh)

≤ αh,iφ(w,x1)+(1−αh,i)kh,iφ(w,xh)+ξh,i

= φ(w,xh)−
(
1− (1−αh,i)kh,i

)
φ(w,xh)+αh,iφ(w,x1)+ξh,i

≤ φ(w,xh)+αh,iφ(w,x1)+ξh,i

≤ φ(w,xh)+αh,iM+ξh,i,

which shows that w ∈ Ch+1,i. This implies that F ⊂ Cn,i for each n ≥ 1 and each i ≥ 1. This

proves that F ⊂Cn for each n≥ 1. It follows from Lemma 2.1 that

φ(xn,x1) = φ(ΠCnx1,x1)≤ φ(w,x1)−φ(w,xn)≤ φ(w,x1),

for each w ∈F ⊂Cn. This shows that the sequence φ(xn,x1) is bounded. Hence the sequence

{xn} is also bounded. Since the space is reflexive, we may, without loss of generality, assume

that xn ⇀ p. Since Cm ⊂Cn for all m≥ n, we have xm ∈Cn for all m≥ n. Since Cn is closed and

convex, we see that p ∈Cn for all n≥ 1. It follows that p ∈ ∩∞
n=1Cn. In view of

φ(xn,x1)≤ φ(xn+1,x1)≤ φ(p,x1),



GENERALIZED ASYMPTOTICALLY QUASI-φ -NONEXPANSIVE MAPPINGS 81

we see that

φ(p,x1)≤ liminf
n→∞

φ(xn,x1)

≤ limsup
n→∞

φ(xn,x1)

≤ φ(p,x1).

This gets that limn→∞ φ(xn,x1) = φ(p,x1). Hence, we have ‖xn‖ → ‖p‖ as n→ ∞. In view of

the Kadec-Klee property of E, we obtain that limn→∞ xn = p. By the construction of Cn, we

have that Cn+1 ⊂Cn and xn+1 = ΠCn+1x1 ∈Cn. It follows that

φ(xn+1,xn) = φ(xn+1,ΠCnx1)

≤ φ(xn+1,x1)−φ(ΠCnx1,x1)

= φ(xn+1,x1)−φ(xn,x1).

Letting n→ ∞, we obtain that φ(xn+1,xn)→ 0. In view of xn+1 ∈Cn+1, we obtain that

φ(xn+1,yn,i)≤ φ(xn+1,xn)+αn,iM, ∀i≥ 1.

Hence, we have limn→∞ φ(xn+1,yn,i) = 0,∀i≥ 1. This implies that limn→∞ ‖yn,i‖= ‖p‖, ∀i≥

1 and limn→∞ ‖Jyn,i‖ = ‖Jp‖, ∀i ≥ 1. This implies that {Jyn,i} is bounded. Note that E is

reflexive and E∗ is also reflexive. We may assume that Jyn,i ⇀ xi,∗ ∈ E∗ for each i ≥ 1. It

follows that there exists an xi ∈ E such that Jxi = xi,∗. It follows that

φ(xn+1,yn,i) = ‖xn+1‖2−2〈xn+1,Jyn,i〉+‖yn,i‖2

= ‖xn+1‖2−2〈xn+1,Jyn,i〉+‖Jyn,i‖2.

Taking liminfn→∞ the both sides of equality above yields that p = xi, which in turn implies that

xi,∗ = Jp for each i ≥ 1. It follows that Jyn,i ⇀ Jp ∈ E∗ for each i ≥ 1. Since E∗ enjoys the

Kadec-Klee property, we obtain that limn→∞ Jyn,i = Jp,∀i≥ 1. Note that J−1 : E∗→ E is demi-

continuous. It follows that yn,i ⇀ p for each i≥ 1. Since E enjoys the Kadec-Klee property, we

obtain that

lim
n→∞

yn,i = p, ∀i≥ 1.
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It follows that limn→∞ ‖xn−yn,i‖= 0,∀i≥ 1. Since J is uniformly norm-to-norm continuous on

any bounded sets, we have limn→∞ ‖Jxn− Jyn,i‖= 0,∀i≥ 1. Since

Jxn− Jyn,i = αn,i(Jxn− Jx1)+(1−αn,i)(Jxn− JT n
i xn),

we find that limn→∞ ‖Jxn− JT n
i xn‖= 0,∀i≥ 1. Since J is uniformly norm-to-norm continuous

on any bounded sets, we see that

lim
n→∞
‖Jxn− Jp‖= 0.

Hence

lim
n→∞
‖JT n

i xn− Jp‖= 0.

The demi-continuity of J−1 : E∗→ E implies that T n
i xn ⇀ p for each i. Note that

|‖T n
i xn‖−‖p‖|= |‖JT n

i xn‖−‖Jp‖| ≤ ‖JT n
i xn− Jp‖, ∀i≥ 1.

It follows that ‖T n
i xn‖→ ‖p‖, for each i≥ 1, as n→ ∞ . Since E has the Kadec-Klee property,

we obtain that limn→∞ ‖T n
i xn− p‖= 0,∀i≥ 1. Note that

‖T n+1
i xn− p‖ ≤ ‖T n+1

i xn−T n
i xn‖+‖T n

i xn− p‖, ∀i≥ 1.

It follows from the asymptotic regularity of Ti that limn→∞ ‖T n+1
i xn− p‖= 0, that is, TiT n

i xn−

p→ 0 as n→ ∞. It follows from the closedness of Ti that Ti p = p for each i ≥ 1. This proves

that p ∈F .

Finally, we show that p = ΠF x1. From xn = ΠCnx1, we have

〈xn−w,Jx1− Jxn〉 ≥ 0, ∀w ∈F ⊂Cn.

Taking the limit as n→ ∞ in the above inequality, we obtain that

〈p−w,Jx1− Jp〉 ≥ 0, ∀w ∈F .

In view of Lemma 2.2, we see that p = ΠF x1. This completes the proof.

For a single mapping, we have the following.

Corollary 3.2. Let E be a uniformly smooth and strictly convex Banach space which also

enjoys the Kadec-Klee property, and C a nonempty closed convex subset of E. Let T : C→C be
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an asymptotically regular, closed and asymptotically quasi-φ -nonexpansive mapping with the

sequences {kn} ⊂ [1, 1
1−αn

]. Assume that F(T ) is bounded, and F(T ) is nonempty. Let {xn} be

a sequence generated in the following manner:



x0 ∈ E chosen arbitrarily,

C1 =C,

x1 = ΠC1x0,

yn = J−1(αnJx1 +(1−αn)JT nxn
)
, n≥ 1,

Cn+1,i = {z ∈Cn : φ(z,yn)≤ φ(z,xn)+αnM+ξn},

xn+1 = ΠCn+1x1,∀n≥ 0,

where M = sup{φ(z,x1) : z ∈ F(T )}. Assume that the control sequence {αn} is chosen such

that limn→∞ αn = 0. Then the sequence {xn} converges strongly to ΠF(T )x1.

If Ti : C→ C is an asymptotically regular, closed and asymptotically quasi-φ -nonexpansive

mapping, then we have the following.

Corollary 3.3. Let E be a uniformly smooth and strictly convex Banach space which also

enjoys the Kadec-Klee property, and C a nonempty closed convex subset of E. Let Ti : C→C be

an asymptotically regular, closed and asymptotically quasi-φ -nonexpansive mapping with the

sequences {kn,i} ⊂ [1, 1
1−αn,i

] for each i≥ 1. Assume that F(Ti) is bounded for each i≥ 1, and
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F = ∩∞
i=1F(Ti) is nonempty. Let {xn} be a sequence generated in the following manner:



x0 ∈ E chosen arbitrarily,

C1,i =C,

C1 = ∩∞
i=1C1,i,

x1 = ΠC1x0,

yn,i = J−1(αn,iJx1 +(1−αn,i)JT n
i xn
)
, n≥ 1,

Cn+1,i = {z ∈Cn,i : φ(z,yn,i)≤ φ(z,xn)+αn,iM},

Cn+1 = ∩∞
i=1Cn+1,i,

xn+1 = ΠCn+1x1,∀n≥ 0,

where M = sup{φ(z,x1) : z ∈F}. Assume that the control sequence {αn,i} is chosen such that

limn→∞ αn,i = 0 for each i≥ 1. Then the sequence {xn} converges strongly to ΠF x1.

For the class of quasi-φ -nonexpansive mappings, we have from Theorem 3.1 the following

immediately.

Corollary 3.4. Let E be a uniformly smooth and strictly convex Banach space which also

enjoys the Kadec-Klee property and C a nonempty closed convex subset of E. Let Ti : C→ C

be a closed quasi-φ -nonexpansive mapping such that F(Ti) 6= /0 for each i ≥ 1. Let {xn} be a

sequence generated in the following manner:



x0 ∈ E chosen arbitrarily,

C1,i =C, C1 = ∩∞
i=1C1,i,

x1 = ΠC1x0,

yn,i = J−1(αn,iJx1 +(1−αn,i)JTixn
)
, n≥ 1,

Cn+1,i = {z ∈Cn,i : φ(z,yn,i)≤ αn,iφ(z,x1)+(1−αn,i)φ(z,xn)},

Cn+1 = ∩∞
i=1Cn+1,i,

xn+1 = ΠCn+1x1,∀n≥ 0.
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Assume that the control sequence {αn,i} is chosen such that limn→∞ αn,i = 0 for each i ≥ 1.

Then the sequence {xn} converges strongly to ΠF x1.

In Hilbert spaces, Corollary 3.4 is reduced to the following immediately.

Corollary 3.5. Let H be a Hilbert space and C a nonempty closed convex subset of H. Let

Ti : C→ C be a closed quasi-nonexpansive mapping such that F(Ti) 6= /0 for each i ≥ 1. Let

{xn} be a sequence generated in the following manner:



x0 ∈ H chosen arbitrarily,

C1,i =C, C1 = ∩∞
i=1C1,i,

x1 = ΠC1x0,

yn,i = αn,ix1 +(1−αn,i)Tixn, n≥ 1,

Cn+1,i = {z ∈Cn,i : ‖z− yn,i‖2 ≤ αn,i‖z− x1‖2 +(1−αn,i)‖z− xn‖2},

Cn+1 = ∩∞
i=1Cn+1,i,

xn+1 = PCn+1x1,∀n≥ 0,

where P is the metric projection. Assume that the control sequence {αn,i} is chosen such that

limn→∞ αn,i = 0 for each i≥ 1. Then the sequence {xn} converges strongly to PF x1.

Next, we give some result in Hilbert spaces.

Corollary 3.6. Let E be a Hilbert space, and C a nonempty closed convex subset of E. Let

Ti :C→C be an asymptotically regular, closed and asymptotically quasi-nonexpansive mapping

with the sequences {kn,i} ⊂ [1, 1
1−αn,i

] for each i ≥ 1. Assume that F(Ti) is bounded for each

i ≥ 1, and F = ∩∞
i=1F(Ti) is nonempty. Let {xn} be a sequence generated in the following
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manner: 

x0 ∈ E chosen arbitrarily,

C1,i =C,

C1 = ∩∞
i=1C1,i,

x1 = PC1x0,

yn,i = αn,ix1 +(1−αn,i)T n
i xn, n≥ 1,

Cn+1,i = {z ∈Cn,i : ‖z− yn,i‖2 ≤ ‖z− xn‖2 +αn,iM+ξn,i},

Cn+1 = ∩∞
i=1Cn+1,i,

xn+1 = PCn+1x1,∀n≥ 0,

where M = sup{‖z− x1‖2 : z ∈F}. Assume that the control sequence {αn,i} is chosen such

that limn→∞ αn,i = 0 for each i≥ 1. Then the sequence {xn} converges strongly to ΠF x1.

For a single mapping, we have the following.

Corollary 3.7. Let E be a Hilbert space, and C a nonempty closed convex subset of E. Let

T : C→C be an asymptotically regular, closed and asymptotically quasi-nonexpansive mapping

with the sequences {kn} ⊂ [1, 1
1−αn

]. Assume that F(T ) is bounded, and F(T ) is nonempty. Let

{xn} be a sequence generated in the following manner:

x0 ∈ E chosen arbitrarily,

C1 =C,

x1 = PC1x0,

yn = αnx1 +(1−αn)T nxn, n≥ 1,

Cn+1 = {z ∈Cn : ‖z− yn‖2 ≤ ‖z− xn‖2 +αnM+ξn},

xn+1 = PCn+1x1,∀n≥ 0,

where M = sup{‖z− x1‖2 : z ∈ F(T )}. Assume that the control sequence {αn} is chosen such

that limn→∞ αn = 0 for each i≥ 1. Then the sequence {xn} converges strongly to PF(T )x1.

For the class of quasi-nonexpansive mappings, we have the following.



GENERALIZED ASYMPTOTICALLY QUASI-φ -NONEXPANSIVE MAPPINGS 87

Corollary 3.8. Let E be a Hilbert space, and C a nonempty closed convex subset of E. Let

Ti : C → C be a closed and quasi-nonexpansive mapping for each i ≥ 1. Assume that F =

∩∞
i=1F(Ti) is nonempty. Let {xn} be a sequence generated in the following manner:

x0 ∈ E chosen arbitrarily,

C1,i =C, C1 = ∩∞
i=1C1,i,

x1 = PC1x0,

yn,i = αn,ix1 +(1−αn,i)Tixn, n≥ 1,

Cn+1,i = {z ∈Cn,i : ‖z− yn,i‖2 ≤ αn,i‖z− x1‖2 +(1−αn,i)‖z− xn‖2},

Cn+1 = ∩∞
i=1Cn+1,i,

xn+1 = PCn+1x1,∀n≥ 0,

where M = sup{‖z− x1‖2 : z ∈F}. Assume that the control sequence {αn,i} is chosen such

that limn→∞ αn,i = 0 for each i≥ 1. Then the sequence {xn} converges strongly to PF x1.

For a single mapping, we have the following.

Corollary 3.9. Let E be a Hilbert space, and C a nonempty closed convex subset of E. Let

T : C→C be a closed and quasi-nonexpansive mapping. Assume that F(T ) is nonempty. Let

{xn} be a sequence generated in the following manner:

x0 ∈ E chosen arbitrarily,

C1 =C,

x1 = PC1x0,

yn = αnx1 +(1−αn)T xn, n≥ 1,

Cn+1 = {z ∈Cn : ‖z− yn‖2 ≤ αn‖z− x1‖2 +(1−αn)‖z− xn‖2},

xn+1 = PCn+1x1,∀n≥ 0,

where M = sup{‖z− x1‖2 : z ∈ F(T )}. Assume that the control sequence {αn} is chosen such

that limn→∞ αn = 0. Then the sequence {xn} converges strongly to PF(T )x1.
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