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SOME NOTES ON FIXED POINT SETS IN CAT (0) SPACES
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Abstract. In this paper we verify some of important relations between 4-convergent sequences, 4-closed sets,

4-closed fixed point sets of mappings on subset of a CAT (0) space X . In the sequel, we obtain a topology on

4-closed fixed point sets in CAT (0) space.
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1. Introduction

Let (X ,d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a

geodesic from x to y) is a map c from a closed interval [0, l]⊆ R to X such that c(0) = x,c(l) = y,

and d(c(t),c(t0)) = |t− t0| for all t, t0 ∈ [0, l]. In particular, c is an isometry and d(x,y) = l. The

image α of c is called a geodesic (or metric) segment joining x and y. When it is unique, this

geodesic is denoted by [x,y]. The space (X ,d) is said to be a geodesic space if every two points

of X are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one

geodesic joining x and y for each x,y ∈ X . A subset Y ⊆ X is said to be convex if Y includes

every geodesic segment joining any two of its points.

A geodesic triangle4(x1,x2,x3) in a geodesic metric space (X ,d) consists of three points in

X (the vertices of4) and a geodesic segment between each pair of vertices (the edges of4). A

E-mail address: masadi.azu@gmail.com

Received February 13, 2014
395



396 MEHDI ASADI

comparison triangle for a geodesic triangle 4(x1,x2,x3) in (X ,d) is a triangle 4(x1,x2,x3) :=

4(x1,x2,x3) in the Euclidean plane E2 such that dE2(xi,y j) = d(xi,y j) for i, j ∈ {1,2,3}.

A geodesic metric space is said to be a CAT(0) space if all geodesic triangles of appropriate

size satisfy the following comparison axiom: “Let 4 be a geodesic triangle in X and let 4 be

a comparison triangle for4. Then4 is said to satisfy the CAT(0) inequality if for all x,y ∈4

and all comparison points x,y ∈ 4, d(x,y) ≤ dE2(x,y).” Here we recall some useful lemmas

which play an important role in this paper.

Lemma 1.1. [1] Let (X ,d) be a CAT(0) space. For x,y ∈ X and t ∈ [0,1], there exists a unique

point z ∈ [x,y] such that

d(x,z) = td(x,y), d(y,z) = (1− t)d(x,y).

We use the notation (1− t)x⊕ ty for the unique point z of the above lemma.

Lemma 1.2. [1] Let (X ,d) be a CAT(0) space. Then

d((1− t)x⊕ ty,z)≤ (1− t)d(x,z)+ td(y,z),

for x,y,z ∈ X and t ∈ [0,1].

Lemma 1.3. [1] Let (X ,d) be a CAT(0) space. Then

d((1− t)x⊕ ty,z)2 ≤ (1− t)d(x, ,z)2 + td(y,z)2− t(1− t)d(x,y)2,

for all x,y,z ∈ X and t ∈ [0,1].

In particular by Lemma 1.3 we have

d(z,
1
2

x⊕ 1
2

y)2 ≤ 1
2

d(z,x)2 +
1
2

d(z,y)2− 1
4

d(x,y)2,

for all x,y,z ∈ X , which is called (CN) inequality of Bruhat-Tits, as it was shown in [2]. In fact

(cf. [3], p. 163), a geodesic space is a CAT(0) space if and only if it satisfies the (CN) inequality.

Let {xn} be a bounded sequence in X and K be a nonempty bounded subset of X . We associate

this sequence with the number

r = r(K,{xn}) = inf{r(x,{xn}) : x ∈ K},
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where

r(x,{xn}) = limsup
n→∞

d(xn,x),

and the set

A = A(K,{xn}) = {x ∈ K : r(x,{xn}) = r}.

The number r is known as the asymptotic radius of {xn} relative to K. Similarly, set A is called

the asymptotic center of {xn} relative to K.

In the CAT(0) space, the asymptotic center A = A(K,{xn}) of {xn} consists of exactly one

point whenever K is closed and convex. A sequence {xn} in a CAT(0) space X said to be 4-

convergent to x ∈ X if x is the unique asymptotic center of every subsequence of {xn}. Notice

that given {xn} ⊂ X such that {xn} is4-convergent to x and given y ∈ X with x 6= y,

limsup
n→∞

d(xn,x)< limsup
n→∞

d(xn,y).

So every CAT(0) space X satisfies the Opial property.

Lemma 1.4. [4] Every bounded sequence in a complete CAT(0) space has a 4-convergent

subsequence.

Lemma 1.5. [5] If K is a closed convex subset of a complete CAT(0) space and if {xn} is a

bounded sequence in K, then the asymptotic center of is in K.

Theorem 1.6. [6] Let A be a nonempty subset of a CAT (0) space (X ,d). Then there exists a

continuous map T : X → X such that F(T ) = A.

2. Main results

Lemma 2.1. Let A be a nonempty subset of a CAT (0) space (X ,d). Then there exists a contin-

uous map T : X → X such that F(T ) = AM.

Proof. Replacing A by AM in the Theorem 1.6, we obtain the desired conclusion immediately.

Lemma 2.2. If for each {xn} ⊆ A⊆ X and x ∈ A such that xn→ x. Then xn
M−→ x.
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Proof. Let xn→ x, so sequence {xn} is bounded in a CAT (0) space (X ,d). Therefore A({xn}) =

{x}, namely r(x,{xn}) = r({xn}) and or

0 = lim
n→∞

d(xn,x) = limsup
n→∞

d(xn,x) = inf
y∈X

r(y,{xn}),

so for some y ∈ X we have r(y,{xn}) = 0 thus limsupn→∞ d(xn,y) = 0.

Now let {un} be a arbitrary subsequence of bounded sequence {xn} we show that A({un}) =

{x}. But

limsup
n→∞

d(un,x) ≤ limsup
n→∞

(
d(un,xn)+d(xn,x)

)
≤ limsup

n→∞

d(un,xn)+ limsup
n→∞

d(xn,x) = 0.

Therefore, we have

limsup
n→∞

d(un,x) = 0 = inf
y∈X

limsup
n→∞

d(un,y)

or

r(x,{un}) = r({un})

for every subsequence {un} of {xn}. So xn
M−→ x. This completes the proof.

Lemma 2.3. If A = AM. Then A = A.

Proof. Suppose {xn} is a sequence in A and convergent to some x ∈ X . We show x ∈ A. In order

to prove this, by Lemma 2.2, we have xn
M−→ x, where xn ∈ A and A = AM so x ∈ A.

Example 2.4. Let {en} be a orthonormal base in Hilbert space H. For every x ∈ H, we have

‖x‖2 = ∑ |〈en,x〉|2, so

∀x ∈ H 〈en,x〉 → 0.

Since H∗ = H namely for every functional f on H, we have f (en)→ 0 as n→ ∞ so en
w.−→ 0

and according to

en
w.−→ 0 ⇐⇒ en

4−→ 0,

we obtain en
4−→ 0, but en

‖.‖
6−→ 0.

Corollary 2.5. If A be a nonempty and convex subset of a CAT (0) space (X ,d). Then AM
= A.

Corollary 2.6. If A be a nonempty, M-closed and convex subset of a CAT (0) space (X ,d). Then

A = A, i.e. A is closed set.
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Proof. Using Corollary 2.5 and Lemma 2.3 we have AM
= A and AM

= A respectively, so A = A.

Lemma 2.7. Let A be a nonempty and M-closed subset of a CAT (0) space (X ,d). Then there

exists a continuous map T : X → X such that F(T ) = A.

Proof. By Theorem 1.6 and Lemma 2.3, there exists a continuous map T : X → X such that

F(T ) = A = A.

Lemma 2.8. Let A be a nonempty and convex subset of a CAT (0) space (X ,d). Then there

exists a continuous map T : X → X such that F(T ) = AM.

Proof. By Theorem 1.6 and Corollary 2.5, there exists a continuous map T : X → X such that

F(T ) = A = AM.

Theorem 2.9. Let A be a nonempty subset of a CAT (0) space (X ,d). Then there exists a quasi-

nonexpansive map T : X → X such that if x0 ∈ A and y ∈ F(T ) we have d(x0,y) ≤ d(x,y) for

all x ∈ X, further F(T ) = AM.

Proof. For each x ∈ X , let kx =
d(x,AM

)

1+d(x,AM
)
∈ [0,1]. First, note that for each x,∈ X ,

|kx− ky| ≤ |d(x,A
M
)−d(y,AM

)| ≤ d(x,y).

Now, fix x0 ∈ A and define T : X → X by T (x) = (1− kx)x⊕ kxx0 for all x ∈ X . To see that T is

quasi-nonexpansive, we let x ∈ X . Then, for each y ∈ F(T ), we have

d(T x,Ty) = d(T x,y)

= d((1− kx)x⊕ kxx0,y)

≤ (1− kx)d(x,y)+ kxd(x0,y)

≤ max{d(x,y),d(x0,y)}

≤ d(x,y).

Finally, it is easy to see that

T (x) = x ⇐⇒ (1− kx)x⊕ kxx0 = x ⇐⇒ kx = 0

⇐⇒ d(x,AM
) = 0 ⇐⇒ x ∈ AM ⇐⇒ F(T ) = AM

as desired.
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3. A Topology on M-Closed Fixed Point Sets

Lemma 3.1. Let (X ,d) be a CAT(0) space, Fα := Fix(Tα) and

ℑ := {Fix(T )|T : X → X , /0 6= Fix(T ) = Fix(T )
M}∪{ /0,X}.

Then

(1) If Fα ∈ ℑ for every α ∈ I, then
⋂

α∈I Fα ∈ ℑ.

(2) If Fi ∈ ℑ for 1≤ i≤ n, then
⋃n

i=1 Fi ∈ ℑ.

Proof. If
⋂

α Fα = /0, then
⋂

α Fα ∈ ℑ. Otherwise
⋂

α∈I Fα is nonempty and M-closed so by

Theorem 1.6 there exists continuous map T : X → X such that Fix(T ) =
⋂

α Fα

M
=
⋂

α Fα

M
=⋂

α Fα by Lemma 2.3, so
⋂

α Fα ∈ ℑ. This completes (1).

Lemma 3.2. With assumptions of Lemma 3.1, if ℑ0 := {F |Fc ∈ ℑ}, Then ℑ0 is a topology on

X.

Proof. By Lemma 3.1, ℑ is a topology on X .

Corollary 3.3. [7] Let (X ,d) be a CAT(0) space, Fα := Fix(Tα) and

ℑ := {Fix(T )|T : X → X , /0 6= Fix(T ) = Fix(T )}∪{ /0,X}.

Then

(1) If Fα ∈ ℑ for every α ∈ I, then
⋂

α∈I Fα ∈ ℑ.

(2) If Fi ∈ ℑ for 1≤ i≤ n, then
⋃n

i=1 Fi ∈ ℑ.

(3) If ℑ0 := {F |Fc ∈ ℑ}, Then ℑ0 is a topology on X.

Proof. By Lemma 2.3, Corollary is clear.
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