Available online at http://scik.org Adv. Fixed Point Theory, 4 (2014), No. 3, 395-401 ISSN: 1927-6303

SOME NOTES ON FIXED POINT SETS IN CAT(0) SPACES

MEHDI ASADI

Department of Mathematics, Zanjan Branch, Islamic Azad University, Zanjan, Iran

Abstract. In this paper we verify some of important relations between \triangle -convergent sequences, \triangle -closed sets, \triangle -closed fixed point sets of mappings on subset of a CAT(0) space X. In the sequel, we obtain a topology on \triangle -closed fixed point sets in CAT(0) space.

Keywords: CAT(0) space; \triangle -closed set; fixed point; topology.

2010 AMS Subject Classification: 05C05, 54H25.

1. Introduction

Let (X,d) be a metric space. A geodesic path joining $x \in X$ to $y \in X$ (or, more briefly, a geodesic from *x* to *y*) is a map *c* from a closed interval $[0,l] \subseteq R$ to *X* such that c(0) = x, c(l) = y, and $d(c(t), c(t_0)) = |t - t_0|$ for all $t, t_0 \in [0, l]$. In particular, *c* is an isometry and d(x, y) = l. The image α of *c* is called a geodesic (or metric) segment joining *x* and *y*. When it is unique, this geodesic is denoted by [x, y]. The space (X, d) is said to be a geodesic space if every two points of *X* are joined by a geodesic, and *X* is said to be uniquely geodesic if there is exactly one geodesic joining *x* and *y* for each $x, y \in X$. A subset $Y \subseteq X$ is said to be convex if *Y* includes every geodesic segment joining any two of its points.

A geodesic triangle $\triangle(x_1, x_2, x_3)$ in a geodesic metric space (X, d) consists of three points in X (the vertices of \triangle) and a geodesic segment between each pair of vertices (the edges of \triangle). A

E-mail address: masadi.azu@gmail.com

Received February 13, 2014

MEHDI ASADI

comparison triangle for a geodesic triangle $\triangle(x_1, x_2, x_3)$ in (X, d) is a triangle $\overline{\triangle}(x_1, x_2, x_3) :=$ $\triangle(\overline{x}_1, \overline{x}_2, \overline{x}_3)$ in the Euclidean plane \mathbb{E}^2 such that $d_{\mathbb{E}^2}(\overline{x}_i, \overline{y}_j) = d(x_i, y_j)$ for $i, j \in \{1, 2, 3\}$.

A geodesic metric space is said to be a CAT(0) space if all geodesic triangles of appropriate size satisfy the following comparison axiom: "Let \triangle be a geodesic triangle in X and let $\overline{\triangle}$ be a comparison triangle for \triangle . Then \triangle is said to satisfy the CAT(0) inequality if for all $x, y \in \triangle$ and all comparison points $\overline{x}, \overline{y} \in \overline{\triangle}, d(x, y) \leq d_{\mathbb{E}^2}(\overline{x}, \overline{y})$." Here we recall some useful lemmas which play an important role in this paper.

Lemma 1.1. [1] Let (X,d) be a CAT(0) space. For $x, y \in X$ and $t \in [0,1]$, there exists a unique point $z \in [x,y]$ such that

$$d(x,z) = td(x,y), \quad d(y,z) = (1-t)d(x,y).$$

We use the notation $(1-t)x \oplus ty$ for the unique point *z* of the above lemma.

Lemma 1.2. [1] Let (X,d) be a CAT(0) space. Then

$$d((1-t)x \oplus ty, z) \le (1-t)d(x, z) + td(y, z),$$

for $x, y, z \in X$ *and* $t \in [0, 1]$ *.*

Lemma 1.3. [1] Let (X,d) be a CAT(0) space. Then

$$d((1-t)x \oplus ty, z)^2 \le (1-t)d(x, z)^2 + td(y, z)^2 - t(1-t)d(x, y)^2,$$

for all $x, y, z \in X$ and $t \in [0, 1]$.

In particular by Lemma 1.3 we have

$$d(z, \frac{1}{2}x \oplus \frac{1}{2}y)^2 \le \frac{1}{2}d(z, x)^2 + \frac{1}{2}d(z, y)^2 - \frac{1}{4}d(x, y)^2,$$

for all $x, y, z \in X$, which is called (CN) inequality of Bruhat-Tits, as it was shown in [2]. In fact (cf. [3], p. 163), a geodesic space is a CAT(0) space if and only if it satisfies the (CN) inequality. Let $\{x_n\}$ be a bounded sequence in *X* and *K* be a nonempty bounded subset of *X*. We associate this sequence with the number

$$r = r(K, \{x_n\}) = \inf\{r(x, \{x_n\}) : x \in K\},\$$

where

$$r(x, \{x_n\}) = \limsup_{n \to \infty} d(x_n, x),$$

and the set

$$A = A(K, \{x_n\}) = \{x \in K : r(x, \{x_n\}) = r\}$$

The number *r* is known as the *asymptotic radius* of $\{x_n\}$ relative to *K*. Similarly, set *A* is called the *asymptotic center* of $\{x_n\}$ relative to *K*.

In the CAT(0) space, the asymptotic center $A = A(K, \{x_n\})$ of $\{x_n\}$ consists of exactly one point whenever *K* is closed and convex. A sequence $\{x_n\}$ in a CAT(0) space *X* said to be \triangle convergent to $x \in X$ if *x* is the unique asymptotic center of every subsequence of $\{x_n\}$. Notice that given $\{x_n\} \subset X$ such that $\{x_n\}$ is \triangle -convergent to *x* and given $y \in X$ with $x \neq y$,

$$\limsup_{n\to\infty} d(x_n,x) < \limsup_{n\to\infty} d(x_n,y).$$

So every CAT(0) space *X* satisfies the Opial property.

Lemma 1.4. [4] Every bounded sequence in a complete CAT(0) space has a \triangle -convergent subsequence.

Lemma 1.5. [5] If K is a closed convex subset of a complete CAT(0) space and if $\{x_n\}$ is a bounded sequence in K, then the asymptotic center of is in K.

Theorem 1.6. [6] Let A be a nonempty subset of a CAT(0) space (X,d). Then there exists a continuous map $T : X \to X$ such that $F(T) = \overline{A}$.

2. Main results

Lemma 2.1. Let A be a nonempty subset of a CAT(0) space (X,d). Then there exists a continuous map $T: X \to X$ such that $F(T) = \overline{\overline{A}^{\triangle}}$.

Proof. Replacing A by \overline{A}^{\triangle} in the Theorem 1.6, we obtain the desired conclusion immediately.

Lemma 2.2. If for each $\{x_n\} \subseteq A \subseteq X$ and $x \in A$ such that $x_n \to x$. Then $x_n \stackrel{\triangle}{\longrightarrow} x$.

Proof. Let $x_n \to x$, so sequence $\{x_n\}$ is bounded in a CAT(0) space (X,d). Therefore $A(\{x_n\}) = \{x\}$, namely $r(x, \{x_n\}) = r(\{x_n\})$ and or

$$0 = \lim_{n \to \infty} d(x_n, x) = \limsup_{n \to \infty} d(x_n, x) = \inf_{y \in X} r(y, \{x_n\})$$

so for some $y \in X$ we have $r(y, \{x_n\}) = 0$ thus $\limsup_{n \to \infty} d(x_n, y) = 0$.

Now let $\{u_n\}$ be a arbitrary subsequence of bounded sequence $\{x_n\}$ we show that $A(\{u_n\}) = \{x\}$. But

$$\limsup_{n \to \infty} d(u_n, x) \leq \limsup_{n \to \infty} \left(d(u_n, x_n) + d(x_n, x) \right)$$

$$\leq \limsup_{n \to \infty} d(u_n, x_n) + \limsup_{n \to \infty} d(x_n, x) = 0$$

Therefore, we have

$$\limsup_{n \to \infty} d(u_n, x) = 0 = \inf_{y \in X} \limsup_{n \to \infty} d(u_n, y)$$

or

$$r(x, \{u_n\}) = r(\{u_n\})$$

for every subsequence $\{u_n\}$ of $\{x_n\}$. So $x_n \xrightarrow{\Delta} x$. This completes the proof.

Lemma 2.3. If $A = \overline{A}^{\triangle}$. Then $A = \overline{A}$.

Proof. Suppose $\{x_n\}$ is a sequence in A and convergent to some $x \in X$. We show $x \in A$. In order to prove this, by Lemma 2.2, we have $x_n \stackrel{\triangle}{\longrightarrow} x$, where $x_n \in A$ and $A = \overline{A}^{\triangle}$ so $x \in A$.

Example 2.4. Let $\{e_n\}$ be a orthonormal base in Hilbert space H. For every $x \in H$, we have $||x||^2 = \sum |\langle e_n, x \rangle|^2$, so

$$\forall x \in H \quad \langle e_n, x \rangle \to 0.$$

Since $H^* = H$ namely for every functional f on H, we have $f(e_n) \to 0$ as $n \to \infty$ so $e_n \stackrel{w}{\longrightarrow} 0$ and according to

$$e_n \xrightarrow{w.} 0 \iff e_n \xrightarrow{\bigtriangleup} 0,$$

we obtain $e_n \xrightarrow{\bigtriangleup} 0$, but $e_n \xrightarrow{\parallel \cdot \parallel} 0$.

 $\overline{A} = A$, *i.e.* A is closed set.

Corollary 2.5. If A be a nonempty and convex subset of a CAT(0) space (X,d). Then $\overline{A}^{\triangle} = \overline{A}$. **Corollary 2.6.** If A be a nonempty, \triangle -closed and convex subset of a CAT(0) space (X,d). Then

398

Proof. Using Corollary 2.5 and Lemma 2.3 we have $\overline{A}^{\triangle} = \overline{A}$ and $\overline{A}^{\triangle} = A$ respectively, so $A = \overline{A}$.

Lemma 2.7. Let A be a nonempty and \triangle -closed subset of a CAT(0) space (X,d). Then there exists a continuous map $T : X \rightarrow X$ such that F(T) = A.

Proof. By Theorem 1.6 and Lemma 2.3, there exists a continuous map $T: X \to X$ such that $F(T) = \overline{A} = A$.

Lemma 2.8. Let A be a nonempty and convex subset of a CAT(0) space (X,d). Then there exists a continuous map $T: X \to X$ such that $F(T) = \overline{A}^{\triangle}$.

Proof. By Theorem 1.6 and Corollary 2.5, there exists a continuous map $T: X \to X$ such that $F(T) = \overline{A} = \overline{A}^{\triangle}$.

Theorem 2.9. Let A be a nonempty subset of a CAT(0) space (X,d). Then there exists a quasinonexpansive map $T: X \to X$ such that if $x_0 \in A$ and $y \in F(T)$ we have $d(x_0,y) \leq d(x,y)$ for all $x \in X$, further $F(T) = \overline{\overline{A}^{\triangle}}$.

Proof. For each $x \in X$, let $k_x = \frac{d(x,\overline{A}^{\triangle})}{1+d(x,\overline{A}^{\triangle})} \in [0,1]$. First, note that for each $x, \in X$,

$$|k_x - k_y| \le |d(x,\overline{A}^{\bigtriangleup}) - d(y,\overline{A}^{\bigtriangleup})| \le d(x,y).$$

Now, fix $x_0 \in A$ and define $T : X \to X$ by $T(x) = (1 - k_x)x \oplus k_x x_0$ for all $x \in X$. To see that *T* is quasi-nonexpansive, we let $x \in X$. Then, for each $y \in F(T)$, we have

$$d(Tx,Ty) = d(Tx,y)$$

$$= d((1-k_x)x \oplus k_x x_0, y)$$

$$\leq (1-k_x)d(x,y) + k_x d(x_0,y)$$

$$\leq \max\{d(x,y), d(x_0,y)\}$$

$$\leq d(x,y).$$

Finally, it is easy to see that

$$T(x) = x \iff (1 - k_x)x \oplus k_x x_0 = x \iff k_x = 0$$
$$\iff d(x, \overline{A}^{\triangle}) = 0 \iff x \in \overline{\overline{A}^{\triangle}} \iff F(T) = \overline{\overline{A}^{\triangle}}$$

as desired.

3. A Topology on △-Closed Fixed Point Sets

Lemma 3.1. Let (X,d) be a CAT(0) space, $F_{\alpha} := Fix(T_{\alpha})$ and

$$\mathfrak{S} := \{ Fix(T) | T : X \to X, \ \emptyset \neq Fix(T) = \overline{Fix(T)}^{\bigtriangleup} \} \cup \{\emptyset, X\}.$$

Then

(1) If
$$F_{\alpha} \in \mathfrak{I}$$
 for every $\alpha \in I$, then $\bigcap_{\alpha \in I} F_{\alpha} \in \mathfrak{I}$.
(2) If $F_i \in \mathfrak{I}$ for $1 \leq i \leq n$, then $\bigcup_{i=1}^n F_i \in \mathfrak{I}$.

Proof. If $\bigcap_{\alpha} F_{\alpha} = \emptyset$, then $\bigcap_{\alpha} F_{\alpha} \in \mathfrak{S}$. Otherwise $\bigcap_{\alpha \in I} F_{\alpha}$ is nonempty and \triangle -closed so by Theorem 1.6 there exists continuous map $T: X \to X$ such that $Fix(T) = \overline{\bigcap_{\alpha} F_{\alpha}}^{\triangle} = \overline{\bigcap_{\alpha} F_{\alpha}}^{\triangle} = \bigcap_{\alpha} F_{\alpha}$ by Lemma 2.3, so $\bigcap_{\alpha} F_{\alpha} \in \mathfrak{S}$. This completes (1).

Lemma 3.2. With assumptions of Lemma 3.1, if $\mathfrak{I}_0 := \{F | F^c \in \mathfrak{I}\}$, Then \mathfrak{I}_0 is a topology on *X*.

Proof. By Lemma 3.1, \mathfrak{I} is a topology on *X*.

Corollary 3.3. [7] Let (X,d) be a CAT(0) space, $F_{\alpha} := Fix(T_{\alpha})$ and

$$\mathfrak{S} := \{ Fix(T) | T : X \to X, \ \emptyset \neq Fix(T) = \overline{Fix(T)} \} \cup \{ \emptyset, X \}.$$

Then

- (1) If $F_{\alpha} \in \mathfrak{I}$ for every $\alpha \in I$, then $\bigcap_{\alpha \in I} F_{\alpha} \in \mathfrak{I}$.
- (2) If $F_i \in \mathfrak{S}$ for $1 \leq i \leq n$, then $\bigcup_{i=1}^n F_i \in \mathfrak{S}$.
- (3) If $\mathfrak{Z}_0 := \{F | F^c \in \mathfrak{I}\}$, Then \mathfrak{Z}_0 is a topology on X.

Proof. By Lemma 2.3, Corollary is clear.

Conflict of Interests

The author declares that there is no conflict of interests.

Acknowledgements

This research was supported by the Zanjan Branch, Islamic Azad University, Zanjan, Iran.

400

REFERENCES

- [1] S. Dhompongsa, B. Panyanak, On △-convergence theorems in CAT(0) spaces, Comput. Math. Appl. 56 (2008), 2572-2579.
- [2] F. Bruhat, J. Tits, Groupes réductifs sur un corps local. I. Données radicielles valuées, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5-251.
- [3] M. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer-Verlag, Berlin, Heidelberg, (1999).
- [4] W.A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (2008) 3689-3696.
- [5] S. Dhompongsa, W.A. Kirk, B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal. 8 (2007), 35C45.
- [6] P. Chaoha, A. Phon-on, A note on fixed point sets in CAT(0) spaces, J. Math. Anal. Appl. 320 (2006), 983-987.
- [7] M. Asadi, S. M. Vaezpour, H. Soleimani, α-nonexpansive mappings on CAT(0) spaces, World Appl. Sci. J. 11 (2010), 1303-1306.