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1. Introduction

In Ulam [1], the following question concerning the stability of homomorphisms is studied:

Let G be a group and let H be a metric group with metric d(., .). Given ε > 0, there exists

a δ > 0 such that if the function f : G → H satisfies d( f (xy), f (x) f (y)) < δ for all x,y ∈

G, then there exists a homomorphism a : G → H with d( f (x),a(x)) < ε for all x ∈ G. In

1941, Hyers [2] gave the first affirmative partial answer to the question of Ulam in Banach
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spaces. In 1950, Aoki [3] generalized the Hyers theorem for additive mappings. In 1978,

Rassias [4] provided a generalized version of the Hyers theorem which permits the Cauchy

difference to become unbounded. In 1942, Menger [5] introduced the notion of probabilistic

metric spaces. Since then, the theory of probabilistic metric spaces has been developed by

many authors in many directions; see [6], [7] and the references therein. The idea of Menger

was to use the distribution functions instead of non-negative real numbers as values of the

metric. The notion of a probabilistic metric space corresponds to situations when we do not

know exactly the distance between two points, but we know probabilities of possible values

of this distance. A probabilistic generalization of metric spaces appears to be interested in the

investigation of physical quantities, physiological thresholds and some other fields. It is also of

fundamental importance in probabilistic functional analysis. In 1962, Serstnev [8] introduced

the concept of a probabilistic normed space introduced by means of a definition that was closely

modeled on the theory of (classical) normed spaces and used to study the problems of best

approximation in statistics. On the other hand, Isac and Rassias [9] were the first to provide

applications of stability theory of functional equations for the proof of new fixed point theorems

with applications. The stability problems of several various functional equations have been

extensively investigated by a number of authors using fixed point methods; see [10-12] and the

references therein.

The functional equation

f (x+ y)+ f (x− y) = 2 f (x)+2 f (y) (1.1)

is said to be a quadratic functional equation because the quadratic function f (x) = ax2 is a solu-

tion of the functional equation (1.1). A quadratic functional equation was used to characterize

inner product spaces [13,14]. It is well known that a function f is a solution of (1.1) if and only

if there exists a unique symmetric biadditive function B such that f (x) = B(x,x) for all x; see

[14]. The biadditive function B is given by

B(x,y) =
1
4
[ f (x+ y)+ f (x− y)]. (1.2)

The functional equation

f (2x+ y)+ f (2x− y) = 2 f (x+ y)+2 f (x− y)+12 f (x) (1.3)
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is called a cubic functional equation, because the cubic function f (x) = cx3 is a solution of the

equation (1.3). The general solution and the generalized Hyers-Ulam-Rassias stability for the

functional equation (1.3) was discussed by Jun and Kim [15]. They proved that a function f

between real vector spaces X and Y is a solution of (1.3) if and only if there exists a unique

function C : X3→ Y such that f (x) =C(x,x,x) for all x ∈ X and C is symmetric for each fixed

one variable and is additive for fixed two variables. The quartic functional equation

f (x+2y)+ f (x−2y)−6 f (x) = 4[ f (x+ y)+ f (x− y)]+24 f (y) (1.4)

was introduced by Rassias [16]. Later Lee et al. [17] remodified Rassias equation and obtained

a new quartic functional equation of the form

f (2x+ y)+ f (2x− y) = 4[ f (x+ y)+ f (x− y)]+24 f (x)−6 f (y) (1.5)

and discussed its general solution. In fact Lee et al. [17] proved that a function f between

vector spaces X and Y is a solution of (1.5) if and only if there exists a unique symmetric multi

- additive function Q : X4→Y such that f (x) = Q(x,x,x,x) for all x ∈ X . It is easy to show that

the function f (x) = kx4 is the solution of (1.4) and (1.5).

A function

f (x) = Q(x1,x2,x3,x4) (1.6)

is called symmetric multi additive if Q is additive with respect to each variable xi, i = 1,2,3,4

in (1.6). A function f is defined as f (x) = β (x)−α(x)
12 , where α(x) = f (2x)− 16 f (x), β (x) =

f (2x)−4 f (x). Further, f satisfies f (2x) = 4 f (x) and f (2x) = 16 f (x) is said to be a quadratic

- quartic function.

Jun and Kim [18] introduced the following generalized quadratic and additive type functional

equation

f (
n

∑
i=1

xi)+(n−2)
n

∑
i=1

f (xi) = ∑
1≤i< j≤ j

f (xi + x j) (1.7)

in the class of functions between real vector spaces. For n = 3, Kannappan proved that a

function f satisfies the functional equation (1.7) if and only if there exists a symmetric bi-

additive function B and an additive function A such that f (x) = B(x,x) +A(x) for all x; see

[14]. The Hyers-Ulam stability for the equation (1.7) when n = 3 was proved by Jung [19]. The
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Hyers-Ulam-Rassias stability for the equation (1.7) when n = 4 was also investigated by Chang

et al. [20].

The general solution and the generalized Hyers-Ulam stability for the quadratic and additive

type functional equation

f (x+ay)+a f (x− y) = f (x−ay)+a f (x+ y) (1.8)

for any positive integer a with a 6=−1,0,1 was discussed by Jun and Kim [21]. Recently Najati

and Moghimi [22] investigated the generalized Hyers-Ulam-Rassias stability for a quadratic

and additive type functional equation of the form

f (2x+ y)+ f (2x− y) = 2 f (x+ y)+2 f (x− y)+2 f (2x)−4 f (x). (1.9)

Very recently, the authors [23,24] investigated a mixed type functional equation of cubic and

quartic type and obtained its general solution. The stability of generalized mixed type functional

equations of the form

f (x+ ky)+ f (x− ky) = k2[ f (x+ y)+ f (x− y)]+2(1− k2) f (x) (1.10)

for fixed integers k with k 6= 0,±1 in quasi -Banach spaces was investigated by Gordji and

Khodaie [25]. The mixed type functional equation (1.10) is additive, quadratic and cubic. Park

et al. [26] proved the generalized Hyers-Ulam stability of the following additive-quadratic-

cubic-quartic functional equation (briefly, AQCQ-functional equation):

f (x+2y)+ f (x−2y) = 4 f (x+ y)+4 f (x− y)−6 f (x)+ f (2y)

+ f (−2y)−4 f (y)−4 f (−y)
(1.11)

in random normed spaces .

Throughout this paper, we assume that X be a vector space over a non-Archimedean field K,

(Y,µ,T ) is a non-Archimedean random Banach space over K. Based on fixed point methods,

we prove the generalized stability of the following equation:

f (x+ay)+ f (x−ay) = a2[ f (x+ y)+ f (x− y)]+2(1−a2) f (x)+

a4−a2

12
[ f (2y)+ f (−2y)−4 f (y)

− f (−y)]

(1.12)
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for fixed integers a with a 6= 0,±1 in random normed spaces. In the sequel, we shall adopt

the usual terminologies, notions, and conventions of the theory of non-Archimedean random

normed spaces (non-ARN-spaces) as in [27, 28, 7]. In this paper, the space of all probability

distribution functions is denoted by ∆+. Elements of ∆+ are functions F : R∪{−∞,∞}→ [0,1],

such that F is left continuous and nondecreasing on R and F(0) = 0, F(+∞) = 1. It is clear that

the subset D+ := {F ∈ ∆+ : l−F(+∞) = 1}, where l− f (x) = limt→x− f (t) is a subset of ∆+. The

space ∆+ is partially ordered by the usual point-wise ordering of functions, i.e., F ≤ G if and

only if F(t) ≤ G(t) for all t ∈ R. The maximal element for ∆+ in this order is the distribution

function ε0 given by

ε0(t) =

 1, if t > 0.

0, if t ≤ 0.

2. Preliminaries

In this section, we give the definition and theorems that are important in this paper.

Theorem 2.1. [29] Let (X ,d) be a complete generalized metric space and let J : X → X be a

strict contractive mapping with a Lipschitz constant 0 < L < 1. If there exists a nonnegative

integer k such that d(Jk+1x,Jkx)< ∞ for some x ∈ X, then the followings are true:

(1) the sequence {Jnx} converge to a fixed point x∗ for J,

(2) x∗ is the unique fixed point of J in X∗ = {y ∈ X ,d(Jkx,y)≺ ∞},

(3) if y ∈ X∗, then d(y,x∗)≤ 1
1−Ld(Jy,y).

Definition 2.2. [7] A mapping T : [0,1]2 → [0,1] is a continuous triangular norm (briefly, a

continuous t-norm) if T satisfies the following conditions:

(1) T is commutative and associative;

(2) T is continuous;

(3) T (a,1) = a for all a ∈ [0,1];

(4) T (a,b)≤ T (c,d) whenever a≤ c and b≤ d for all a,b,c,d ∈ [0,1].

Typical examples of continuous t-norms are Tp(a,b)= ab, TM(a,b)=min(a,b) and TL(a,b)=

max(a+ b− 1,0) (the Lukasiewicz t-norm). Recall (see [5], [30]) that if T is a t-norm and
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{xn} is a given sequence of numbers in [0,1], T n
i=1xi is defined recurrently by T 1

i=1xi = x1 and

T n
i=1xi = T (T n−1

i=1 xi,xn) = T (x1, ...,xn) for n≥ 1. T ∞
i=nxi is defined as T ∞

i=1xn+i. It is known ([31])

that for the Lukasiewicz t-norm the following holds:

lim
n→∞

(TL)
∞
i=1xn+i = 1⇔

∞

∑
n=1

(1− xn)< ∞.

Definition 2.3. By a non-Archimedean field, we mean a field IK equipped with a function(valuation)

|.| : K→ [0,∞) such that for all r,s ∈K, the following conditions hold:

(1) |r|= 0 if and only if r = 0;

(2) |rs|= |r||s|;

(3) |r+ s| ≤ max(|r|, |s|) for all r,s ∈K.

Clearly,|1|= |−1|= 1 and |n| ≤ 1 for all n∈N. The function |.| is called the trivial valuation

if |r|= 1, ∀r ∈K, r 6= 0, and |0|= 0.

Definition 2.4. Let X be a vector space over a scalar field K with a non-Archimedean non-

trivial valuation |.|. A function ‖.‖ : X → R is non-Archimedean norm (valuation) if it satisfies

the following conditions:

(1) ‖x‖= 0 if and only if x = 0;

(2) ‖rx‖= |r|‖x‖ for all r ∈K and x ∈ X ;

(3) ‖x+ y‖ ≤max(‖x‖,‖y‖) for all x,y ∈ X .

Then, (X ,‖.‖) is called a non-Archimedean space. Due to the fact that

‖xm− xn‖ ≤max{‖x j+1− x j‖ : m≤ j ≤ n−1},

in which n > m, the sequence {xn} is Cauchy if and only if {xn+1− xn} converges to zero

in a non-Archimedean normed space. In a complete non-Archimedean space, every Cauchy

sequence is convergent.

Definition 2.5. A non-Archimedean random normed space (briefly, non-Archimedean RN-

space) is a triple (X ,µ,T ), where X is a linear space over a non-Archimedean field K, T is a

continuous t-norm, and µ is a mapping from X into D+ such that, the following conditions hold:

(1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;

(2) µαx(t) = µx(
t
|α|) for all x ∈ X , t ≥ 0 and α 6= 0;
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(3) µx+y(max(t,s))≥ T (µx(t),µy(s)) for all x,y ∈ X and t,s≥ 0.

It is easy to see that if (3) holds, then (3’): µx+y(t + s) ≥ T (µx(t),µy(s)) for all x,y ∈ X and

t,s≥ 0.

Every non-Archimedean normed linear space (X ,‖.‖) defines a non-Archimedean RN-space

(X ,µ,TM) where µx(t) = t
t+‖x‖ for all t > 0 and x ∈ X .

Definition 2.6. Let (X ,µ,T ) be a non-Archimedean RN-space.

(1) A sequence {xn} in X is said to be convergent to x in X if for all t > 0, limn→∞ µxn−x(t) =

1;

(2) A sequence {xn} in X is said to be Cauchy sequence in X if for each ε > 0 and t > 0,

there exist a positive integer n0 such that for all n≥ n0 and p > 0, we have µxn+p−xn(t)>

1− ε;

(3) A non-Archimedean RN-space (X ,µ,T ) is said to be complete (i.e.,(X ,µ,T ) is called a

non-Archimedean random Banach space) if every Cauchy sequence in X is convergent

to a point in X .

Theorem 2.7. [7] If (X ,µ,T ) is a non-Archimedean RN-space and {xn} is a sequence such that

xn→ x, then limn→∞µxn(t) = µx(t) almost everywhere.

Theorem 2.8. [31] Let f : X → Y be a function satisfying (1.12) for all x,y ∈ X. If f is even

then f is quadratic - quartic.

Theorem 2.9. [31] Let f : X→Y be a function satisfying (1.12) for all x,y ∈ X. If f is odd then

f is additive - cubic.

Theorem 2.10. [31] Let f : X → Y be a function satisfying (1.12) for all x,y ∈ X If and only if

there exists functions A : X → Y , B : X2→ Y , C : X3→ Y and D : X4→ Y such that

f (x) = A(x)+B(x,x)+C(x,x,x)+D(x,x,x,x) (2.1)

for all x ∈ X, where A is additive, B is symmetric bi-additive, C is symmetric for each fixed one

variable and is additive for fixed two variables and D is is symmetric multi - additive.

3. Stability of Equation (1.12) in non-Archimedean RN-Spaces



A FIXED POINT APPROACH TO THE NON-ARCHIMEDEAN RANDOM STABILITY 427

In the rest of the paper let f : X → Y and we define

∆ f (x,y) = f (x+ay)+ f (x−ay)−a2[ f (x+ y)+ f (x− y)]−2(1−a2) f (x)

−a4−a2

12
[ f (2y)+ f (−2y)−4 f (y)− f (−y)],

where a in Z−{−1,0,1}.

Now using fixed point approach to the non-Archimedean RN-space under arbitrary t-norm,

we prove the stability of generalized mixed type of AQCQ- functional equations ∆ f (x,y) = 0.

Theorem 3.1. Let K be a non-Archimedean field, X be a vector space over K and (Y,µ,TM)

be a non-Archimedean random Banach space over K. Let ϕ : X2→ D+ (ϕ(x,y) is denoted by

ϕx,y) be a function such that for some λ ∈ R, 0 < λ < 4

ϕ2x,2y(λ t)≥ ϕx,y(t), (3.1)

for all x,y ∈ X and t > 0. If f : X → Y be an even mapping such that

µ∆ f (x,y)(t)≥ ϕx,y(t); (3.2)

and f (0) = 0, then there exists a unique quadratic mapping Q : X → Y satisfying (1.12) and

µ f (2x)−16 f (x)−Q(x)(t)≥ ψx(
4−λ

4
t), (3.3)

where ψx(t) = TM(ϕ0,x(
a2t
12 ),ϕx,x(

(a2−1)t
12 ),ϕ0,2x(

(a4−a2)t
6 ),ϕax,x(

(a4−a2)t
12 )). Moreover

Q(x) = lim
n→∞

1
4n ( f (2n+1x)−16 f (2nx)).

Proof. Using the evenness of f and (3.2), we get

µ
f (x+ay)+ f (x−ay)−a2( f (x+y)+ f (x−y))−2(1−a2) f (x)− a4−a2

12 (2 f (2y)−8 f (y))
(t)≥ ϕx,y(t). (3.4)

for all x ∈ X and t > 0. Interchanging x and y in (3.4), we obtain

µ
f (ax+y)+ f (ax−y)−a2( f (x+y)+ f (x−y))−2(1−a2) f (y)− a4−a2

12 (2 f (2x)−8 f (x))
(t)≥ ϕy,x(t). (3.5)

for all x,y ∈ X and t > 0. Letting y = 0 in (3.5), we get

µ
2 f (ax)−2a2 f (x)− a4−a2

12 (2 f (2x)−8 f (x))
(t)≥ ϕ0,x(t). (3.6)
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Putting y = x in (3.5), we obtain

µ
f ((a+1)x)+ f ((a−1)x)−a2 f (2x)−2(1−a2) f (x)− a4−a2

12 (2 f (2x)−8 f (x))
(t)≥ ϕx,x(t) (3.7)

for x ∈ X and t > 0. Replacing x by 2x in (3.6) we get

µ
2 f (2ax)−2a2 f (2x)− a4−a2

12 (2 f (4x)−8 f (2x))
(t)≥ ϕ0,2x(t). (3.8)

for x ∈ X and t > 0. Setting y by ax in (3.5), we obtain

µ
f (2ax)−a2( f ((1+a)x)+ f ((1−a)x))−2(1−a2) f (ax)− a4−a2

12 (2 f (2x)−8 f (x))
(t)≥ ϕax,x(t). (3.9)

Hence, (3.6), (3.7), (3.8) and (3.9) imply that

µ64 f (x)−20 f (2x)+ f (4x)(t)≥ TM(ϕ0,x(
a2t
12

),ϕx,x(
(a2−1)t

12
),ϕ0,2x(

(a4−a2)t
6

),

ϕax,x(
(a4−a2)t

12
)) = ψx(t)

(3.10)

for x ∈ X and t > 0. Now we put F(x) = f (2x)−16 f (x). It follows that

µ f (4x)−16 f (2x)−4( f (2x)−16 f (x))(t)≥ ψx(t),

which implies that

µF(2x)−4F(x)(t)≥ ψx(t). (3.11)

Now, we define the set S by S := {F : X → Y} and introduce a generalized metric on S as

follows

dψ(F,G) = inf{ε ∈ R+ : µF(x)−G(x)(εt)≥ ψx(t),∀x ∈ X ,∀t > 0}. (3.12)

Then, it is easy to verify that (S,dψ) is complete (see [30]). We define an operator J : S→ S by

JL(x) = L(2x)
4 , for all x∈ X . Let F,G∈ S and ε ∈R+ be an arbitrary constant with dψ(F,G)≤ ε ,

that is,

µF(x)−G(x)(εt)≥ ψx(t) (3.13)

for all x ∈ X and t > 0. Then

µJF(x)−JG(x)(
λεt

4
) = µ F(2x)

4 −
G(2x)

4
(
λεt

4
) = µF(2x)−G(2x)(λεt)≥ ψ2x,2x(λ t)≥ ψx(t) (3.14)
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for all x ∈ X and t > 0, that is, dψ(JF,JG) ≤ λε

4 . We hence conclude that dψ(JF,JG) ≤
λ

4 dψ(F,G) for any F,G ∈ S. As 0 < λ < 4, then operator J is strictly contractive. It follows

from (3.11) that

µJF(x)−F(x)(
εt
4
) = µ F(2x)

4 −F(x)
(
εt
4
) = µF(2x)−4F(x)(εt)≥ ψx(t) (3.15)

for all x ∈ X and t > 0, that is, dψ(JF,F)≤ ε

4 < ∞. Using Theorem 2.1, we deduce existence of

a fixed point of J, that is, the existence of mapping Q : X → Y satisfying the following:

(1) Q is a fixed point of J such that limn→∞ dψ(JnF,Q) = 0. This implies the equality

Q(x) = lim
n→∞

JnF(x) = lim
n→∞

F(2nx)
4n = lim

n→∞

1
4n ( f (2n+1x)−16 f (2nx))

and Q(2x) = 4Q(x) for all x ∈ X . Also Q is the unique fixed point of J on the set

S∗ = {G ∈ S : dψ(F,G)< ∞}.

(2) dψ(F,Q)≤ 1
1−Ldψ(JF,F) implies the inequality dψ(F,Q)≤ 1

1− λ

4
. Then

µF(x)−Q(x)(
4t

4−λ
)≥ ψx(t),

which implies that

µF(x)−Q(x)(t)≥ ψx(
4−λ

4
t). (3.16)

It follows from (3.1) and (3.2) that

µ∆Q(x,y)(t)≥ lim
n→∞

TM(ϕx,y(
4nt

λ n+1 ),ϕx,y(
4nt

16λ n )) = 1.

Hence ∆Q(x,y)= 0 and µ f (2x)−16 f (x)−Q(x)(t)≥ψx(
4−λ

4 t) for all x∈X and t > 0. This completes

the proof.

Theorem 3.2. Let K be a non-Archimedean field, X be a vector space over K and (Y,µ,TM)

be a non-Archimedean random Banach space over K. Let ϕ : X2→ D+ (ϕ(x,y) is denoted by

ϕx,y) be a function such that for some λ ∈ R, 0 < λ < 16

ϕ2x,2y(λ t)≥ ϕx,y(t), (3.17)
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for all x,y ∈ X and t > 0. If f : X → Y be an even mapping such that

µ∆ f (x,y)(t)≥ ϕx,y(t) (3.18)

and f (0) = 0, then there exists a unique quartic mapping D : X → Y satisfying (1.12) and

µ f (2x)−4 f (x)−D(x)(t)≥ ψx(
16−λ

16
t), (3.19)

where ψx(t) = TM(ϕ0,x(
a2t
12 ),ϕx,x(

(a2−1)t
12 ),ϕ0,2x(

(a4−a2)t
6 ),ϕax,x(

(a4−a2)t
12 )), Moreover

D(x) = lim
n→∞

1
16n ( f (2n+1x)−4 f (2nx)).

Proof. Using Theorem 3.1, we have µ f (4x)−4 f (2x)−16( f (2x)−4 f (x))(t)≥ ψx(t). It follows that

µG(2x)−16G(x)(t)≥ ψx(t) (3.20)

where G(x) = f (2x)− 4 f (x), for all x ∈ X and t > 0. Now, we define the set S by S := {G :

X → Y} and introduce a generalized metric on S as follows

dψ(F,G) = inf{ε ∈ R+ : µF(x)−G(x)(εt)≥ ψx(t),∀x ∈ X ,∀t > 0}. (3.21)

Then, it is easy to verify that (S,dψ) is complete (see [30]). We define an operator J : S→ S by

JL(x) = L(2x)
16 , for all x∈ X . Let F,G∈ S and ε ∈R+ be an arbitrary constant with dψ(F,G)≤ ε ,

that is,

µF(x)−G(x)(εt)≥ ψx(t) (3.22)

for all x ∈ X and t > 0. Then

µJF(x)−JG(x)(
λεt
16

) = µ F(2x)
16 −

G(2x)
16

(
λεt
16

) = µF(2x)−G(2x)(λεt)≥ ψ2x,2x(λ t)≥ ψx(t) (3.23)

for all x ∈ X and t > 0, that is, dψ(JF,JG) ≤ λε

16 . We hence conclude that dψ(JF,JG) ≤
λ

16dψ(F,G) for any F,G ∈ S. As 0 < λ < 16, then operator J is strictly contractive. It fol-

lows from (3.20) that

µJG(x)−G(x)(
εt
16

) = µ G(2x)
16 −G(x)

(
εt
16

) = µG(2x)−16G(x)(εt)≥ ψx(t) (3.24)
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for all x ∈ X and t > 0, that is, dψ(JG,G) ≤ ε

16 < ∞. By Theorem 2.1, we deduce existence of

a fixed point of J, that is, the existence of mapping D : X → Y satisfying the following:

(1) D is a fixed point of J such that limn→∞ dψ(JnG,D) = 0 This implies the equality

D(x) = lim
n→∞

JnG(x) = lim
n→∞

F(2nx)
16n = lim

n→∞

1
16n ( f (2n+1x)−4 f (2nx))

and D(2x) = 16D(x) for all x ∈ X . Also D is the unique fixed point of J on the set

M := {G ∈ S : dψ(F,G)< ∞}.

(2) dψ(G,D)≤ 1
1−Ldψ(JG,G) implies the inequality dψ(G,D)≤ 1

1− λ

16
. Then

µG(x)−D(x)(
16t

16−λ
)≥ ψx(t),

which implies that

µG(x)−D(x)(t)≥ ψx(
16−λ

16
t), (3.25)

It follows from (3.18) and (3.19) that

µ∆D(x,y)(t)≥ lim
n→∞

TM(ϕ2n+1x,2n+1y(16nt),ϕ2nx,2ny)(
16nt

4
))

≥ lim
n→∞

TM(ϕx,y(
16nt
λ n+1 ),ϕx,y(

16nt
4λ n )) = 1.

Then ∆D(x,y) = 0 and µ f (2x)−4 f (x)−D(x)(t)≥ψx(
16−λ

16 t) for all x∈ X and t > 0. This completes

the proof.

Theorem 3.3. Let K be a non-Archimedean field, X be a vector space over K and (Y,µ,TM)

be a non-Archimedean random Banach space over K. Let ϕ : X2→ D+ (ϕ(x,y) is denoted by

ϕx,y) be a function such that for some λ ∈ R, 0 < λ < 4

ϕ2x,2y(λ t)≥ ϕx,y(t), (3.26)

for all x,y ∈ X and t > 0. If f : X → Y be an even mapping such that

µ∆ f (x,y)(t)≥ ϕx,y(t); (3.27)

and f (0) = 0, then there exists a unique quadratic mapping Q : X → Y and a unique quartic

mapping D : X → Y satisfying (1.12) and

µ f (x)−Q(x)−D(x)(t)≥ TM(ψx(
3(16−λ )

4
t),ψx(3(4−λ )t)) (3.28)
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where ψx(t) = TM(ϕ0,x(
a2t
12 ),ϕx,x(

(a2−1)t
12 ),ϕ0,2x(

(a4−a2)t
6 ),ϕax,x(

(a4−a2)t
12 )).

Proof. Using Theorems 3.1 and 3.2, we see that there exists a unique quadratic function Q1 :

X → Y and a unique quartic function D1 : X → Y such that µ f (2x)−4 f (x)−D1(x)(t) ≥ ψx(
16−λ

16 t)

and µ f (2x)−16 f (x)−Q1(x)(t)≥ ψx(
4−λ

4 t). Then

µ f (2x)−4 f (x)−D1(x)−[ f (2x)−16 f (x)−Q1(x)](t)≥ TM(µ f (2x)−4 f (x)−D1(x)(t),µ f (2x)−16 f (x)−Q1(x)(t)),

which implies that µ12 f (x)−D1(x)+Q1(x)(t)≥ TM(ψx(
16−λ

16 t),ψx(
4−λ

4 t)). Hence, we have

µ f (x)− 1
12 D1(x)+ 1

12 Q1(x)
(

1
12

t)≥ TM(ψx(
16−λ

16
t),ψx(

4−λ

4
t)).

It follows that µ f (x)−Q(x)−D(x)(t)≥ TM(ψx(
3(16−λ )

4 t),ψx(3(4−λ )t)), where Q(x) =− 1
12Q1(x)

and D(x) = 1
12D1(x).

Theorem 3.4. Let K be a non-Archimedean field, X be a vector space over K and (Y,µ,TM)

be a non-Archimedean random Banach space over K. Let ϕ : X2→ D+ (ϕ(x,y) is denoted by

ϕx,y) be a function such that for some λ ∈ R, 0 < λ < 2

ϕ2x,2y(λ t)≥ ϕx,y(t), (3.29)

for all x,y ∈ X and t > 0. If f : X → Y be an odd mapping with f (0) = 0 and satisfying

µ∆ f (x,y)(t)≥ ϕx,y(t) (3.30)

for all x,y ∈ X and t > 0. Then there exists a unique additive mapping A : X → Y satisfying

(1.12) and

µ f (2x)−8 f (x)−A(x)(t)≥ βx(
2−λ

2
t), (3.31)

where βx(t) = TM(φx(
t
2),αx(t)),

φx(t) = TM(ϕx,x(
a2t
2
),ϕ2x,x((a2−1)t),ϕx,2x((a4−a2)t),

TM(ϕ(1+a)x,x((a
4−a2)t),ϕ(1−a)x,x((a

4−a2)t))),

and

αx(t) = TM(ϕ2x,2x((a2−1)t),ϕx,2x(
a2t
2
),ϕx,x((a4−a2)t),ϕx,3x((a4−a2)t),

TM(ϕ(1+2a)x,x((a
4−a2)t),ϕ(1−2a)x,x((a

4−a2)t))),

Moreover A(x) = limn→∞
1
2n ( f (2n+1x)−8 f (2nx)).
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Proof. Using the oddness of f and (3.30), we get

µ f (x+ay)+ f (x−ay)−a2( f (x+y)+ f (x−y))−2(1−a2) f (x)(t)≥ ϕx,y(t). (3.32)

Replacing y by x in (3.32), we obtain

µ f ((1+a)x)+ f ((1−a)x)−a2 f (2x)−2(1−a2) f (x)(t)≥ ϕx,x(t). (3.33)

Replacing x by 2x in (3.33), we obtain

µ f (2(1+a)x)+ f (2(1−a)x)−a2 f (4x)−2(1−a2) f (2x)(t)≥ ϕ2x,2x(t). (3.34)

Again replacing (x,y) by (2x,x) in (3.32), we get

µ f ((2+a)x)+ f ((2−a)x)−a2( f (3x)+ f (x))−2(1−a2) f (2x)(t)≥ ϕ2x,x(t) (3.35)

for all x ∈ X and t > 0. Replacing y by 2x in (3.32), we obtain

µ f ((1+2a)x)+ f ((1−2a)x)−a2( f (3x)− f (x))−2(1−a2) f (x)(t)≥ ϕx,2x(t) (3.36)

for all x ∈ X and t > 0. Replacing y by 3x in (3.32), we get

µ f ((1+3a)x)+ f ((1−3a)x)−a2( f (4x)− f (2x))−2(1−a2) f (x)(t)≥ ϕx,3x(t) (3.37)

for all x ∈ X and t > 0. Replacing (x,y) by ((1+a)x,x) in (3.32), we obtain

µ f ((1+2a)x)+ f (x)−a2( f ((2+a)x)+ f (ax))−2(1−a2) f ((1+a)x)(t)≥ ϕ(1+a)x,x(t) (3.38)

for all x ∈ X and t > 0. Again replacing (x,y) by ((1−a)x,x) in (3.32), we obtain

µ f ((1−2a)x)+ f (x)−a2( f ((2−a)x)− f (ax))−2(1−a2) f ((1−a)x)(t)≥ ϕ(1−a)x,x(t) (3.39)

for all x ∈ X and t > 0. By (3.38) and (3.39), we get

µ f ((1+2a)x)+ f ((1−2a)x)+2 f (x)−a2( f ((2+a)x)+ f ((2−a)x))−2(1−a2)( f ((1+a)x)+ f ((1−a)x))(t)

≥ TM(ϕ(1+a)x,x(t),ϕ(1−a)x,x(t))
(3.40)

for all x ∈ X and t > 0. Replacing (x,y) by ((1−2a)x,x) in (3.32), we obtain

µ f ((1−a)x)+ f ((1−3a)x)−a2( f ((2−2a)x)− f (2ax))−2(1−a2) f ((1−2a)x)(t)≥ ϕ(1−2a)x,x(t). (3.41)
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Again replacing (x,y) by ((1+2a)x,x) in (3.32), we get

µ f ((1+3a)x)+ f ((1+a)x)−a2( f ((2+2a)x)+ f (2ax))−2(1−a2) f ((1+2a)x)(t)≥ ϕ(1+2a)x,x(t) (3.42)

By (3.41) and (3.42), we obtain

µ f ((1+3a)x)+ f ((1−3a)x)+ f ((1+a)x)+ f ((1−a)x)−a2( f ((2+2a)x)+ f ((2−2a)x))

−2(1−a2)( f ((1+2a)x)+ f ((1−2a)x))(t)≥ TM(ϕ(1+a)x,x(t),ϕ(1−a)x,x(t)).
(3.43)

Using (3.33), (3.35), (3.36), and (3.40), we see that

µ[4 f (2x)−5 f (x)− f (3x)](t)≥ TM(ϕx,x(
a2t
2
),ϕ2x,x((a2−1)t),ϕx,2x((a4−a2)t),

TM(ϕ(1+a)x,x((a
4−a2)t),ϕ(1−a)x,x((a

4−a2)t)))

= φx(t).

(3.44)

It follows from (3.34), (3.36), (3.33), (3.37), and (3.43) that

µ[ f (4x)−2 f (2x)−2 f (3x)+6 f (x)](t)≥ TM(ϕ2x,2x((a2−1)t),ϕx,2x(
a2t
2
),ϕx,x((a4−a2)t),

ϕx,3x((a4−a2)t),TM(ϕ(1+2a)x,x((a
4−a2)t),

ϕ(1−2a)x,x((a
4−a2)t)))

= αx(t)

(3.45)

for all x ∈ X and t > 0. From (3.44) and (3.45) we have

µ[ f (4x)−10 f (2x)+16 f (x)](t) = µ2 f (3x)−8 f (2x)+10 f (x)+ f (4x)−2 f (3x)−2 f (2x)+6 f (x)(t)

≥ TM(µ2 f (3x)−8 f (2x)+10 f (x)(t),µ f (4x)−2 f (3x)−2 f (2x)+6 f (x)(t))

≥ TM(φx(
t
2
),αx(t)) = βx(t),

which implies that

µ[ f (4x)−8 f (2x)−2( f (2x)−8 f (x))](t)≥ βx(t). (3.46)

Putting H(x) = f (2x)−8 f (x), we see that

µH(2x)−2H(x)(t)≥ βx(t) (3.47)
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for all x∈X and t > 0. New we define the set P by P := {H : X→Y} and introduce a generalized

metric on P as follows

dβ (F,G) = inf{ε ∈ R+ : µF(x)−G(x)(εt)≥ βx(t),∀x ∈ X ,∀t > 0}. (3.48)

Then, it is easy to verify that (P,dβ ) is complete (see [30]). We define an operator J : P→ P by

JL(x) = L(2x)
2 , for all x∈ X . Let F,H ∈ P and ε ∈R+ be an arbitrary constant with dβ (F,H)≤ ε ,

that is,

µF(x)−H(x)(εt)≥ βx(t) (3.49)

for all x ∈ X and t > 0. Then

µJF(x)−JH(x)(
λεt

2
) = µ F(2x)

2 −
H(2x)

2
(
λεt

2
) = µF(2x)−H(2x)(λεt)≥ β2x,2x(λ t)≥ βx(t) (3.50)

for all x ∈ X and t > 0, that is, dβ (JF,JH) ≤ λε

2 . We hence conclude that dβ (JF,JH) ≤
λ

2 dβ (F,H) for any F,H ∈ P. As 0 < λ < 2, then operator J is strictly contractive. It follows

from (3.47) that

µJH(x)−H(x)(
εt
2
) = µ H(2x)

2 −H(x)
(
εt
2
) = µH(2x)−2H(x)(εt)≥ βx(t) (3.51)

for all x ∈ X and t > 0, that is, dβ (JH,H) ≤ ε

2 < ∞. Using Theorem 2.1, we deduce existence

of a fixed point of J, that is, the existence of mapping A : X → Y satisfying the following:

(1) A is a fixed point of J such that limn→∞ dβ (JnH,A) = 0 This implies the equality

A(x) = lim
n→∞

JnH(x) = lim
n→∞

H(2nx)
2n = lim

n→∞

1
2n ( f (2n+1x)−8 f (2nx))

and A(2x) = 2A(x) for all x ∈ X . Also A is the unique fixed point of J on the set

P∗ := {H ∈ S : dβ (F,H)< ∞}.

(2) dβ (H,A)≤ 1
1−Ldβ (JH,H) implies the inequality dβ (H,A)≤ 1

1− λ

2
. Then

µH(x)−A(x)(
2t

2−λ
)≥ βx(t),

which implies that

µH(x)−A(x)(t)≥ βx(
2−λ

2
t). (3.52)
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It follows from (3.29) and (3.30) that

µ∆A(x,y)(t)≥ lim
n→∞

TM(ϕx,y(
2nt

λ n+1 ),ϕx,y(
2nt
8λ n )) = 1.

Then ∆A(x,y) = 0 and µ f (2x)−8 f (x)−A(x)(t)≥ βx(
2−λ

2 t) for all x ∈ X and t > 0. This completes

the proof.

Theorem 3.5. Let K be a non-Archimedean field, X be a vector space over K and (Y,µ,TM)

be a non-Archimedean random Banach space over K. Let ϕ : X2→ D+ (ϕ(x,y) is denoted by

ϕx,y) be a function such that for some λ ∈ R, 0 < λ < 8

ϕ2x,2y(λ t)≥ ϕx,y(t), (3.53)

for all x,y ∈ X and t > 0. If f : X → Y be an odd mapping with f (0) = 0 and satisfying

µ∆ f (x,y)(t)≥ ϕx,y(t) (3.54)

for all x,y ∈ X and t > 0. Then there exists a unique cubic mapping C : X →Y satisfying (1.12)

and

µ f (2x)−2 f (x)−C(x)(t)≥ βx(
8−λ

8
t), (3.55)

where βx(t) = TM(φx(
t
2),αx(t)),

φx(t) = TM(ϕx,x(
a2t
2
),ϕ2x,x((a2−1)t),ϕx,2x((a4−a2)t),

TM(ϕ(1+a)x,x((a
4−a2)t),ϕ(1−a)x,x((a

4−a2)t))),

and

αx(t) = TM(ϕ2x,2x((a2−1)t),ϕx,2x(
a2t
2
),ϕx,x((a4−a2)t),ϕx,3x((a4−a2)t),

TM(ϕ(1+2a)x,x((a
4−a2)t),ϕ(1−2a)x,x((a

4−a2)t))),

Moreover C(x) = limn→∞
1
8n ( f (2n+1x)−2 f (2nx)).

Proof. Using Theorem 3.4, we have

µ[ f (4x)−2 f (2x)−8( f (2x)−2 f (x))](t)≥ βx(t). (3.56)

Putting K(x) = f (2x)−2 f (x), we find that

µ[K(2x)−8K(x)](t)≥ βx(t) (3.57)
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for all x∈X and t > 0. New we define the set N by N := {K : X→Y} and introduce a generalized

metric on N as follows

dβ (F,G) = in f{ε ∈ R+ : µF(x)−G(x)(εt)≥ βx(t),∀x ∈ X ,∀t > 0}. (3.58)

Then, it is easy to verify that (N,dβ ) is complete (see [30]). We define an operator J : N→N by

JL(x) = L(2x)
8 , for all x∈ X . Let F,K ∈N and ε ∈R+ be an arbitrary constant with dβ (F,K)≤ ε ,

that is,

µF(x)−K(x)(εt)≥ βx(t) (3.59)

for all x ∈ X and t > 0. Then

µJF(x)−JK(x)(
λεt

8
) = µ F(2x)

8 −
K(2x)

8
(
λεt

8
) = µF(2x)−K(2x)(λεt)≥ β2x,2x(λ t)≥ βx(t) (3.60)

for all x ∈ X and t > 0, that is, dβ (JF,JK) ≤ λε

8 . We hence conclude that dβ (JF,JK) ≤
λ

8 dβ (F,K) for any F,K ∈ N. As 0 < λ < 8, then operator J is strictly contractive. It follows

from (3.57) that

µJK(x)−K(x)(
εt
8
) = µ K(2x)

8 −K(x)
(
εt
8
) = µK(2x)−8K(x)(εt)≥ βx(t) (3.61)

for all x ∈ X and t > 0, that is, dβ (JK,K)≤ ε

8 < ∞. Using Theorem 2.1, we deduce existence of

a fixed point of J, that is, the existence of mapping C : X → Y satisfying the following:

(1) C is a fixed point of J such that limn→∞ dβ (JnK,C) = 0. This implies the equality

C(x) = lim
n→∞

JnK(x) = lim
n→∞

K(2nx)
2n = lim

n→∞

1
8n ( f (2n+1x)−2 f (2nx))

and C(2x) = 8C(x) for all x ∈ X . Also C is the unique fixed point of J on the set

N∗ := {K ∈ S : dβ (F,K)< ∞}.

(2) dβ (K,C)≤ 1
1−Ldβ (JK,K) implies the inequality dβ (K,C)≤ 1

1− λ

8
Then

µK(x)−C(x)(
8t

8−λ
)≥ βx(t),

which implies that

µK(x)−C(x)(t)≥ βx(
8−λ

8
t). (3.62)
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It follows from (3.53) and (3.54) that

µ∆C(x,y)(t)≥ lim
n→∞

TM(ϕx,y(
8nt

λ n+1 ),ϕx,y(
8nt
2λ n )) = 1.

Then ∆C(x,y) = 0 and µ f (2x)−2 f (x)−C(x)(t)≥ βx(
8−λ

8 t) for all x ∈ X and t > 0. This completes

the proof.

Theorem 3.6. Let K be a non-Archimedean field, X be a vector space over K and (Y,µ,TM)

be a non-Archimedean random Banach space over K. Let ϕ : X2→ D+ (ϕ(x,y) is denoted by

ϕx,y) be a function such that for some λ ∈ R, 0 < λ < 2

ϕ2x,2y(λ t)≥ ϕx,y(t), (3.63)

for all x,y ∈ X and t > 0. If f : X → Y be an odd mapping with f (0) = 0 and satisfying

µ∆ f (x,y)(t)≥ ϕx,y(t); (3.64)

Then there exists a unique additive mapping A : X →Y and a unique cubic mapping C : X →Y

satisfying (1.12) and

µ f (x)−A(x)−C(x)(t)≥ TM(βx(
3(8−λ )

4
t),βx(3(2−λ )t)), (3.65)

where βx(t) = TM(φx(
t
2),αx(t)),

φx(t) = TM(ϕx,x(
a2t
2
),ϕ2x,x((a2−1)t),ϕx,2x((a4−a2)t),

TM(ϕ(1+a)x,x((a
4−a2)t),ϕ(1−a)x,x((a

4−a2)t))),

and

αx(t) = TM(ϕ2x,2x((a2−1)t),ϕx,2x(
a2t
2
),ϕx,x((a4−a2)t),ϕx,3x((a4−a2)t),

TM(ϕ(1+2a)x,x((a
4−a2)t),ϕ(1−2a)x,x((a

4−a2)t))).

Proof. Using Theorems 3.4 and 3.5, there exists a unique additive function A1 : X → Y and a

unique cubic function C1 : X → Y such that µ f (2x)−8 f (x)−A1(x)(t)≥ βx(
2−λ

2 t) and

µ f (2x)−2 f (x)−C1(x)(t)≥ βx(
8−λ

8
t)
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for all x ∈ X and t > 0. Then

µ f (2x)−2 f (x)−C1(x)−[ f (2x)−8 f (x)−A1(x)](t)≥ TM(µ f (2x)−2 f (x)−C1(x)(t),µ f (2x)−8 f (x)−A1(x)(t)),

which implies that µ6 f (x)−C1(x)+A1(x)(t)≥ TM(βx(
8−λ

8 t),βx(
2−λ

2 t)). Hence

µ f (x)− 1
6C1(x)+ 1

6 A1(x)
(
1
6

t)≥ TM(βx(
8−λ

8
t),βx(

2−λ

2
t)).

It follows that µ f (x)−A(x)−C(x)(t)≥ TM(βx(
3(8−λ )

4 t),βx(3(2−λ )t)) for all x∈X and t > 0, where

A(x) =−1
6A1(x) and C(x) = 1

6C1(x).

Theorem 3.7. Let K be a non-Archimedean field, X be a vector space over K and (Y,µ,TM)

be a non-Archimedean random Banach space over K. Let ϕ : X2→ D+ (ϕ(x,y) is denoted by

ϕx,y) be a function such that for some λ ∈ R, 0 < λ < 2

ϕ2x,2y(λ t)≥ ϕx,y(t), (3.66)

for all x,y ∈ X and t > 0. If f : X → Y be a mapping with f (0) = 0 and satisfying

µ∆ f (x,y)(t)≥ ϕx,y(t). (3.67)

Then there exists a unique additive mapping A : X→Y , a unique quadratic mapping Q : X→Y ,

a unique cubic mapping C : X → Y and a unique quartic mapping D : X → Y such that

µ f (x)−A(x)−Q(x)−C(x)−D(x)(t)≥ TM{TM(ψ̃x(
3(16−λ )

4
t), ψ̃x(3(4−λ )t)),

TM(β̃x(
3(8−λ )

4
t), β̃x(3(2−λ )t))},

(3.68)

where

ψ̃x(t) = TM(ϕ̃0,x(
a2t
12

), ϕ̃x,x(
(a2−1)t

12
), ϕ̃0,2x(

(a4−a2)t
6

), ϕ̃ax,x(
(a4−a2)t

12
)),

β̃x(t) = TM(φ̃x(
t
2
), α̃x(t)),

φ̃x(t) = TM(ϕ̃x,x(
a2t
2
), ϕ̃2x,x((a2−1)t), ϕ̃x,2x((a4−a2)t),

TM(ϕ̃(1+a)x,x((a
4−a2)t), ϕ̃(1−a)x,x((a

4−a2)t))),

α̃x(t) = TM(ϕ̃2x,2x((a2−1)t), ϕ̃x,2x(
a2t
2
), ϕ̃x,x((a4−a2)t), ϕ̃x,3x((a4−a2)t),

TM(ϕ̃(1+2a)x,x((a
4−a2)t), ϕ̃(1−2a)x,x((a

4−a2)t))),
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and ϕ̃x,y(t) = TM(ϕx,y(2t),ϕ−x,−y(2t)) for all x ∈ X and t > 0.

Proof. Let f e(x) = 1
2( f (x) + f (−x)) for all x ∈ X . Then f e(0) = 0, f e(−x) = f e(x) and

2∆ f e(x,y) = ∆ f (x,y)+∆ f (−x,−y). Hence

µ2∆ f e(x,y)(t) = µ∆ f (x,y)+∆ f (−x,−y)(t)≥ TM(µ∆ f (x,y)(t),µ∆ f (−x,−y)(t)),

which implies that

µ∆ f e(x,y)(t)≥ TM(µ∆ f (x,y)(2t),µ∆ f (−x,−y)(2t))≥ TM(ϕx,y(2t),ϕ−x,−y(2t)) =: ϕ̃x,y(t).

Using Theorem 3.3 there exist a unique quadratic mapping Q : X → Y and a unique quartic

mapping D : X → Y such that

µ f e(x)−Q(x)−D(x)(t)≥ TM(ψ̃x(
3(16−λ )

4
t), ψ̃x(3(4−λ )t)) (3.69)

where ψ̃x(t) = TM(ϕ̃0,x(
a2t
12 ), ϕ̃x,x(

(a2−1)t
12 ), ϕ̃0,2x(

(a4−a2)t
6 ), ϕ̃ax,x(

(a4−a2)t
12 )). for all x ∈ X and t >

0. Again f o(x) = 1
2( f (x)− f (−x)) for all x ∈ X . Then f o(0) = 0, f o(−x) = − f o(x) and

2∆ f o(x,y) = ∆ f (x,y)−∆ f (−x,−y). Hence

µ2∆ f o(x,y)(t) = µ∆ f (x,y)−∆ f (−x,−y)(t)≥ TM(µ∆ f (x,y)(t),µ∆ f (−x,−y)(t)).

Using Theorem 3.6, we see that there exist a unique additive mapping A : X → Y and a unique

cubic mapping C : X → Y such that

µ f o(x)−A(x)−C(x)(t)≥ TM(β̃x(
3(8−λ )

4
t), β̃x(3(2−λ )t)), (3.70)

where β̃x(t) = TM(φ̃x(
t
2), α̃x(t)),

φ̃x(t) = TM(ϕ̃x,x(
a2t
2
), ϕ̃2x,x((a2−1)t), ϕ̃x,2x((a4−a2)t),

TM(ϕ̃(1+a)x,x((a
4−a2)t), ϕ̃(1−a)x,x((a

4−a2)t))),

and

α̃x(t) = TM(ϕ̃2x,2x((a2−1)t), ϕ̃x,2x(
a2t
2
), ϕ̃x,x((a4−a2)t), ϕ̃x,3x((a4−a2)t),

TM(ϕ̃(1+2a)x,x((a
4−a2)t), ϕ̃(1−2a)x,x((a

4−a2)t)))

for all x ∈ X and t > 0. Using (3.69) and (3.70), we conclude the desired conclusion immedi-

ately.
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In the following, we give a corollary which was obtained in [32].

Corollary 3.8. Let K be a non-Archimedean field, X be a vector space over K and (Y,µ,TM)

be a non-Archimedean random Banach space over K. Let ϕ : X2→ D+ (ϕ(x,y) is denoted by

ϕx,y) be a function such that for some λ ∈ R, 0 < λ < 2 ϕ2x,2y(λ t) ≥ ϕx,y(t), for all x,y ∈ X

and t > 0. If f : X → Y be a mapping with f (0) = 0 and satisfying

µ f (x+2y)+ f (x−2y)−4( f (x+y)+ f (x−y))+6 f (x)− f (2y)− f (−2y)+4 f (y)+4 f (−y)(t)≥ ϕx,y(t).

Then there exists a unique additive mapping A : X→Y , a unique quadratic mapping Q : X→Y ,

a unique cubic mapping C : X → Y and a unique quartic mapping D : X → Y such that

µ f (x)−A(x)−Q(x)−C(x)−D(x)(t)≥ TM{TM(ψ̃x(
3(16−λ )

4
t), ψ̃x(3(4−λ )t)),

TM(β̃x(
3(8−λ )

4
t), β̃x(3(2−λ )t))},

where ψ̃x(t) = TM(ϕ̃0,x(
t
3), ϕ̃x,x(

t
4), ϕ̃0,2x(2t), ϕ̃2x,x(t)), β̃x(t) = TM(φ̃x(

t
2), α̃x(t)),

φ̃x(t) = TM(ϕ̃x,x(2t), ϕ̃2x,x(3t), ϕ̃x,2x(12t),TM(ϕ̃3x,x(12t), ϕ̃(−x,x(12t))),

α̃x(t) = TM(ϕ̃2x,2x(3t), ϕ̃x,2x(2t), ϕ̃x,x(12t), ϕ̃x,3x(12t),TM(ϕ̃5x,x(12t), ϕ̃−3x,x(12t))),

and ϕ̃x,y(t) = TM(ϕx,y(2t),ϕ−x,−y(2t)).
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