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Abstract. In this paper, we introduce a viscosity approximation method for solving common solutions of vari-

ational inequality and fixed point problems. Strong convergence theorems are established in the framework of

Hilbert spaces.
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1. Introduction

Fixed point theory has emerged as an effective and powerful tool for studying a wide class of

real world problems which arise in economics, image reconstruction, transportation, network,

elasticity and optimization; see [1-5] and the references therein.

The computation of fixed points is important in the study of many real world problems,

including inverse problems; for instance, it is not hard to show that the split feasibility problem

and the convex feasibility problem in signal processing and image reconstruction can both be

formulated as a problem of finding fixed points of certain operators, respectively; see [6-8] for

more details and the references therein.
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The aim of this paper is to investigate a viscosity approximation method for solving common

solutions of variational inequality and fixed point problems. Strong convergence theorems are

established in the framework of Hilbert spaces. The organization of this article is as follows. In

Section 2, we provide some necessary preliminaries. In Section 3, a viscosity iterative method is

discussed. Strong convergence theorems of common solutions are established in Hilbert spaces

2. Preliminaries

From now on, we always assume that H is a real Hilbert space, whose the inner product and

the norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let C be a closed convex subset of H and

let A : C→ H be a mapping. We denote by PC be the projection of H onto the closed convex

subset C. The classical variational inequality problem is to find u ∈C such that

〈Au,v−u〉 ≥ 0, ∀v ∈C. (2.1)

We denoted by V I(C,A) the set of solutions of the variational inequality. One can see that the

variational inequality problem (2.1) is equivalent to a fixed point problem, that is, an element

u ∈C is a solution of the variational inequality (2.1) if and only if u ∈C is a fixed point of the

mapping PC(I−λA), where λ > 0 is a constant and I is the identity mapping.

Recall that a mapping A : C→ H is said to be inverse-strongly monotone if there exists a

positive real number µ such that

〈Ax−Ay,x− y〉 ≥ µ‖Ax−Ay‖2, ∀x,y ∈C.

Recall that a mapping T : C→C is said to be nonexpansive if

‖T x−Ty‖ ≤ ‖x− y‖, ∀x,y ∈C.

In this paper, we denote by F(T ) the set of fixed points of T . Recall that a mapping f : C→C

is said to be contractive if there exists α ∈ (0,1) such that

‖ f (x)− f (y)‖ ≤ α‖x− y‖, ∀x,y ∈C.
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Recall that a linear bounded operator B : C→C is said to be strongly positive if there exists a

constant γ̄ > 0 such that 〈Bx,x〉 ≥ γ̄‖x‖2, ∀x ∈C. Recall that monotone mapping T : H→ 2H is

said to be maximal if the graph of G(T ) of T is not properly contained in the graph of any other

monotone mapping. Recall that set-valued mapping T : H → 2H is said to be monotone if, for

all x,y ∈H, f ∈ T x and g ∈ Ty imply 〈x−y, f −g〉 ≥ 0. It is known that a monotone mapping T

is maximal if and only if, for any (x, f ) ∈H×H, 〈x−y, f −g〉 ≥ 0 for all (y,g) ∈G(T ) implies

f ∈ T x.

Let A be a monotone mapping of C into H and NCv be the normal cone to C at v ∈ C, i.e.,

NCv = {w ∈ H : 〈v−u,w〉 ≥ 0, ∀u ∈C} and define

T v =


Av+NCv, v ∈C,

/0, v /∈C.

Then T is maximal monotone and 0 ∈ T v if and only if v ∈V I(C,A); see [9] and the references

therein.

Iterative methods for nonexpansive mappings have recently been applied to solve convex

minimization problems; see [10-15] and the references therein. A typical problem is to mini-

mize a quadratic function over the set of the fixed points of a nonexpansive mapping on a real

Hilbert space H:

min
x∈Ω

1
2
〈Bx,x〉−〈x,b〉, (2.2)

where B is a linear bounded operator on H, Ω is the fixed point set of a nonexpansive mapping

S and b is a given point in H.

In [14], it is proved that the sequence {xn} defined by the iterative method below, with the

initial guess x0 ∈ H chosen arbitrarily,

xn+1 = (I−αnB)Sxn +αnb, ∀n≥ 0,

converges strongly to the unique solution of the minimization problem (2.2) provided the se-

quence {αn} satisfies certain conditions.
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Recently, Marino and Xu [11] introduced a general iterative scheme by the viscosity approx-

imation method:

x0 ∈ H, xn+1 = (I−αnB)Sxn +αnγ f (xn), ∀n≥ 0,

where S is a nonexpansive mapping on H, f is a contraction on H with the coefficient α , B is

a bounded linear strongly positive operator on H with the coefficient γ̄ and γ is a constant such

that 0 < γ < γ̄/α . They proved that the sequence {xn} generated by the above iterative scheme

converges strongly to the unique solution of the variational inequality: 〈(B−γ f )x∗,x−x∗〉 ≥ 0,

∀x∈ F(S), which is the optimality condition for the minimization problem minx∈F(S)
1
2〈Bx,x〉−

h(x), where h is a potential function for γ f (i.e., h′(x) = γ f (x) for all x ∈ H.)

Recently, variational inequalities and fixed point problems have been considered by many au-

thors; see [16-20] and the references therein. For finding a common element of the sets of fixed

points of nonexpansive mappings and solutions of variational inequalities for µ-inverse-strongly

monotone mapping, Iiduka and Takahashi [21] proposed the following iterative scheme:

x1 = x ∈C, xn+1 = αnx+(1−αn)SPC(xn−λnAxn), ∀n≥ 1,

where {αn} is a sequence in (0,1) and {λn} is a sequence in (0,2µ). They proved that the

sequence {xn} converges strongly to some z ∈ F(S)∩V I(C,A).

In this paper, we consider a mapping Wn defined by

Un,n+1 = I,

Un,n = γnTnUn,n+1 +(1− γn)I,

Un,n−1 = γn−1Tn−1Un,n +(1− γn−1)I,

· · ·

Un,k = γkTkUn,k+1 +(1− γk)I,

Un,k−1 = γk−1Tk−1Un,k +(1− γk−1)I,

· · ·

Un,2 = γ2T2Un,3 +(1− γ2)I,

Wn =Un,1 = γ1T1Un,2 +(1− γ1)I,

(2.3)
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where γ1, γ2, . . . are real numbers such that 0 ≤ γn ≤ 1 and T1,T2, · · · be an infinite family of

mappings of C into itself. Nonexpansivity of each Ti ensures the nonexpansivity of Wn.

Concerning Wn, we have the following lemmas which are important to prove our main results.

Lemma 2.1. [8] Let C be a nonempty closed convex subset of a strictly convex Banach space E.

Let T1,T2, · · · be nonexpansive mappings of C into itself such that ∩∞
n=1F(Tn) 6= /0 and γ1,γ2, · · ·

be real numbers such that 0 < γn ≤ b < 1 for any n≥ 1. Then, for all x ∈C and k ∈ N, the limit

limn→∞Un,kx exists.

Using Lemma 2.1, one can define the mapping W of C into itself as follows.

Wx = lim
n→∞

Wnx = lim
n→∞

Un,1x, ∀x ∈C. (2.4)

Such a mapping W is called the W -mapping generated by T1,T2, · · · and γ1,γ2, · · · .

Throughout this paper, we shall always assume that 0 < γi ≤ b < 1 for all i≥ 1.

Lemma 2.2. [8] Let C be a nonempty closed convex subset of a strictly convex Banach space E.

Let T1,T2, · · · be nonexpansive mappings of C into itself such that ∩∞
n=1F(Tn) 6= /0 and γ1,γ2, · · ·

be real numbers such that 0 < γn ≤ b < 1 for any n≥ 1. Then F(W ) = ∩∞
n=1F(Tn).

Lemma 2.3. [6] Let C be a nonempty closed convex subset of a Hilbert space H. Let T1,T2, · · ·

be nonexpansive mappings of C into itself such that ∩∞
n=1F(Tn) 6= /0 and γ1,γ2, · · · be a real

sequence such that 0 < γn ≤ b < 1 for all n≥ 1. If K is any bounded subset of C, then

lim
n→∞

sup
x∈K
‖Wx−Wnx‖= 0.

In order to prove our main results, we also need the following lemmas.

Lemma 2.4. [11] Assume that B is a strong positive linear bounded operator on a Hilbert space

H with coefficient γ̄ > 0 and 0 < ρ ≤ ‖B‖−1. Then ‖I−ρB‖ ≤ 1−ργ̄ .

Lemma 2.5 [11] Let H be a Hilbert space, B be a strongly positive linear bounded self-adjoint

operator on H with the coefficient γ̄ > 0. Assume that 0 < γ < γ̄/α . Let T : H → H be a

nonexpansive mapping with a fixed point xt of the contraction x 7→ tγ f (x)+ (I− tB)T x. Then



234 CHANGQUN WU

{xt} converges strongly as t→ 0 to a fixed point x̄ of T , which solves the variational inequality:

〈(B− γ f )x̄, x̄− z〉 ≤ 0, ∀z ∈ F(T ).

Equivalently, x̄ = PF(γ f + I−B)x̄.

Lemma 2.6. [22] Let H be a Hilbert space, C a closed convex subset of H, f : C → C a

contraction with the coefficient α ∈ (0,1) and B a strongly positive linear bounded operator

with the coefficient γ̄ > 0. Then, for any 0 < γ < γ̄

α
,

〈x− y,(B− γ f )x− (B− γ f )y〉 ≥ (γ̄− γα)‖x− y‖2, ∀x,y ∈C.

That is, B− γ f is strongly monotone with the coefficient γ̄−αγ .

Lemma 2.7. [23] Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤ (1− γn)αn +δn,

where {γn} is a sequence in (0,1) and {δn} is a sequence such that

(i) ∑
∞
n=1 γn = ∞;

(ii) limsupn→∞
δn
γn
≤ 0 or ∑

∞
n=1 |δn|< ∞.

Then limn→∞ αn = 0.

3. Main Results

Theorem 3.1. Let H be a real Hilbert space and let C be be a nonempty closed convex subset of

H such that C±C⊂C. Let A :C→H be a µ-inverse-strongly monotone mapping. Let f :C→C

be a contraction with the coefficient α and let T1,T2, · · · be a sequence of nonexpansive self-

mappings on C. Let B be a strongly positive linear bounded self-adjoint operator of C into itself

with the coefficient γ̄ > 0. Assume that 0 < γ < γ̄

α
. Let the sequence {xn} be generated by

x1 ∈C, xn+1 = αnγ f (Wnxn)+(I−αnB)WnPC(I−λnA)xn, ∀n≥ 1,

where the mapping Wn is defined by (2.3), {αn} is a sequence in (0,1) and {λn} is a sequence

in (0,2µ). If F = ∩∞
i=1F(Ti)∩V I(C,A) 6= /0 and {αn} and {λn} are chosen such that

(a) limn→∞ αn = 0;
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(b) ∑
∞
n=1 αn = ∞;

(c) ∑
∞
n=1 |λn+1−λn|< ∞ and ∑

∞
n=1 |αn+1−αn|< ∞;

(d) {λn} ⊂ [u,v] f or some u,v with 0 < u < v < 2µ ,

then the sequence {xn} converges strongly to some x∗ ∈ F, which uniquely solves the following

variation inequality:

〈Bx∗− γ f (x∗),x∗− p〉 ≤ 0, ∀p ∈ F.

Equivalently, we have x∗ = PF(γ f + I−B)x∗.

Proof. First, we show that {xn} is bounded. Note that the mapping I−λnA is nonexpansive for

each n≥ 1. Indeed, from the condition (d), for ∀x,y ∈C, we have

‖(I−λnA)x− (I−λnA)y‖2

≤ ‖x− y‖2−2λn〈Ax−Ay,x− y〉+λ
2
n ‖Ax−Ay‖2

≤ ‖x− y‖2−2λnµ‖Ax−Ay‖2 +λ
2
n ‖Ax−Ay‖2

= ‖x− y‖2 +λn(λn−2µ)‖Ax−Ay‖2

≤ ‖x− y‖2.

This shows that I−λnA is a nonexpansive mapping. Noticing that condition (a), we may as-

sume, with no loss of generality, that αn ≤ ‖B‖−1 for all n ≥ 1. Using Lemma 2.4, we know

that, if 0 < αn ≤ ‖B‖−1 for all n≥ 1, then ‖I−αnB‖ ≤ 1−αnγ̄ . Fixing p ∈ F , we have

‖xn+1− p‖

= ‖αn(γ f (Wnxn)−Bp)+(I−αnB)(WnPC(I−λnA)xn− p)‖

≤ αn‖γ f (Wnxn)−Bp‖+(1−αnγ̄)‖WnPC(I−λnA)xn− p‖

≤ αnγ‖ f (Wnxn)− f (p)‖+αn‖γ f (p)−Bp‖+(1−αnγ̄)‖xn− p‖

≤ [1−αn(γ̄− γα)]‖xn− p‖+αn‖γ f (p)−Bp‖.

By simple inductions, we obtain

‖xn− p‖ ≤max{‖x1− p‖, ‖Bp− γ f (p)‖
γ̄− γα

} ∀n≥ 1,
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which yields that the sequence {xn} is bounded. Putting ρn = PC(I−λnA)xn, we have

‖ρn+1−ρn‖

= ‖PC(I−λn+1A)xn+1−PC(I−λnA)xn‖

≤ ‖(I−λn+1A)xn+1− (I−λnA)xn‖

= ‖(I−λn+1A)xn+1− (I−λn+1A)xn +(I−λn+1A)xn− (I−λnA)xn‖

= ‖xn+1− xn‖+ |λn+1−λn|‖Axn‖.

(3.1)

It follow that

‖xn+2− xn+1‖

= ‖(I−αn+1B)(Wn+1ρn+1−Wnρn)− (αn+1−αn)BWnρn

+ γ[αn+1( f (Wn+1xn+1)− f (Wnxn))+ f (xn)(αn+1−αn)]‖

≤ (1−αn+1γ̄)(‖ρn+1−ρn‖+‖Wn+1ρn−Wnρn‖)+ |αn+1−αn|‖BWnρn‖

+ γ[αn+1α‖xn+1− xn‖+‖Wn+1xn−Wnxn‖+‖ f (xn)‖|αn+1−αn|].

(3.2)

Since Ti and Un,i are nonexpansive, we find that

‖Wn+1ρn−Wnρn‖= ‖γ1T1Un+1,2ρn− γ1T1Un,2ρn‖

≤ γ1‖Un+1,2ρn−Un,2ρn‖

= γ1‖γ2T2Uu+1,3ρn− γ2T2Un,3ρn‖

≤ γ1γ2‖Uu+1,3ρn−Un,3ρn‖

≤ · · ·

≤ γ1γ2 · · ·γn‖Un+1,n+1ρn−Un,n+1ρn‖

≤M1

n

∏
i=1

γi,

where M1 ≥ 0 is an appropriate constant such that ‖Un+1,n+1ρn−Un,n+1ρn‖ ≤M1 for all n≥ 1.

Using (3.1) and (3.2), we arrive at

‖xn+2− xn+1‖ ≤ [1−αn+1(γ̄−αγ)]‖xn+1− xn‖

+M2(2
n

∏
i=1

γi +2|αn+1−αn|+ |λn+1−λn|),
(3.3)
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where M2 is an appropriate constant such that

M2 = max{M1,sup
n≥1
{‖Axn‖},γ sup

n≥1
{‖ f (xn)‖},sup

n≥1
{‖BWnρn‖}}.

Using the restrictions (a), (b) and (c), we find that

lim
n→∞
‖xn+1− xn‖= 0. (3.4)

Note that
‖ρn− p‖2 ≤ ‖(xn− p)−λn(Axn−Ap)‖2

= ‖xn− p‖2−2λn〈xn− p,Axn−Ap〉+λ
2
n ‖Axn−Ap‖2

≤ ‖xn− p‖2−2λnµ‖Axn−Ap‖2 +λ
2
n ‖Axn−Ap‖2

= ‖xn− p‖2 +λn(λn−2µ)‖Axn−Ap‖2.

(3.5)

On the other hand, we have

‖xn+1− p‖2

= ‖αnγ f (xn)+(I−αnB)Wnρn− p‖2

≤ (αn‖γ f (Wnxn)−Bp‖+(1−αnγ̄)‖Wnρn− p‖)2

≤ (αn‖γ f (Wnxn)−Bp‖+(1−αnγ̄)‖ρn− p‖)2

≤ αn‖γ f (Wnxn)−Bp‖2 +‖ρn− p‖2 +2αn‖γ f (Wnxn)−Bp‖‖ρn− p‖.

(3.6)

Substituting (3.5) into (3.6), we obtain

‖xn+1− p‖2 ≤ αn‖γ f (Wnxn)−Bp‖2 +‖xn− p‖2 +λn(λn−2µ)‖Axn−Ap‖2

+2αn‖γ f (xn)−Bp‖‖ρn− p‖.

It follows that

u(2µ− v)‖Axn−Ap‖2

≤ αn‖γ f (xn)−Bp‖2 +‖xn− p‖2−‖xn+1− p‖2

+2αn‖γ f (xn)−Bp‖‖ρn− p‖

≤ αn‖γ f (xn)−Bp‖2 +(‖xn− p‖+‖xn+1− p‖)‖xn− xn+1‖

+2αn‖γ f (xn)−Bp‖‖ρn− p‖.
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Using (2.4), we see that

lim
n→∞
‖Axn−Ap‖= 0. (3.7)

Since PC is firmly nonexpansive, we find that

‖ρn− p‖2 ≤〈(I−λnA)xn− (I−λnA)p,ρn− p〉

=
1
2
{‖(I−λnA)xn− (I−λnA)p‖2 +‖ρn− p‖2

−‖(I−λnA)xn− (I−λnA)p− (ρn− p)‖2}

≤1
2
{‖xn− p‖2 +‖ρn− p‖2−‖(xn−ρn)−λn(Axn−Ap)‖2}

=
1
2
{‖xn− p‖2 +‖ρn− p‖2−‖xn−ρn‖2−λ

2
n ‖Axn−Ap‖2

+2λn〈xn−ρn,Axn−Ap〉},

which yields that

‖ρn− p‖2 ≤‖xn− p‖2 +2λn‖xn−ρn‖‖Axn−Ap‖−‖xn−ρn‖2. (3.8)

This in turn implies that

‖xn+1− p‖2 ≤ αn‖γ f (Wnxn)−Bp‖2 +‖xn− p‖2 +2λn‖xn−ρn‖‖Axn−Ap‖

+2αn‖γ f (Wnxn)−Bp‖‖ρn− p‖−‖xn−ρn‖2.

Hence, we have

‖xn−ρn‖2 ≤ αn‖γ f (Wnxn)−Bp‖2 +‖xn− p‖2−‖xn+1− p‖2

+2λn‖xn−ρn‖‖Axn−Ap‖+2αn‖γ f (Wnxn)−Bp‖‖ρn− p‖

≤ αn‖γ f (Wnxn)−Bp‖2 +(‖xn− p‖+‖xn+1− p‖)‖xn+1− xn‖

+2λn‖xn−ρn‖‖Axn−Ap‖+2αn‖γ f (Wnxn)−Bp‖‖ρn− p‖.

This yields that

lim
n→∞
‖xn−ρn‖= 0. (3.9)

Notice that

‖ρn−Wnρn‖ ≤ ‖xn+1−Wnρn‖+‖xn− xn+1‖+‖xn−ρn‖

≤ αn‖γ f (xn)−BWnρn‖+‖xn− xn+1‖+‖xn−ρn‖.
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Using the restriction (a), we find from (3.4) and (3.9) that

lim
n→∞
‖ρn−Wnρn‖= 0. (3.10)

Since the sequence {xn} is bounded, we see that {ρn} is also a bounded sequence in C. Without

loss of generality, we can assume that there exists a bounded set K ⊂C such that ρn ∈ K for all

n≥ 1. On the other hand, we have

‖Wρn−ρn‖ ≤ ‖Wρn−Wnρn‖+‖Wnρn−ρn‖

≤ sup
ρ∈K
‖Wρ−Wnρ‖+‖Wnρn−ρn‖.

Using Lemma 1.3, we obtain from (3.10) that

lim
n→∞
‖Wρn−ρn‖= 0. (3.11)

Now, we are in a position to show that xn→ x∗ as n→∞. First, we prove that the uniqueness

of the solution of the variational inequality (2.1), which is indeed a consequence of the strong

monotonicity of B− γ f . Suppose that x∗ ∈ F and x∗∗ ∈ F both are solutions to (2.1). Then we

have

〈(B− γ f )x∗,x∗− x∗∗〉 ≤ 0

and

〈(B− γ f )x∗∗,x∗∗− x∗〉 ≤ 0.

Adding up the two inequalities, we see that

〈(B− γ f )x∗− (B− γ f )x∗∗,x∗− x∗∗〉 ≤ 0.

The strong monotonicity of B− γ f implies that x∗ = x∗∗ and the uniqueness is proved. Let x∗

be the unique solution of (2.1). That is, x∗ = PF(γ f +(I−B))x∗.

Next, we show that

limsup
n→∞

〈Bx∗− γ f (x∗),x∗− xn〉 ≤ 0. (3.12)

To show it, we choose a subsequence {xni} of {xn} such that

limsup
n→∞

〈Bx∗− γ f (x∗),x∗− xn〉= lim
i→∞
〈Bx∗− γ f (x∗),x∗− xni〉.
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Since {xni} is bounded, it follows that that there is a subsequence {xni j
} of {xni} converges

weakly to p. We may assume that, without loss of generality, that xni ⇀ p. Therefore, we have

p ∈ F . Indeed, let us first show that p ∈V I(C,A). Put

Tw =


Av+NCv, v ∈C

/0, v /∈C.

Then T is maximal monotone. Let (v,w) ∈ G(T ). Since w−Av ∈ NCv and ρn ∈ C, we have

〈v−ρn,w−Av〉 ≥ 0.

On the other hand, from ρn = PC(I− λnA)xn, we have 〈v− ρn,ρn− (I− λnA)xn〉 ≥ 0 and

hence 〈v−ρn,
ρn−xn

λn
+Axn〉 ≥ 0. It follows that

〈v−ρni,w〉

≥ 〈v−ρni,Av〉 ≥ 〈v−ρni,Av〉−〈v−ρni,
ρni− xni

λni

+Axni〉

≥ 〈v−ρni,Av− ρni− xni

λni

−Axni〉

= 〈v−ρni,Av−Aρni〉+ 〈v−ρni,Aρni−Axni〉−〈v−ρni,
ρni− xni

λni

〉

≥ 〈v−ρni,Aρni−Axni〉−〈v−ρni,
ρni− xni

λni

〉,

which implies that 〈v− p,w〉 ≥ 0. We have p ∈ A−10 and hence p ∈V I(C,A).

Next, let us show p ∈ ∩∞
i=1F(Ti). Using the Opial’s condition, we find that

liminf
i→∞

‖ρni− p‖< liminf
i→∞

‖ρni−W p‖

= liminf
i→∞

‖ρni−Wρni +Wρni−W p‖

≤ liminf
i→∞

‖Wρni−W p‖

≤ liminf
i→∞

‖ρni− p‖,

which is a contradiction. Thus we have p ∈ F(W ) = ∩∞
i=1F(Ti). On the other hand, we have

limsup
n→∞

〈Bx∗− γ f (x∗),x∗− xn〉= lim
i→∞
〈Bx∗− γ f (x∗),x∗− xni〉

= 〈Bx∗− γ f (x∗),x∗− p〉 ≤ 0.
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Note that
‖xn+1− x∗‖2

≤ (1−αnγ̄)2‖Wnρn− x∗‖2 +2αn〈γ f (Wnxn)−Bx∗,xn+1− x∗〉

≤ (1−αnγ̄)2‖xn− x∗‖2 +αγαn(‖xn− x∗‖2 +‖xn+1− x∗‖2)

+2αn〈γ f (x∗)−Bx∗,xn+1− x∗〉.

Therefore, we have

‖xn+1− x∗‖2

≤ (1−αnγ̄)2 +αnγα

1−αnγα
‖xn− x∗‖2 +

2αn

1−αnγα
〈γ f (x∗)−Bx∗,xn+1− x∗〉

=
(1−2αnγ̄ +αnαγ)

1−αnγα
‖xn− x∗‖2 +

α2
n γ̄2

1−αnγα
‖xn− x∗‖2

+
2αn

1−αnγα
〈γ f (x∗)−Bx∗,xn+1− x∗〉

≤ [1− 2αn(γ̄−αγ)

1−αnγα
]‖xn− x∗‖2

+
2αn(γ̄−αγ)

1−αnγα
[

1
γ̄−αγ

〈γ f (x∗)−Bx∗,xn+1− x∗〉+ αnγ̄2

2(γ̄−αγ)
M3],

where M3 is an appropriate constant such that M3 ≥ supn≥1 ‖xn− x∗‖2. Put

kn =
2αn(γ̄−αγ)

1−αnαγ
,

dn =
1

γ̄−αγ
〈γ f (x∗)−Bx∗,xn+1−q〉+ αnγ̄2

2(γ̄−αγ)
M3.

Hence, we have

‖xn+1− x∗‖2 ≤ (1− kn)‖xn− x∗‖+bndn.

It follows that

lim
n→∞

kn = 0,
∞

∑
n=1

kn = ∞, limsup
n→∞

dn ≤ 0.

Using (2.7), we conclude the desired conclusion immediately. This completes the proof.

Putting γ = 1 and B = I in Theorem 3.1, we have the following results.

Corollary 3.2. Let H be a real Hilbert space and let C be be a nonempty closed convex subset

of H. Let A : C→H be a µ-inverse-strongly monotone mapping. Let f : C→C be a contraction
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with the coefficient α and let T1,T2, · · · be a sequence of nonexpansive self-mappings on C. Let

the sequence {xn} be generated by

x1 ∈C, xn+1 = αn f (Wnxn)+(1−αn)WnPC(I−λnA)xn, ∀n≥ 1,

where the mapping Wn is defined by (2.3), {αn} is a sequence in (0,1) and {λn} is a sequence

in (0,2µ). If F = ∩∞
i=1F(Ti)∩V I(C,A) 6= /0 and {αn} and {λn} are chosen such that

(a) limn→∞ αn = 0;

(b) ∑
∞
n=1 αn = ∞;

(c) ∑
∞
n=1 |λn+1−λn|< ∞ and ∑

∞
n=1 |αn+1−αn|< ∞;

(d) {λn} ⊂ [u,v] f or some u,v with 0 < u < v < 2µ ,

then the sequence {xn} converges strongly to some x∗ ∈ F, which uniquely solves the following

variation inequality:

〈x∗− γ f (x∗),x∗− p〉 ≤ 0, ∀p ∈ F.

Equivalently, we have x∗ = PF f (x∗).

For a single mapping, we have the following.

Corollary 3.3. Let H be a real Hilbert space and let C be be a nonempty closed convex subset

of H such that C±C ⊂ C. Let A : C → H be a µ-inverse-strongly monotone mapping. Let

f : C→ C be a contraction with the coefficient α and let T be a nonexpansive self-mappings

on C. Let B be a strongly positive linear bounded self-adjoint operator of C into itself with the

coefficient γ̄ > 0. Assume that 0 < γ < γ̄

α
. Let the sequence {xn} be generated by

x1 ∈C, xn+1 = αnγ f (T xn)+(I−αnB)T PC(I−λnA)xn, ∀n≥ 1,

{αn} is a sequence in (0,1) and {λn} is a sequence in (0,2µ). If F = F(T )∩V I(C,A) 6= /0 and

{αn} and {λn} are chosen such that

(a) limn→∞ αn = 0;

(b) ∑
∞
n=1 αn = ∞;

(c) ∑
∞
n=1 |λn+1−λn|< ∞ and ∑

∞
n=1 |αn+1−αn|< ∞;

(d) {λn} ⊂ [u,v] f or some u,v with 0 < u < v < 2µ ,
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then the sequence {xn} converges strongly to some x∗ ∈ F, which uniquely solves the following

variation inequality:

〈Bx∗− γ f (x∗),x∗− p〉 ≤ 0, ∀p ∈ F.

Equivalently, we have x∗ = PF(γ f + I−B)x∗.
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