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Abstract. In this paper, we prove the existence of some nonunique random fixed point theorems for random

mappings in the context of separable complete G-metric spaces. Our study includes the special cases of orbitally

complete G-metric spaces, G-metric spaces with two metrics and the G-metric spaces satisfying the minimal class

condition.
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1. Introduction and preliminaries

The notion of G-metric spaces was introduced by Mustafa and Sims [10] as a generalization

of the notion of metric spaces. Many other authors also studied fixed point results in G-metric

spaces; see [1], [9], [13] and the references therein. In fact the study of common fixed points
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of mappings satisfying certain contractive conditions has been at the center of strong research

activity. The following definition is introduced by Mustafa and Sims [10].

Definition 1.1. [10] Let X be a nonempty set and let G : X×X×X→R be a function satisfying

the following properties:

(G1) G(x,y,z) = 0 if x = y = z;

(G2) 0 < G(x,x,y), for all x,y ∈ X with x 6= y;

(G3) G(x,x,y)≤ G(x,y,z), for all x,y,z ∈ X with y 6= z;

(G4) G(x,y,z) = G(x,z,y) = G(y,z,x) = ..., symmetry in all three variables;

(G5) G(x,y,z)≤ G(x,a,a)+G(a,y,z), for all x,y,z,a ∈ X .

Then the function G is called a generalized metric, or, more specifically, a G-metric on X , and

the pair (X ,G) is called a G-metric space.

Definition 1.2. [10] Let (X ,G) be a G-metric space, and let {xn} be a sequence of points of

X , a point x ∈ X is said to be the limit of the sequence {xn}, if limn,m→∞ G(x,xn,xm) = 0, and

we say that the sequence {xn} is G-convergent to x or {xn} G-converges to x. Thus, xn→ x in

a G-metric space (X ,G) if for any ε > 0, there exists k ∈ N such that G(x,xn,xm) < ε for all

m,n≥ k.

Proposition 1.3. [10] Let (X ,G) be a G-metric space. Then the following are equivalent:

(1) {xn} is G-convergent to x;

(2) G(xn,xn,x)→ 0 as n→ ∞;

(3) G(xn,x,x)→ 0 as n→ ∞;

(4) G(xn,xm,x)→ 0 as n,m→ ∞.

Definition 1.4. Let (X ,G) be a G-metric space, a sequence {xn} is called G-Cauchy if for every

ε > 0, there is k ∈ N such that G(xn,xm,xl) < ε , for all n,m, l ≥ k, that is G(xn,xm,xl) < 0 as

n,m, l→+∞.

Proposition 1.5. [10] Let (X ,G) be a G-metric space. Then the following are equivalent:

(1) the sequence {xn} is G-Cauchy;

(2) for every ∈> 0, there is k ∈ N such that G(xn,xm,xm)< ε , for all n,m≥ k.
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Definition 1.6. [10] Let (X ,G) and (X ′,G′) be G-metric spaces and let f : (X ,G)→ (X ′,G′) be

a function. Then f is said to be G-continuous at a point a ∈ X if and only if for every ε > 0,

there is δ > 0 such that x,y ∈ X and G(a,x,y)< δ implies G′( f (a), f (x), f (y))< ε . A function

f is G-continuous at X if and only if it is G-continuous at all a ∈ X .

Proposition 1.7. [10] Let (X ,G) be a G-metric space. Then the function G(x,y,z) is jointly

continuous in all three of its variables. Every G-metric on X will define a metric dG on X by

dG(x,y)≤ G(x,y,y)+G(y,x,x), ∀ x,y ∈ X . (1.1)

For a symmetric G-metric space,

dG(x,y) = 2G(x,y,y), ∀ x,y ∈ X . (1.2)

However, if G is not symmetric, then the following inequality holds:

3
2

G(x,y,y)≤ dG(x,y)≤ 3G(x,y,y), ∀x,y ∈ X . (1.3)

The following are examples of G-metric spaces.

Example 1.8. [10] Let (R,d) be the usual metric space. Define GS by

Gs(x,y,z)≤ d(x,y)+d(y,z)+d(x,z), ∀x,y,z ∈ R. (1.4)

Then it is clear that (R,Gs) is a G-metric space.

Example 1.9. [10] Let X = {a,b}. Define G on X×X×X by

G(a,a,a) = G(b,b,b) = 0,

G(a,a,b) = 1, G(a,b,b) = 2 (1.5)

and extend G to X ×X ×X by using the symmetry in the variables. Then it is clear that (X ,G)

is a G-metric space.

Definition 1.10. Let (X ,≤) be a partially ordered set, (X ,G) be a G-metric space. A partially

ordered G-metric space (X ,G,≤) is called ordered complete if for each convergent sequence

{xn}∞
n=1 ⊂ X , the following conditions hold:
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i) if {xn} is a non-decreasing sequence in X such that xn→ x∗, then xn ≤ x∗ ∀n ∈ N,

ii) if {yn} is a non-increasing sequence in X such that yn→ y∗, then y∗ ≤ yn ∀n ∈ N.

Definition 1.11. [10] A G-metric space (X ,G) is called G-complete if every G-Cauchy se-

quence in (X ,G) is G-convergent in (X ,G).

Let (X ,d) be a G-metric space and let T : X → X be a mapping. Given an element x ∈ X , we

define an orbit O(x;T ) of T at x by

O(x;T ) =
{

x,T x,T 2x, ...,T nx, . . . .
}
. (1.6)

Then T is called T -orbitally continuous on X if for any sequence
{

xn
}
⊆O(x;T ), we have that

xn→ x∗ implies T xn→ T x∗ for each x∈ X . The G-metric space X is called T -orbitally complete

if every Cauchy sequence
{

xn
}
⊆ O(x;T ) converges to a point x∗ in X . Notice that continuity

implies that T -orbitally continuity and completeness implies T -orbitally completeness of a G-

metric space X , but the converse may not be true.

Ćirić [5] proved the following nonunique fixed point theorem for T -orbitally continuous map-

pings in T -orbitally complete metric spaces.

Theorem 1.12. [5] Let T : X → X be a mapping satisfying

min
{

d(T x,Ty),d(x,T x),d(y,Ty)
}

−min
{

d(x,Ty),d(y,T x)
}
≤ qd(x,y)

(1.7)

for all x,y ∈ X , where 0 ≤ q < 1. Further, if T is T -orbitally continuous and X is T -orbitally

complete, then T has a fixed point.

The purpose of the present paper is to prove the nonunique fixed point theorems of above

type for random mappings in a polish space in different directions.

2. Random mappings with a nonunique random fixed point

Throughout the rest of the paper, let X denote a polish space, i.e., a complete, separable

G-metric space with a metric d. Let (Ω,A ) denote a measurable space with σ -algebra A . A

function x : Ω→ X is said to be a random variable if it is measurable. A mapping T : Ω×X→ X



590 S. V. BEDRE, S. M. KHAIRNAR, B. S. DESALE

is called random mapping if T (.,x) is measurable for each x ∈ X . A random mapping on a G-

metric space X is denoted by T (ω,x) or simply T (ω)x for ω ∈Ω and x∈ X . A random mapping

T (ω) is said to be continuous on X into itself if the mapping T (ω, ·) is continuous on X for each

ω ∈Ω. A measurable function x : Ω→ X is called a random fixed point of the random mapping

T (ω) if T (ω)x(ω) = x(ω) for all ω ∈Ω. Given a random variable x : Ω→ X , by a T (ω)-orbit

of T (ω) at x, we mean a set

O(x;T (ω)) =
{

x(ω),T (ω)x(ω),T 2(ω)x(ω), . . .
}
, (2.1)

for ω ∈Ω. A random mapping T : Ω×X→X is called T (ω)-orbitally continuous, if a sequence

{xn} of measurable functions in O(x;T (ω)) converses to x implies that T (ω)xn→ T (ω)x for

each ω ∈Ω. The G-metric space X is called T (ω)-orbitally complete if every Cauchy sequence

of measurable functions {xn} in O(x;T (ω)) converges to a measurable function x on Ω into X .

The following theorem is essential and frequently used in the theory of random equations and

random fixed point theory for random operators in Polish spaces.

Theorem 2.1. Let X be a Polish space, that is, a complete and separable metric space. Then,

the following statements hold in X.

(a) If {xn(ω)} is a sequence of random variables converging to x(ω) for all ω ∈ Ω, then

x(ω) is also a random variable.

(b) If T (ω, ·) is continuous for each ω ∈Ω and x : Ω→X is a random variable, then T (ω)x

is also a random variable.

Theorem 2.2. Let T (ω) be a T (ω)-orbitally continuous random mapping on T (ω)-orbitally

complete and seperable G-metric spaces X into itself. Satisfying for each ω ∈Ω

min
{

G(T (ω)x,T (ω)y,T (ω)z),G(x,T (ω)x,T (ω)y),G(y,T (ω)y,T (ω)z),G(z,T (ω)z,T (ω)x)
}

−min
{

G(x,T (ω)z,T (ω)z),G(T (ω)x,y,T (ω)x),G(T (ω)y,T (ω)y,z)
}

≤ q(ω)G(x,y,z)
(2.2)

for all x,y,z∈ X, where q : Ω→R+ is measurable function satisfying 0≤ q(ω)≤ 1. Then T (ω)

has a random fixed point.
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Proof. Let x : Ω→ X be an arbitrary measurable function and consider the sequence {xn} of

successive iterates of T (ω) at x defined by

x = x0, x1 = T (ω)x0, .... xn = T (ω)xn−1 (2.3)

for each n∈N. Clearly, {xn} is a sequence of measurable functions on Ω into X . We shall show

that {xn} is a cauchy sequence in X . Taking x = x0, y = x1 and z = x2 in (2.2), we obtain

min
{

G(T (ω)x0,T (ω)x1,T (ω)x2),G(x0,T (ω)x0,T (ω)x1),

G(x1,T (ω)x1,T (ω)x2),G(x2,T (ω)x2,T (ω)x0)
}

−min
{

G(x0,T (ω)x2,T (ω)x2),G(T (ω)x0,x1,T (ω)x0),

G(T (ω)x1,T (ω)x1,x2)
}

≤ q(ω)G(x0,x1,x2),

which further gives

min
{

G(x1,x2,x3),G(x0,x1,x2),G(x1,x2,x3),G(x2,x3,x1)
}

−min
{

G(x0,x3,x3),G(x1,x1,x1),G(x2,x2,x2)
}
≤ qG(x0,x1,x2)

min
{

G(x1,x2,x3),G(x0,x1,x2)
}
≤ qG(x0,x1,x2).

Since G(x0,x1,x2) ≤ qG(x0,x1,x2) is not possible in view of q < 1, one has G(x1,x2,x3) ≤

qG(x0,x1,x2). Proceeding in this way by induction, we see that

G(xn,xn+1,xn+2)≤ qG(xn−1,xn,xn+1) (2.4)

for each n ∈ N. From (2.4) it follows that

G(xn,xn+1,xn+2)≤ qG(xn−1,xn,xn+1)

≤ q2G(xn−2,xn−1,xn)

...

≤ qnG(x0,x1,x2).

(2.5)



592 S. V. BEDRE, S. M. KHAIRNAR, B. S. DESALE

Now, we obtain by triangle inequality

G(xn,xm,xm)≤ G(xn,xn+1,xn+1)+G(xn+1,xn+2,xn+2)

+G(xn+2,xn+3,xn+3)+ ...+G(xm−1,xm,xm)

≤ (qn +qn+1 + ......+qm−1)G(x0,x1,x2)

≤ qn

1−q
G(x0,x1,x1).

(2.6)

Letting n,m→ ∞, we find that G(xn,xm,xm)→ 0. This shows that {xn} is a cauchy sequence in

X . The metric space X being T (ω)-orbitally complete, there is a measurable function x∗ : ω →

X in X such that limn→∞ xn = x∗ Again as T (ω) is T (ω)-orbitally continuous we have

T (ω)x∗(ω) = lim
n→∞

T (ω)xn(ω) = lim
n→∞

xn+1(ω) = x∗(ω), ∀ω ∈Ω.

Thus x∗ is a random fixed point of a random mapping T (ω) on X into itself. This completes the

proof.

Corollary 2.3. Let T (ω) be a T (ω)-orbitally continuous random mapping on a T (ω)-orbitally

complete and separable G-metric space X into itself satisfying for each ω ∈Ω,

G(T (ω)x,T (ω)y,T (ω)z)≤ q(ω)G(x,y,z)

for all x,y,z ∈ X, where q : Ω→ R+ is a measurable function satisfying 0 ≤ q(ω) < 1. Then

T (ω) has a random fixed point.

When T (ω)x = T x for all ω ∈ Ω in Corollary 2.3, we obtain the corresponding results in

Mustafa [9] as a corollary which again includes the famous Banach fixed point theorem for

contraction mappings on a metric space X into X .
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Theorem 2.4. Let T (ω) be a T (ω)-orbitally continuous random selfmapping of a T (ω)-

orbitally complete and separable G-metric space X satisfying for each ω ∈Ω,

min
{
[G(T (ω)x,T (ω)y,T (ω)z)]2,G(T (ω)x,T (ω)y,T (ω)z)G(x,y,z),

d(x,T (ω)x,T (ω)y)G(y,T (ω)y,T (ω)z)
}

−min
{

G(x,T (ω)x,T (ω)y)G(y,T (ω)y,T (ω)z)G(z,T (ω)z,T (ω)x),

G(x,T (ω)z,T (ω)z)G(y,T (ω)x,T (ω)x)G(z,T (ω)y,T (ω)y)
}

≤q(ω)G(x,T (ω)x,T (ω)y)G(y,T (ω)y,T (ω)z)G(z,T (ω)z,T (ω)x)

(2.7)

for all x,y,z ∈ X, where q : Ω→ R+ is a measurable function satisfying 0 ≤ q(ω) < 1. Then

T (ω) has a random fixed point.

Proof. The proof is similar to Theorem 2.2. Therefore, we omit the details here.

As a consequence of Theorem 2.2 we obtain the following corollary.

Corollary 2.5. Let T be a T -orbitally continuous selfmapping of a T -orbitally complete metric

space X satisfying

min
{
[G(T (ω)x,T (ω)y,T (ω)z)]2,G(x,T (ω)x,T (ω)y)G(y,T (ω)y,T (ω)z)G(z,T (ω)z,

T (ω)x),G(T (ω)x,T (ω)y,T (ω)z)G(x,y,z)
}

−min
{

G(x,T (ω)z,T (ω)z)G(y,T (ω)x,T (ω)x)G(z,T (ω)y,T (ω)y),

G(x,T (ω)x,T (ω)y)G(y,T (ω)y,T (ω)z),G(z,T (ω)z,T (ω)x)
}

≤q(ω)G(x,T (ω)x,T (ω)y)G(y,T (ω)y,T (ω)z)G(z,T (ω)z,T (ω)x)
(2.8)

for all x,y ∈ X, where 0≤ q(ω)< 1. Then T has a fixed point.

Sometimes it possible that a metric space may be complete w.r.t. a metric but may not be

complete w.r.t. another metric defined on it. Therefore, it is interesting to obtain the fixed point

theorems in such situation. Next we prove a couple of nonunique random fixed point theorem

in a metric space with two metrics defined on it.

Theorem 2.6. Let X be a G-metric space with two metrics G1 and G2. Let (Ω,A) be a measur-

able space and T : Ω×X → X be a random mapping satisfying the condition (2.2) w.r.t. G2 for
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each ω ∈Ω. Further suppose that

(i) G1(x,y,z)≤ G2(x,y,z) for all x,y ∈ X;

(ii) T (ω) is a T (ω)-orbitally continuous w.r.t.G1;

(iii) X is T (ω)-orbitally complete w.r.t.G1 and

(iv) X is separable G-metric space.

Then T (ω) has random fixed point.

Proof. Let x : Ω→ X be an arbitrarily measurable function and consider the sequence {xn} of

successive iterates of T (ω) at x defined by

x = x0, x1 = T (ω)x0, .... xn = T (ω)xn−1

for each n∈N. clearly {xn} is a sequence of measurable functions on Ω into X . Now proceeding

as in the proof of theorem (2.1) we obtain G2(xn,xm,xm)≤ qn

1−q . Now by hypothesis (i) we have

G1(xn,xm,xm)≤ G2(xn,xm,xm)≤
qn

1−q
G2(x0,x1,x1).

Letting n,m→∞, we find that G1(xn,xm,xm)→ 0. This shows that {xn} is a cauchy sequence in

X w.r.t. G1. The G-metric space (X ,G1) being T (ω)-orbitally complete. There is a measurable

function x∗ : Ω→ X such that limn→∞ xn+1(ω) = x∗(ω). For each ω ∈Ω, from the above limit,

it follows that

T (ω)x∗(ω) = lim
n→∞

T (ω)xn(ω) = lim
n→∞

xn+1(ω) = x∗(ω)

for each ω ∈Ω. Thus T (ω) has random fixed point and the proof of Theorem 2.3 is completed.

Example 2.4. Let X = {0,1,2,3} and G be a G-metric on X given by G(x,y,z) ≤ d(x,y)+

d(y,z) + d(x,z) for all x,y,z ∈ X. Define T (ω) : X → X by T0 = T1 = T2 = 0 and T3 = 1.

Since (X ,G) is complete and separable G-metric space, then it is T (ω)-orbitally complete and

separable G-metric space. Obviously T (ω) is continuous with respect to G, so it is orbitally
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continuous. An easy computation shows that

min
{

G(T1(ω),T2(ω),T3(ω)),G(1,T1(ω),T2(ω)),

G(2,T2(ω),T3(ω)),G(3,T3(ω)),T1(ω))
}

−min
{

G(1,T3(ω),T3(ω)),G(T1(ω),2,T1(ω)),

G(T2(ω),T2(ω),3)
}

= min
{

G(0,0,1),G(1,0,0),G(2,0,1),G(3,1,0)
}

−min
{

G(1,1,1),G(0,2,0),G(0,0,3)
}

≤ min
{

2,2,4,6
}
−min

{
0,4,6

}
≤ 2

≤ q(ω){4}

= q(ω)G(x0,x1,x2)

for all x,y,z ∈ X. So the conditions of Theorem 2.2 are satisfied.

3. Nonunique PPF dependant random fixed point theory

The fixed point theory of nonlinear operators with PPF dependence which is depending upon

past, present and future data was developed in Bernfield et. al. [3]. The domain space of the

nonlinear operator was taken as C(I,E), I = [a,b]⊂R and the range space as E, a Banach space.

An important example of such a nonlinear operator is a delay differential equation. The PPF

dependent fixed point theorems are applied to ordinary nonlinear functional differential equa-

tions for proving the existence of solutions. Random fixed point theory for random operators

in separable Banach spaces is initiated by Hans [6] and Spacek [15] and further developed by

several authors in the literature. A brief survey of such random fixed point theorems appears in

Joshi and Bose [7].

In the present section, we obtain a successful fusion of above two ideas and prove some PPF

dependent random fixed point theorems for random mappings in a separable G-metric space. In

the PPF dependent classical fixed point theory, the Razumikkin or minimal class of functions
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plays a significant role both in proving existence as well as uniqueness of PPF dependent fixed

points. Let E be a metric space and let I be a given closed and bounded interval in R, the set of

real numbers. Let E0 =C(I,E) denote the class of continuous mappings from I to E. We equip

the class C(J,E) with metric d0 defined by d0(x,y) = supt∈J d(x(t),y(t)).

Lemma 3.1. If (E,G) is complete then the G-metric space (E0,G0) is also complete.

Proof. Let {xn} be a Cauchy sequence. Then for ε > 0 there exists an n0 ∈ N such that

G0(φm,φn,φn)< ε for all m> n≥ n0. Since G(φm(t),φn(t),φn(t))< ε for all m,n≥ n0, we have

{φn(t)} is a Cauchy sequence in E. So there exists a function φ∗ ∈ E0 such that limn→∞ φn(t) =

φ∗(t) for all t ∈ J. Now limn→∞ G(φn,φ ,φ) = limn→∞ supt∈J G(φn(t),φ∗(t),φ∗(t)) = 0. Hence

φn→ φ in E0 and the proof of the lemma is completed.

When E is a Banach space and let E0 =C(J,E) be a space of continuous E-valued functions

defined on J Then the minimal class of functions related to a fixed c ∈ J is defined as

Mc =
{

φ ∈ E0 | ‖φ‖E0 = ‖φ(c)‖E
}
.

Now we are in a position to state and prove our random fixed point results concerning the

existence of random fixed points with PPF dependence.

Theorem 3.2. Let (Ω,A ) be a measurable space and E, be a separable complete G-metric

space. Let T : Ω×E0→ E be a continuous random mapping satisfying for each ω ∈Ω

min
{

G(T (ω)φ ,T (ω)ψ,T (ω)ξ ),G(φ(c,w),T (ω)φ ,T (ω)ψ),

G(ψ(c,w),T (ω)ψ,T (ω)ξ ),G(ξ (c,w),T (ω)ξ ,T (ω)φ)
}

−min
{

G(φ(c,w),T (ω)ξ ),T (ω)ξ ),G(T (ω)φ ,ψ(c,w),T (ω)φ),

G(T (ω)ψ,T (ω)ψ,ξ (c,w))
}

≤ q(ω)G(φ ,ψ,ξ )

(3.1)

for all φ ,ψ,ξ ∈ E0, where q : Ω→R+ is a measurable function satisfying 0≤ q(ω)< 1 for all

ω ∈Ω and c ∈ I is a fixed point. Then T (ω) has a random fixed point with PPF dependence.

Proof. Let φ0 : Ω→ E0 be an arbitrary measurable function and define a sequence {xn} in E0

as follows. Suppose that T (ω)φ0 = x1 for some x1 ∈ E. choose φ1 ∈ E0 such that φ1(c,ω) = x1
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and then choose φ2(c,ω) = x2 for some fixed c ∈ I and

G0(φ0,φ1,φ2) = G(φ0(c,w),φ1(c,w),φ2(c,w))

for all ω ∈Ω. Again let T (ω)φ1 = x2 for some x2 ∈ E. Choose φ2(c,w) = x2 and φ3(c,w) = x3

for the fixed c ∈ I and

G0(φ1,φ2,φ3) = G(φ1(c,w),φ2(c,w),φ3(c,w))

for all ω ∈Ω. Proceeding in this way, we obtain a sequence {φn} of points in E of iterations of

T (ω) at φ0 as

T (ω)φn−1 = xn = φn(c,ω) (3.2)

with

G0(φn−2,φn−1,φn) = G(φn−2(c,w),φn−1(c,w),φn(c,w)) (3.3)

for all ω ∈Ω. Clearly, {φn} is a sequence of measurable functions from Ω into E. Consequently

{φn(c)} is a sequence of measurable functions from Ω into E. Consequently {φn(c)} is a

measurable function from Ω into E. We show that {φn(c,ω)} is a cauchy sequence in E.

Taking φ = φ0, ψ = φ1 and ξ = φ2 in inequality (3.1) we obtain

min
{

G(T (ω)φ0,T (ω)φ1,T (ω)φ2),G(φ0(c,w),T (ω)φ0,T (ω)φ1),

G(φ1(c,w),T (ω)φ1,T (ω)φ2),G(φ2(c,w),T (ω)φ2,T (ω)φ0)
}

−min
{

G(φ0(c,w),T (ω)φ2),T (ω)φ2),G(T (ω)φ0,φ1(c,w),T (ω)φ0),

G(T (ω)φ0,T (ω)φ1,φ2(c,w))
}

≤ q(ω)G(φ0,φ1,φ2),

(3.4)

which further gives

min
{

G0(φ1,φ2,φ3),G0(φ0,φ1,φ2)
}

= min
{

G(φ1(c,ω),φ2(c,ω),φ3(c,ω)),G0(φ0(c,ω),φ1(c,ω),φ2(c,ω))
}

≤ qG0(φ0,φ1,φ2).

(3.5)
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Since G0(φ0,φ1,φ2)≤ qG0(φ0,φ1,φ2) (q< 1) is not possible, one has G0(φ1,φ2,φ3)≤ qG0(φ0,φ1,φ2).

Proceeding in this way by induction, one has

G0(φn,φn+1,φn+2)≤ qG0(φn−1,φn,φn+1) (3.6)

for n ∈ N := {1,2,3, · · ·}. By a repeated application of the inequality we get

G0(φn,φn+1,φn+2)≤ qG0(φn−1,φn,φn+1)

...

≤ qnG0(φ0,φ1,φ2).

(3.7)

Now by triangle inequality, one has

G0(xn,xm,xm)≤ G0(xn,xn+1,xn+1)+G0(xn+1,xn+2,xn+2)

+G0(xn+2,xn+3,xn+3)+ ...+G0(xm−1,xm,xm)

≤ (qn +qn+1 + ......+qm−1)G0(x0,x1,x2)

≤ qn

1−q
G0(x0,x1,x2)

→ 0.

(3.8)

Since G(φn(c,ω),φn+1(c,ω),φn+2(c,ω)) = G0(φn(ω),φn+1(ω),φn+2(ω)) for all ω ∈ Ω, we

have that {T (ω)φn} is also a cauchy sequence in E. As E is a complete G-metric space, there

exists a measurable function φ∗ : Ω→ E0 such that φn→ φ∗ and T (ω)φn = φn(c,ω)→ φ∗(c,ω)

as n→ ∞. To prove that φ∗ is a PPF dependent random fixed point of T (ω), we first observe

that since T (ω) is continuous on E0, T (ω) is a continuous at φ∗ . Hence for ε > 0, there exists

a δ > 0 such that G0(φn+1,φ
∗,φ∗) < δ ⇒ G(T φn+1,T φ∗,T φ∗) < ε

2 . Also since T (ω)φn →

φ∗(c,ω) for γ = min{ ε

2 ,δ} there exist n0 ∈ N such that G(T (ω)φn,φ
∗(c,ω),φ∗(c,ω))< γ for

n≥ n0. Thus, one has

G(T (ω)φn,φ
∗(c,ω),φ∗(c,ω))

≤ G(T (ω)φ∗,T (ω)φn,T (ω)φn)+G(T (ω)φn,φ
∗(c,ω),φ∗(c,ω))

<
ε

2
+ γ

< ε.

(3.9)
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Since ε is arbitrary, we have T (ω)φ∗(ω) = φ∗(c,ω), for all ω ∈Ω. This completes the proof.

4. Random fixed points mappings in ordered G-metric spaces

We define an order relation ≤ in X which is a reflexive, antisymmetric and transitive relation

in X . The metric space X together with the order relation ≤ becomes a partially ordered metric

space. A random mapping T : Ω×X→ X is called non-decreasing if for any x,y∈ X with x≤ y

we have that T (ω)x≤ T (ω)y for all ω ∈Ω. Similarly random mapping T : Ω×X→ X is called

non-increasing if for any x,y ∈ X , x ≤ y implies T (ω)x ≥ T (ω)y for all ω ∈ Ω. A monotone

random mapping which is either non-decreasing or non-increasing on X .

The investigation of the existence of fixed points in a partially ordered metric space was first

considered in Ran and Reuriungs [12]. This study was continued in Nieto and Rodrı́guez-López

[11] by assuming the existence of only lower solution instead of usual approach where both the

lower and upper solutions are assumed to exist for the nonlinear equation. These fixed point

theorems are then applied to obtain existence and uniqueness results for nonlinear ordinary

differential equations in the same paper. A further extension of this idea was considered in

Bhaskar and Lakshmikanthan [4], Shatanawi [14], Luong and Thuan [8] and Sachin Bedre et

al. [2] for the coupled fixed point theorems in partially ordered metric spaces. Below we prove

some nonunique random fixed point theorems for monotone random mappings in separable and

complete G-metric spaces.

Theorem 4.1. Let (Ω,A ) be a measurable space and let X be a separable and complete

partially ordered G-metric space. Let T : Ω×X → X be a monotone non-decreasing random

mapping satisfying the contraction condition (2.2) for all comparable elements x, y and z in X.

Further if T (ω) is G-continuous and if there exists an element x0 ∈ X such that x0 ≤ T (ω)x0 for

all ω ∈ Ω, then the random mapping T (ω) has a random fixed point. Further, if every triplet

of elements x,y,z ∈ X has a lower bound and an upper bound, then T (ω) has a unique random

fixed point.

Proof. Let x : Ω→ X be an arbitrary measurable function and define a sequence
{

xn
}

of suc-

cessive approximations of T (ω) by xn+1 = T (ω)xn. Clearly, {xn} is a sequence of measurable
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functions from Ω into X such that

x0 ≤ x1 ≤ ...≤ xn ≤ . . . . (4.1)

We show that {xn} is a Cauchy sequence in X . Taking x= x0, y= x1 and z= x2 in (2.2) we obtain

G(x1,x2,x3)≤ qG(x0,x1,x2). Processing in this way, by induction, we see that G(xn,xn+1,xn+2)≤

qG(xn−1,xn,xn+1) for each n ∈ N := {1,2,3, · · ·}. Then, by repeated application of the above

inequality, we obtain G(xn,xn+1,xn+2)≤ qnG(x0,x1,x2).

Now, by triangle inequality, we get

G0(xn,xm,xm)≤ G0(xn,xn+1,xn+1)+G0(xn+1,xn+2,xn+2)

+G0(xn+2,xn+3,xn+3)+ ...+G0(xm−1,xm,xm)

≤ qn

1−q
G0(x0,x1,x1)

→ 0.

(4.2)

This shows that
{

xn
}

is a Cauchy sequence in X . The ordered G-metric space X being complete,

there is a measurable function x∗ : Ω→ X such that limn→∞ xn = x∗. From the continuity of the

random mapping T (ω) it follows that

x∗(ω) = lim
n→∞

xn+1(ω) = lim
n→∞

T (ω)xn(ω) = T (ω) lim
n→∞

xn(ω) = T (ω)x∗(ω) (4.3)

for all ω ∈ Ω. Thus x∗ is a random fixed point of the random mapping T (ω) on X . If every

triplet of elements x,y,z ∈ X has a lower bound and an upper bound, then it can be shown

lim
n→∞

T n(ω)x = x∗(ω) for all measurable functions x : Ω→ X , where x∗ = lim
n→∞

T n(ω)x0. Thus

T (ω) has a unique random fixed point and the proof of the theorem is completed.

Corollary 4.2. Let (Ω,A ) be a measurable space and let X be a separable and complete

partially ordered G-metric space. Let T : Ω×X → X be a monotone nondecreasing random

mapping satisfying

G(T (ω)x,T (ω)y,T (ω)z)≤ G(x,y,z) (4.4)

for all comparable elements x,y,z ∈ X. Further if T (ω) is continuous and if there exists an

element x0 ∈ X such that x0 ≤ T (ω)x0 for all ω ∈ Ω, then the random mapping T (ω) has a
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random fixed point. Further, if every triplet of elements x,y,z ∈ X has a lower bound and an

upper bound, then T (ω) has a unique random fixed point.

Corollary 4.3. Let X be a partially ordered G-complete metric space and let T : X → X be a

monotone nondecreasing mapping satisfying the contraction condition (2.7) for all comparable

elements x,y,z ∈ X. Further if T is continuous and if there exists an element x0 ∈ X such that

x0 ≤ T x0, then the mapping T has a fixed point.

Corollary 4.4. Let X be a complete metric space and let T : X → X be a monotone non-

decreasing mapping satisfying

G(T x,Ty,T z)≤ qG(x,y,z) (4.5)

for comparable elements x,y,z ∈ X, where 0 ≤ q < 1. Further if T is continuous and if there

exists an element x0 ∈ X such that x0 ≤ T x0, then the mapping T has a fixed point.

Theorem 4.5. Let (Ω,A ) be a measurable space and let (X ,G) be a partially ordered complete

G-separable metric space. Let T : Ω×X→ X be a random mapping satisfying for each ω ∈Ω,

min
{
[G(T (ω)x,T (ω)y,T (ω)z)]2,G(x,T (ω)x,T (ω)y)G(y,T (ω)y,T (ω)z)G(z,T (ω)z,T (ω)x),

G(T (ω)x,T (ω)y,T (ω)z)G(x,y,z)
}

−min
{

G(x,T (ω)z,T (ω)z)G(y,T (ω)x,T (ω)x)G(z,T (ω)y,T (ω)y),

G(x,T (ω)x,T (ω)y)G(y,T (ω)y,T (ω)z),G(z,T (ω)z,T (ω)x)
}

≤q(ω)G(x,T (ω)x,T (ω)y)G(y,T (ω)y,T (ω)z)G(z,T (ω)z,T (ω)x)
(4.6)

for all comparable elements x,y,z ∈ X, where q : Ω→ R+ is a measurable function satisfying

0 ≤ q(ω) < 1 for all ω ∈ Ω. Further if there exists an element x0 ∈ X such that x0 ≤ T (ω)x0,

then T (ω) has a fixed point.

Proof. The proof is similar to Theorem 4.1 and therefore, we omit the details.

Theorem 4.6. Let (Ω,A ) be a measurable space and let (X ,G) be a partially ordered separable

G-metric space. Let T : Ω×X→X be a continuous random mapping satisfying for each ω ∈Ω,
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min
{

G(T (ω)x,T (ω)y,T (ω)z),G(x,T (ω)x,T (ω)y),

G(y,T (ω)y,T (ω)z),G(z,T (ω)z,T (ω)x)
}

−min
{

G(x,T (ω)z,T (ω)z),G(y,T (ω)x,T (ω)x),G(z,T (ω)y,T (ω)y)
}

≤ p(ω)min
{

G(x,T (ω)x,T (ω)y),G(y,T (ω)y,T (ω)z),G(z,T (ω)z,T (ω)x)
}

+q(ω)G(x,y,z)

(4.7)

for all comparable elements x,y,z∈ X, where p,q : Ω→R+ are measurable functions such that

0 ≤ p(ω)+ q(ω) < 1 for all ω ∈ Ω. If there exists an element x0 ∈ X such that x0 ≤ T (ω)x0

for each ω ∈Ω, then T (ω) has a random fixed point.

Proof. The proof is simple and can be obtained by closely observing the proof of Theorem 4.1.

Hence we omit the details.

Next, we deal with the case of a G-metric space X with two metrics G1 and G2 defined on it

and prove some nonunique random fixed point theorems on separable partially ordered G-metric

spaces.

Theorem 4.7. Let (Ω,A ) be a measurable space and let X be an partially ordered G-metric

space with two metrics G1 and G2. Let T : Ω×X → X be a non-decreasing random mapping

satisfying the contractive condition on (2.2) for all comparable elements x,y,z ∈ X. Suppose

that the following conditions hold in X.

(i) G1(x,y,z)≤ G2(x,y,z) for all x,y,z ∈ X .

(ii) T (ω) is continuous w.r.t. G1.

(iii) X is Polish space w.r.t. G1.

Furthermore, if there exists an element x0 ∈ X such that x0 ≤ T (ω)x0 for all ω ∈Ω, then T (ω)

has a random fixed point.

Proof. Consider the sequence
{

xn
}

of successive iterations of T (ω) at x0 defined by xn+1 =

T (ω)xn. Clearly,
{

xn
}

is a sequence of measurable functions from Ω into X w.r.t. the metric

G1 such that x0 ≤ x1 ≤ . . . ≤ xn ≤ . . . . Then, it can be shown as in the proof of Theorem 4.1

that
{

xn
}

is a Cauchy sequence in X w.r.t. the metric G2, that is, for any positive integer m >
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n, G2(xm,xn,xn) ≤ qn

1−qG2(x0,x1,x1). From the hypothesis (i), it follows that G1(xm,xn,xn) ≤
qn

1−qG2(x0,x1,x1)→ 0 as n→ ∞. This shows that
{

xn
}

is a Cauchy sequence w.r.t. the metric

G1. The metric space (X ,G1) being complete and separable, there exists a measurable function

x∗ : Ω→ X such that limn→∞ xn(ω) = x∗(ω) for each ω ∈Ω. From the continuity of T (ω) w.r.t.

G1, it follows that

T (ω)x∗(ω) = lim
n→∞

T (ω)xn(ω) = lim
n→∞

xn+1(ω) = x∗(ω)

for all ω ∈Ω. This proves that T (ω) has a random fixed point in X . This completes the proof.

Remark 4.1. The conclusion of Theorem 4.7 also remains true if we replace the condition

(2.2) with those of (4.6) and (4.7).

Conclusion. In this paper, we prove nonunique random fixed point theorems in polish spaces.

However, more general random fixed point theorems under weaker conditions may be proved

along the similar lines with appropriate modifications. Also, these results may be extended

to two, three and four mappings to prove the random common fixed point theorems in Polish

spaces along the similar lines with appropriate modifications.
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[5] Lj. B. Ćirić, On some maps with nonunique fixed point, Publ. Inst. Math. 17 (1974), 52-58.



604 S. V. BEDRE, S. M. KHAIRNAR, B. S. DESALE

[6] O. Hans, Random fixed point theorems, Trans. 1st Prague Conf. Information Theory, statist. Decision func-

tions, Random Processes, Liblice Nov. 28 to 30, (1956), 105-125.

[7] M. Joshi and R. K. Bose, Some Topics in Nonlinear Functional Analysis, Wiley East. Ltd., New Delhi (1985).

[8] NV. Luong, NX. Thuan, Coupled fixed point theorems in partially ordered G-metric spaces, Math. Comput.

Model. 55 (2012), 1601-1609.

[9] Z. Mustafa, A new structure for generalized metric spaces with applications to fixed point theory, PhD thesis,

The University of Newcastle, Australia (2005).

[10] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006),

289-297.
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