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Abstract. In this paper, we prove the existence of fixed points for two set-valued mappings and two single-valued

mappings satisfying generalized contractive conditions by using the concept of weakly compatible mappings with

control functions and implicit relations in complete metric spaces. Our results extend and generalize the corre-

sponding result in Mehta and Joshi [21].
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1. Introduction and preliminaries

Let (X ,d) be a complete metric space and B(X) be the set of all non-empty, bounded subsets

of X . The function δ (A,B) with A and B in B(X) is defined by

δ (A,B) = sup{d(a,b) : a ∈ A,b ∈ B}.
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If A consists of a single point {a}, we write δ (A,B) = δ (a,B) and if B consists also of a single

point {b}, we write δ (A,B) = δ (a,b) = d(a,b). It follows immediately from the definition that

δ (A,B) = δ (B,A)≥ 0,δ (A,A) = diamA,

δ (A,B)≤ δ (A,C)+δ (C,B),

for all A,B and C in B(X) and if δ (A,B) = 0, then A = B = {a}.

The following lemma was proved in [10].

Lemma 1.1. If {An} and {Bn} are sequences of bounded, nonempty subsets of a complete

metric space (X ,d), which converge to the bounded subsets A and B respectively, then the

sequence {δ (An,Bn)} converges to δ (A,B).

Hybrid fixed point theory is a recent development is the ambit of fixed point theorems for

contracting single-valued and multi-valued mappings in metric spaces. Indeed, the study of

such mappings was initiated during 1980-1983 by Bhaskaran-Subrahmanyam [7], Hadžić [13],

Singh- Kulshrestha [27], Kaneko-Sessa [19], Naimpally et al. [22], Fisher-Sessa [11]. For a

history of fundamental work on this line refer to Singh and Mishra [28], Sessa- Fisher [26] and

for more recent work on this line Beg-Azam [5], Jungck-Rhoades [17], Kaneko [18].

Hybrid fixed point theory has potential applications in functional inclusions, optimization

theory, fractal graphics and discrete dynamics for set-valued operator. By extending the defini-

tion of compatible mappings of Jungck [14], Jungck-Rhoades [16] gave the following definition

for a pair multi-valued and single-valued mappings.

Definition 1.1. Let (X ,d) be a metric space. Let f : X → X and S : X → B(X). S and f are

δ -compatible iff f Sx ∈ B(X) for all x ∈ X and δ ( f Sxn,S f xn)→ 0, whenever {xn} is a sequence

in X such that f xn→ t and Sxn→{t} for some t ∈ X .

Following Jungck [15] and Jungck-Rhoades [17], we have the following definition of weakly

compatible mappings.

Definition 1.2. The mappings f : X → X and S : X → B(X) are weakly compatible iff they

commute at their coincidence points, that is S f x = f Sx, whenever f x ∈ Sx.
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The example 5.1 in [17] shows that weak compatibility is more general than compatibility. In

1984, Khan et al. [20] generalized the notion of altering distance and used it solving for fixed

point problems in metric spaces.

Definition 1.3. A function ϕ : [0,∞)→ [0,∞) is called an altering distance function (control

function) if the following properties are satisfied:

I. ϕ is monotone increasing and continuous,

II. ϕ(t) = 0 if and only if t = 0.

Later on, the concept of weak contractions was introduced in 1997 by Alber et al. [2] in

Hilbert spaces and subsequently it was extended to metric spaces by Rhoades [25]. Following

Rhoades [25], we have the following definition.

Definition 1.4. A mapping f : X → X , where (X ,d) is a metric space, is said to be weakly

contractive if for all x,y ∈ X d( f x, f y) ≤ d(x,y)− φ(d(x,y)), where φ : [0,∞)→ [0,∞) is a

continuous and non-decreasing function such that φ(t) = 0 if and only if t = 0. If one takes

φ(t) = (1− k)t, where 0 < k < 1, a weak contraction reduces to a Banach contraction.

Subsequently, a number of fixed point theorems in metric spaces have been proved by ex-

tending and generalizing the weak contractive conditions based on the concept of weaker forms

of commutativity of mappings (see, for instance [1], [8], [9], [12], [29] and references there-

in). Afterward, several classical fixed point theorems and common fixed point theorems were

unified by considering general contractive conditions expressed by an implicit condition. This

approach has been initiated in the seminal papers Popa [23], [24]. Following Popa’s approach,

a consistent literature on fixed points, common fixed points and coincidence point theorems for

both single-valued and multi-valued mappings, in various ambient spaces has been developed

(see, for instances [3], [4], [6], [21] and references therein).

Definition 1.5. Let F∗ be the set of continuous functions F(t1, t2, t3, t4) : [0,∞)4→ [0,∞) satis-

fying the following conditions,

(F1) F is non-decreasing in variable t1.

(F2) For u≥ 0, v≥ 0, F(u+ v,0,u,v)≤ u.

(F3) F(u,v,0,0)≤ u, F(0,u,0,u)≤ u ∀ u > 0 and F(u,0,u,0)≤ u ∀ u > 0.
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The purpose of this paper is to prove a common fixed point theorem for hybrid contractions

with generalized contractive conditions by using the concept of weakly compatible mappings

with control functions and implicit relations in complete metric spaces.

2. Main results

Now we state our main result.

Theorem 2.1. Let (X ,d) be a complete metric space. Let S,T : X → B(X) be two set-valued

mappings and f ,g : X → X be two single-valued mappings such that for all x,y ∈ X

(1) S(X)⊆ f (X), T (X)⊆ g(X),

(2) ϕ(δ (Sx,Ty))≤ ϕ(M(x,y))−φ(M(x,y)),

where

M(x,y) = F{δ (Ty,gx),δ (Sx, f y),δ (Ty, f y),δ (Sx,gx)}

and ϕ : [0,∞)→ [0,∞) is continuous and monotonic increasing function and φ : [0,∞)→ [0,∞)

is continuous and monotonic decreasing function with ϕ(x) = 0 = φ(x) if and only if x = 0 and

F ∈ F∗. Further if {S,g} and {T, f} are weakly compatible pairs, then S,T, f and g have a

unique common fixed point.

Proof. Let x0 be an arbitrary point in X and define the sequence {xn} inductively. Since S(X)⊆

f (X) and T (X) ⊆ g(X), we can choose points x1,x2 ∈ X such that f x1 ∈ Sx0 = Z0 and gx2 ∈

T x1 = Z1. We continue this process to obtain a sequence f x2n+1 ∈ Sx2n = Z2n and

gx2n+2 ∈ T x2n+1 = Z2n+1, for all n = 0,1,2,3.... .

Applying contractive condition (2), we obtain

ϕ(δ (Z2n,Z2n+1)) = ϕ(δ (Sx2n,T x2n+1))

(3) ≤ ϕ(M(x2n,x2n+1))−φ(M(x2n,x2n+1)),

where
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M(x2n,x2n+1) = F

 δ (T x2n+1,gx2n),δ (Sx2n, f x2n+1),

δ (T x2n+1, f x2n+1),δ (Sx2n,gx2n)


≤ F

 δ (Z2n+1,Z2n−1),δ (Z2n,Z2n),

δ (Z2n+1,Z2n),δ (Z2n,Z2n−1)


≤ F

 (δ (Z2n+1,Z2n)+δ (Z2n,Z2n−1)),0,

δ (Z2n+1,Z2n),δ (Z2n,Z2n−1)

 .

From (F2), we have M(x2n,x2n+1)≤ δ (Z2n,Z2n−1). From (3), we obtain

ϕ(δ (Z2n,Z2n+1)) ≤ ϕ(δ (Z2n,Z2n−1))−φ(δ (Z2n,Z2n−1))

ϕ(δ (Z2n,Z2n+1)) ≤ ϕ(δ (Z2n,Z2n−1)).

Now ϕ is monotonic increasing function. This implies that the sequence {δ (Zn,Zn+1)} is mono-

tonic decreasing and bounded sequence of real numbers. Hence, there exists an r ≥ 0 such that

(4) lim
n→∞
{δ (Zn,Zn+1)}= r.

Taking limit as n→ ∞ in (3) and using the continuity of ϕ and φ , we have ϕ(r)≤ ϕ(r)−φ(r),

which is a contradiction unless r = 0. Let {zn} be an arbitrary point in Zn for n = 0,1,2.... .

Hence

(5) lim
n→∞

d(zn,zn+1)≤ lim
n→∞

δ (Zn,Zn+1) = 0.

Next, we show that {zn} is a Cauchy sequence. It is sufficient to show that {z2n} is a Cauchy

sequence. Suppose that {z2n} is not a Cauchy sequence. Then there exists an ε > 0 such that

each positive integer there exist sequences {2n(k)} and {2m(k)} such that for all positive integer

k,

2m(k)> 2n(k)> k

such that

(6) ε < d(z2n(k),z2m(k))≤ δ (Z2n(k),Z2m(k)).
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Now we may suppose that 2m(k) is the smallest integer exceeding 2n(k) for which (6) holds,

that is, δ (Z2n(k),Z2m(k)−2)< ε. Using the triangle inequality, we have

ε ≤ δ (Z2n(k),Z2m(k)) ≤ δ (Z2n(k),Z2m(k)−2)+δ (Z2m(k)−2,Z2m(k)−1)

+δ (Z2m(k)−1,Z2m(k)),

that is,

ε ≤ δ (Z2n(k),Z2m(k))< ε +δ (Z2m(k)−2,Z2m(k)−1)+δ (Z2m(k)−1,Z2m(k)).

Letting k→ ∞ in the above inequality and using (5), we have

lim
k→∞

δ (Z2n(k),Z2m(k)) = ε.(7)

On the other hand, we have

δ (Z2n(k)−1,Z2m(k)+1) ≤ δ (Z2n(k)−1,Z2n(k))+δ (Z2n(k),Z2m(k))

+δ (Z2m(k),Z2m(k)+1)

and

δ (Z2n(k),Z2m(k)) ≤ δ (Z2n(k),Z2n(k)−1)+δ (Z2n(k)−1,Z2m(k)+1)

+δ (Z2m(k)+1,Z2m(k)).

It follows that

|δ (Z2n(k)−1,Z2m(k)+1)−δ (Z2n(k),Z2m(k))|

≤ δ (Z2n(k)−1,Z2n(k))+δ (Z2m(k),Z2m(k)+1).

Letting k→ ∞ in the above inequality and using (5) and (7), we have

lim
k→∞

δ (Z2n(k)−1,Z2m(k)+1) = ε.(8)

Similarly, we have

δ (Z2n(k),Z2m(k)) ≤ δ (Z2n(k),Z2n(k)+1)+δ (Z2n(k)+1,Z2m(k)+1)

+δ (Z2m(k)+1,Z2m(k))

and
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δ (Z2n(k)+1,Z2m(k)+1) ≤ δ (Z2n(k)+1,Z2n(k))+δ (Z2n(k),Z2m(k))

+δ (Z2m(k),Z2m(k)+1).

It follows that

|δ (Z2n(k),Z2m(k))−δ (Z2n(k)+1,Z2m(k)+1)|

≤ δ (Z2n(k),Z2n(k)+1)+δ (Z2m(k)+1,Z2m(k)).

Letting k→ ∞ in the above inequality and using (5) and (7), we have

lim
k→∞

δ (Z2n(k)+1,Z2m(k)+1) = ε.(9)

Further

δ (Z2n(k),Z2m(k)+1) ≤ δ (Z2n(k),Z2n(k)+1)+δ (Z2n(k)+1,Z2m(k)+1)

and

δ (Z2n(k)+1,Z2m(k)+1) ≤ δ (Z2n(k)+1,Z2n(k))+δ (Z2n(k),Z2m(k)+1).

Hence, we have

|δ (Z2n(k),Z2m(k)+1)−δ (Z2n(k)+1,Z2m(k)+1)| ≤ δ (Z2n(k),Z2n(k)+1).

Letting k→ ∞ in the above inequality and using (5) and (9), we have

lim
k→∞

δ (Z2n(k),Z2m(k)+1) = ε.(10)

Putting x = x2n(k) and y = x2m(k)+1 in (2), we have

ϕ(δ (Z2n(k),Z2m(k)+1)) = ϕ(δ (Sx2n(k),T x2m(k)+1))

≤ ϕ(M(x2n(k),x2m(k)+1))−φ(M(x2n(k),x2m(k)+1)),(11)

where

M(x2n(k),x2m(k)+1) = F

 δ (T x2m(k)+1,gx2n(k)),δ (Sx2n(k), f x2m(k)+1),

δ (T x2m(k)+1, f x2m(k)+1),δ (Sx2n(k),gx2n(k))


≤ F

 δ (Z2m(k)+1,Z2n(k)−1),δ (Z2n(k),Z2m(k)),

δ (Z2m(k)+1,Z2m(k)),δ (Z2n(k),Z2n(k)−1)

 .
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By taking limit k→ ∞ in the above inequality and using (5), (7) and (8), we get

limk→∞M(x2n(k),x2m(k)+1)≤ F(ε,ε,0,0).

From (F3), we have limk→∞M(x2n(k),x2m(k)+1)≤ ε. Therefore from equation (11), we have

ϕ(ε)≤ ϕ(ε)−φ(ε),

which is a contradiction by virtue of a property of φ . Therefore the sequence {zn} is a Cauchy

sequence in complete metric space X and so has a limit z in X . So the sequences { f x2n+1} and

{gx2n+2} converges to z and further, the sequences of sets {Sx2n} and {T x2n+1} converges to

set {z}. By (1), there exist points u and v in X such that gu = z and f v = z.

Next, we show that z = f v ∈ T v. By (2), we have

ϕ(δ ( f x2n+1,T v)) ≤ ϕ(δ (Sx2n,T v))

≤ ϕ(M(x2n,v))−φ(M(x2n,v)),

where

M(x2n,v) = F

 δ (T v,gx2n),δ (Sx2n, f v),

δ (T v, f v),δ (Sx2n,gx2n)

 .

By taking limit n→ ∞ in the above inequality and using Lemma 1.1, we have

limn→∞M(x2n,v) ≤ F{δ (T v,z),d(z, f v),δ (T v,z),d(z,z)}

= F{δ (T v,z),0,δ (T v,z),0}.

From (F3), we have limn→∞M(x2n,u) ≤ δ (T v,z). It follows that ϕ(δ (z,T v)) ≤ ϕ(δ (z,T v))−

φ(δ (z,T v)), which in turn implies that φ(δ (z,T v)) = 0. Hence δ (z,T v) = 0, that is z ∈ T v.

Thus T v = {z}= { f v}. But T (X)⊆ g(X), so there exists u ∈ X such that T v = {z}= { f v}=

{gu}.

Now, we are in a position to show that z = gu ∈ Su. By (2.2), we have

ϕ(δ (Su,gx2n+2)) ≤ ϕ(δ (Su,T x2n+1))

≤ ϕ(M(u,x2n+1))−φ(M(u,x2n+1)),

where
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M(u,x2n+1) = F

 δ (T x2n+1,gu),δ (Su, f x2n+1),

δ (T x2n+1, f x2n+1),δ (Su,gu)

 .

By taking limit n→ ∞ in the above inequality and using Lemma 1.1, we have

limn→∞M(u,x2n+1) ≤ F{d(z,gu),δ (Su,z),d(z,z),δ (Su,z)}

= F{0,δ (Su,z),0,δ (Su,z)}.

In view of (F3), we have limn→∞M(u,x2n+1)≤ δ (Su,z). It follows that ϕ(δ (Su,z))≤ϕ(δ (Su,z))−

φ(δ (Su,z)), which implies that φ(δ (Su,z)) = 0. Hence δ (Su,z) = 0, that is, z ∈ Su. Then

Su = T v = {z} = { f v} = {gu}. Since Su = {gu} and {S,g} is weakly compatible Sgu = gSu

gives Sz = {gz}. Next, we show that z is a fixed point of g. By (2), we have

ϕ(δ (Sz, f v)) ≤ ϕ(δ (Sz,T v))

≤ ϕ(M(z,v))−φ(M(z,v)),

where

M(z,v) = F{δ (T v,gz),δ (Sz, f v),δ (T v, f v),δ (Sz,gz)}

≤ F{d(z,gz),d(gz,z),d(z,z),d(gz,gz)}

= F{d(z,gz),d(gz,z),0,0}.

From (F3), we have M(z,v)≤ d(z,gz). Therefore

ϕ(d(gz,z))≤ ϕ(d(gz,z))−φ(d(gz,z)),

which implies that φ(d(gz,z)) = 0. Hence d(gz,z) = 0, that is, z = gz. Then Sz = {gz} = {z}.

Similarly T v = { f v} and {T, f} is weakly compatible T f v = f T v gives T z = { f z}. Now we

show that z is a fixed point of f . By (2), we have

ϕ(δ (gu,T z)) ≤ ϕ(δ (Su,T z))

≤ ϕ(M(u,z))−φ(M(u,z)),

where
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M(u,z) = F{δ (T z,gu),δ (Su, f z),δ (T z, f z),δ (Su,gu)}

≤ F{d( f z,z),d(z, f z),d( f z, f z),d(z,z)}

= F{d( f z,z),d(z, f z),0,0}.

From (F3), we have M(u,z)≤ d(z, f z). Therefore ϕ(d(z, f z))≤ϕ(d(z, f z))−φ(d(z, f z)), which

implies that φ(d(z, f z)) = 0. Hence d(z, f z) = 0, that is, z = f z. Then T z = {z}= { f z}. Thus

Sz = T z = {z}= { f z}= {gz} and z is a common fixed point of S,T, f and g.

Next, we show that z is unique. Suppose p 6= z such that Sp = T p = {p} = { f p} = {gp}.

From (2), we have

ϕ(d(z, p)) = ϕ(δ (Sz,T p))

≤ ϕ(M(z, p))−φ(M(z, p)),

where

M(z, p) = F{δ (T p,gz),δ (Sz, f p),δ (T p, f p),δ (Sz,gz)}

≤ F{d(p,z),d(z, p),d(p, p),d(z,z)}

= F{d(p,z),d(z, p),0,0}.

By use of (F3), we have M(z, p) ≤ d(z, p). Therefore, we obtain ϕ(d(z, p)) ≤ ϕ(d(z, p))−

φ(d(z, p)), which implies that φ(d(z, p)) = 0. Hence d(z, p) = 0, that is, z = p. This completes

the proof.

Corollary 2.2. Let (X ,d) be a complete metric space. Let S,T : X → B(X) be two set-valued

mappings and f ,g : X → X be two single-valued mappings such that for all x,y ∈ X

(12) S(X)⊆ f (X), T (X)⊆ g(X)

(13) δ (Sx,Ty)≤M(x,y)−φ(M(x,y)),

where

M(x,y) = F{δ (Ty,gx),δ (Sx, f y),δ (Ty, f y),δ (Sx,gx)}
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and φ : [0,∞)→ [0,∞) is continuous and monotonic decreasing function with φ(x) = 0 if and

only if x = 0 and F ∈ F∗. Further if {S,g} and {T, f} are weakly compatible pairs, then S,T, f

and g have a unique common fixed point.

Proof. By taking ϕ as an identity function in the proof of Theorem 2.1, we find the desired

conclusion immediately.

Corollary 2.3. Let (X ,d) be a complete metric space. Let S : X → B(X) be a set-valued

mapping and f : X → X be a single-valued mapping such that for all x,y ∈ X

(14) S(X)⊆ f (X),

(15) ϕ(δ (Sx,Sy))≤ ϕ(M(x,y))−φ(M(x,y)),

where
M(x,y) = F{δ (Sy, f x),δ (Sx, f y),δ (Sy, f y),δ (Sx, f x)}

and ϕ : [0,∞)→ [0,∞) is continuous and monotonic increasing function and φ : [0,∞)→ [0,∞)

is continuous and monotonic decreasing function with ϕ(x) = 0 = φ(x) if and only if x = 0

and F ∈ F∗. Further if S and f are weakly compatible mappings, then S and f have a unique

common fixed point.

Proof. Let S = T and f = g. From Theorem 2.1, we find the desired conclusion immediately.

Remark 2.4. If we take S as a single-valued mapping in Corollary 2.3, then we get Theorem

3.1 of [21].
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