

Available online at http://scik.org
Advances in Fixed Point Theory, 2 (2012), No. 1, 9-17
ISSN: 1927-6303

BROUWER'S FIXED POINT THEOREM WITH SEQUENTIALLY AT MOST ONE FIXED POINT: A CONSTRUCTIVE ANALYSIS

YASUHITO TANAKA*
Faculty of Economics, Doshisha University, Kamigyo-ku, Kyoto, 602-8580, Japan

Abstract

In this paper we present a constructive proof of Brouwer's fixed point theorem with sequentially at most one fixed point, and apply it to the mini-max theorem of zero-sum games.

Keywords: Brouwer's fixed point theorem; constructive mathematics; sequentially at most one fixed point; minimax theorem.

2000 AMS Subject Classification: 26E40; 91A10

1. Introduction

It is well known that Brouwer's fixed point theorem can not be constructively proved. See [3] or [8].
[6] provided a constructive proof of Brouwer's fixed point theorem. But it is not constructive from the view point of constructive mathematics à la Bishop. It is sufficient to say that one dimensional case of Brouwer's fixed point theorem, that is, the intermediate value theorem is non-constructive.

[^0]Received February 22, 2012

Sperner's lemma which is used to prove Brouwer's theorem, however, can be constructively proved. Some authors have presented an approximate version of Brouwer's theorem using Sperner's lemma. See [8] and [9]. Thus, Brouwer's fixed point theorem is constructively, in the sense of constructive mathematics à la Bishop, proved in its approximate version.

Also Dalen in [8] states a conjecture that a uniformly continuous function f from a simplex into itself, with property that each open set contains a point x such that $x \neq f(x)$, which means $|x-f(x)|>0$, and also at every point x on the boundaries of the simplex $x \neq f(x)$, has an exact fixed point. We present a partial answer to Dalen's conjecture.

Recently [2] showed that the following theorem is equivalent to Brouwer's fan theorem.

Each uniformly continuous function φ from a compact metric space X into itself with at most one fixed point and approximate fixed points has a fixed point.

By reference to the notion of sequentially at most one maximum in [1] we require a stronger condition that a function φ has sequentially at most one fixed point, and will show the following result.

Each uniformly continuous function φ from a compact metric space X into itself with sequentially at most one fixed point and approximate fixed points has a fixed point,
without the fan theorem. Orevkov in [7] constructed a computably coded continuous function f from the unit square into itself, which is defined at each computable point of the square, such that f has no computable fixed point. His map consists of a retract of the computable elements of the square to its boundary followed by a rotation of the boundary of the square. As pointed out by Hirst in [5], since there is no retract of the square to its boundary, his map does not have a total extension.

In the next section we present our theorem and its proof. In Section 3, as an application of the theorem we consider the mini-max theorem of two-person zero-sum games.

2. Theorem and proof

Let \mathbf{p} be a point in a compact metric space X, and consider a uniformly continuous function φ from X into itself. According to [8] and [9] φ has an approximate fixed point. It means

For each $\varepsilon>0$ there exists $\mathbf{p} \in X$ such that $|\mathbf{p}-\varphi(\mathbf{p})|<\varepsilon$.
Since $\varepsilon>0$ is arbitrary,

$$
\inf _{\mathbf{p} \in X}|\mathbf{p}-\varphi(\mathbf{p})|=0
$$

The notion that φ has at most one fixed point is defined as follows;
Definition 2.1. For all $\mathbf{p}, \mathbf{q} \in X$, if $\mathbf{p} \neq \mathbf{q}$, then $\varphi(\mathbf{p}) \neq \mathbf{p}$ or $\varphi(\mathbf{q}) \neq \mathbf{q}$.
Next by reference to the notion of sequentially at most one maximum in [1], we define the notion that φ has sequentially at most one fixed point as follows;

Definition 2.2. All sequences $\left(\mathbf{p}_{n}\right)_{n \geq 1},\left(\mathbf{q}_{n}\right)_{n \geq 1}$ in X such that $\left|\varphi\left(\mathbf{p}_{n}\right)-\mathbf{p}_{n}\right| \longrightarrow 0$ and $\left|\varphi\left(\mathbf{q}_{n}\right)-\mathbf{q}_{n}\right| \longrightarrow 0$ are eventually close in the sense that $\left|\mathbf{p}_{n}-\mathbf{q}_{n}\right| \longrightarrow 0$.

Now we show the following lemma, which is based on Lemma 2 of [1].
Lemma 2.1. Let φ be a uniformly continuous function from a compact metric space X into itself. Assume $\inf _{\mathbf{p} \in X}|\mathbf{p}-\varphi(\mathbf{p})|=0$. If the following property holds,

For each $\delta>0$ there exists $\varepsilon>0$ such that if $\mathbf{p}, \mathbf{q} \in X,|\varphi(\mathbf{p})-\mathbf{p}|<\varepsilon$ and $|\varphi(\mathbf{q})-\mathbf{q}|<\varepsilon$, then $|\mathbf{p}-\mathbf{q}| \leq \delta$,
then, there exists a point $\mathbf{r} \in X$ such that $\varphi(\mathbf{r})=\mathbf{r}$, that is, φ has a fixed point.

Proof.

Choose a sequence $\left(\mathbf{p}_{n}\right)_{n \geq 1}$ in X such that $\left|\varphi\left(\mathbf{p}_{n}\right)-\mathbf{p}_{n}\right| \longrightarrow 0$. Compute N such that $\left|\varphi\left(\mathbf{p}_{n}\right)-\mathbf{p}_{n}\right|<\varepsilon$ for all $n \geq N$. Then, for $m, n \geq N$ we have $\left|\mathbf{p}_{m}-\mathbf{p}_{n}\right| \leq \delta$. Since $\delta>0$ is arbitrary, $\left(\mathbf{p}_{n}\right)_{n \geq 1}$ is a Cauchy sequence in X, and converges to a limit $\mathbf{r} \in X$. The continuity of φ yields $|\varphi(\mathbf{r})-\mathbf{r}|=0$, that is, $\varphi(\mathbf{r})=\mathbf{r}$.

This completes the proof.
Next we show the following theorem, which is based on Proposition 3 of [1].
Theorem 2.1. Each uniformly continuous function φ from a compact metric space X into itself with sequentially at most one fixed point and approximate fixed points has a fixed point.

Proof.

Choose a sequence $\left(\mathbf{r}_{n}\right)_{n \geq 1}$ in X such that $\left|\varphi\left(\mathbf{r}_{n}\right)-\mathbf{r}_{n}\right| \longrightarrow 0$. In view of Lemma 2.1 it is enough to prove that the following condition holds.

$$
\text { For each } \delta>0 \text { there exists } \varepsilon>0 \text { such that if } \mathbf{p}, \mathbf{q} \in X,|\varphi(\mathbf{p})-\mathbf{p}|<\varepsilon \text { and }
$$

$$
|\varphi(\mathbf{q})-\mathbf{q}|<\varepsilon, \text { then }|\mathbf{p}-\mathbf{q}| \leq \delta
$$

Assume that the set

$$
K=\{(\mathbf{p}, \mathbf{q}) \in X \times X:|\mathbf{p}-\mathbf{q}| \geq \delta\}
$$

is nonempty and compact (See Theorem 2.2.13 of [4]). Since the mapping (\mathbf{p}, \mathbf{q}) \longrightarrow $\max (|\varphi(\mathbf{p})-\mathbf{p}|,|\varphi(\mathbf{q})-\mathbf{q}|)$ is uniformly continuous, we can construct an increasing binary sequence $\left(\lambda_{n}\right)_{n \geq 1}$ such that

$$
\begin{aligned}
& \lambda_{n}=0 \Rightarrow \inf _{(\mathbf{p}, \mathbf{q}) \in K} \max (|\varphi(\mathbf{p})-\mathbf{p}|,|\varphi(\mathbf{q})-\mathbf{q}|)<2^{-n} \\
& \lambda_{n}=1 \Rightarrow \inf _{(\mathbf{p}, \mathbf{q}) \in K} \max (|\varphi(\mathbf{p})-\mathbf{p}|,|\varphi(\mathbf{q})-\mathbf{q}|)>2^{-n-1}
\end{aligned}
$$

It suffices to find n such that $\lambda_{n}=1$. In that case, if $|\varphi(\mathbf{p})-\mathbf{p}|<2^{-n-1},|\varphi(\mathbf{q})-\mathbf{q}|<2^{-n-1}$, we have $(\mathbf{p}, \mathbf{q}) \notin K$ and $|\mathbf{p}-\mathbf{q}| \leq \delta$. Assume $\lambda_{1}=0$. If $\lambda_{n}=0$, choose $\left(\mathbf{p}_{n}, \mathbf{q}_{n}\right) \in K$ such that $\max \left(\left|\varphi\left(\mathbf{p}_{n}\right)-\mathbf{p}_{n}\right|,\left|\varphi\left(\mathbf{q}_{n}\right)-\mathbf{q}_{n}\right|\right)<2^{-n}$, and if $\lambda_{n}=1$, set $\mathbf{p}_{n}=\mathbf{q}_{n}=\mathbf{r}_{n}$. Then, $\left|\varphi\left(\mathbf{p}_{n}\right)-\mathbf{p}_{n}\right| \longrightarrow 0$ and $\left|\varphi\left(\mathbf{q}_{n}\right)-\mathbf{q}_{n}\right| \longrightarrow 0$, so $\left|\mathbf{p}_{n}-\mathbf{q}_{n}\right| \longrightarrow 0$. Computing N such that $\left|\mathbf{p}_{N}-\mathbf{q}_{N}\right|<\delta$, we must have $\lambda_{N}=1$.

This completes the proof.

3. Application: Minimax theorem of zero-sum games

Consider a two person zero-sum game. There are two players A and B. Player A has m alternative pure strategies, and the set of his pure strategies is denoted by $S_{A}=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$. Player B has n alternative pure strategies, and the set of his pure strategies is denoted by $S_{B}=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\} . m$ and n are finite natural numbers. The payoff of player A when a combination of players' strategies is $\left(a_{i}, b_{j}\right)$ is denoted by $M\left(a_{i}, b_{j}\right)$. Since we consider a zero-sum game, the payoff of player B is equal to $-M\left(a_{i}, b_{j}\right)$. Let p_{i} be a probability that A chooses his strategy a_{i}, and q_{j} be a probability
that B chooses his strategy b_{j}. A mixed strategy of A is represented by a probability distribution over S_{A}, and is denoted by $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ with $\sum_{i=1}^{m} p_{i}=1$. Similarly, a mixed strategy of B is denoted by $\mathbf{q}=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ with $\sum_{j=1}^{n} q_{j}=1$. A combination of mixed strategies (\mathbf{p}, \mathbf{q}) is called a profile. The expected payoff of player A at a profile (\mathbf{p}, \mathbf{q}) is written as follows,

$$
M(\mathbf{p}, \mathbf{q})=\sum_{i=1}^{m} \sum_{j=1}^{n} p_{i} M\left(a_{i}, b_{j}\right) q_{j}
$$

We assume that $M\left(a_{i}, b_{j}\right)$ is finite. Then, since $M(\mathbf{p}, \mathbf{q})$ is linear with respect to probability distributions over the sets of pure strategies of players, it is a uniformly continuous function. The expected payoff of A when he chooses a pure strategy a_{i} and B chooses a mixed strategy \mathbf{q} is $M\left(a_{i}, \mathbf{q}\right)=\sum_{j=1}^{n} M\left(a_{i}, b_{j}\right) q_{j}$, and his expected payoff when he chooses a mixed strategy \mathbf{p} and B chooses a pure strategy b_{j} is $M\left(\mathbf{p}, b_{j}\right)=\sum_{i=1}^{m} p_{i} M\left(a_{i}, b_{j}\right)$. The set of all mixed strategies of A is denoted by P, and that of B is denoted by Q. P is an m-1-dimensional simplex, and Q is an n-1-dimensional simplex.

We call $v_{A}(\mathbf{p})=\inf _{\mathbf{q}} M(\mathbf{p}, \mathbf{q})$ the guaranteed payoff of A at \mathbf{p}. And we define v_{A}^{*} as follows,

$$
v_{A}^{*}=\sup _{\mathbf{p}} \inf _{\mathbf{q}} M(\mathbf{p}, \mathbf{q})
$$

This is a constructive version of the maximin payoff. Similarly, we call $v_{B}(\mathbf{q})=\sup _{\mathbf{p}} M(\mathbf{p}, \mathbf{q})$ the guaranteed payoff of player B at \mathbf{q}, and define v_{B}^{*} as follows,

$$
v_{B}^{*}=\inf _{\mathbf{q}} \sup _{\mathbf{p}} M(\mathbf{p}, \mathbf{q}) .
$$

This is a constructive version of the minimax payoff. For a fixed \mathbf{p} we have $\inf _{\mathbf{q}} M(\mathbf{p}, \mathbf{q}) \leq$ $M(\mathbf{p}, \mathbf{q})$ for all \mathbf{q}, and so

$$
\sup _{\mathbf{p}} \inf _{\mathbf{q}} M(\mathbf{p}, \mathbf{q}) \leq \sup _{\mathbf{p}} M(\mathbf{p}, \mathbf{q}) \text { for all } \mathbf{q}
$$

holds. Then, we obtain $\sup _{\mathbf{p}} \inf _{\mathbf{q}} M(\mathbf{p}, \mathbf{q}) \leq \inf _{\mathbf{q}} \sup _{\mathbf{p}} M(\mathbf{p}, \mathbf{q})$. This is rewritten as

$$
\begin{equation*}
v_{A}^{*} \leq v_{B}^{*} \tag{1}
\end{equation*}
$$

Define a function $\Gamma=(\overline{\mathbf{p}}(\mathbf{p}, \mathbf{q}), \overline{\mathbf{q}}(\mathbf{p}, \mathbf{q}))$ as follows;

$$
\begin{aligned}
& \bar{p}_{i}(\mathbf{p}, \mathbf{q})=\frac{p_{i}+\max \left(M\left(a_{i}, \mathbf{q}\right)-M(\mathbf{p}, \mathbf{q}), 0\right)}{1+\sum_{k=1}^{m} \max \left(M\left(a_{k}, \mathbf{q}\right)-M(\mathbf{p}, \mathbf{q}), 0\right)} \\
& \bar{q}_{j}(\mathbf{p}, \mathbf{q})=\frac{q_{j}+\max \left(M(\mathbf{p}, \mathbf{q})-M\left(\mathbf{p}, b_{j}\right), 0\right)}{1+\sum_{k=1}^{n} \max \left(M(\mathbf{p}, \mathbf{q})-M\left(\mathbf{p}, b_{k}\right), 0\right)}
\end{aligned}
$$

We assume the following condition;
Assumption 3.1. All sequences $\left(\left(\mathbf{p}_{n}, \mathbf{q}_{n}\right)\right)_{n \geq 1},\left(\left(\mathbf{p}_{n}^{\prime}, \mathbf{q}_{n}^{\prime}\right)\right)_{n \geq 1}$ in $P \times Q$ such that $\max \left(M\left(a_{i}, \mathbf{q}_{n}\right)-\right.$ $\left.M\left(\mathbf{p}_{n}, \mathbf{q}_{n}\right), 0\right) \longrightarrow 0, \max \left(M\left(\mathbf{p}_{n}, \mathbf{q}_{n}\right)-M\left(\mathbf{p}_{n}, b_{j}\right), 0\right) \longrightarrow 0, \max \left(M\left(a_{i}, \mathbf{q}_{n}^{\prime}\right)-M\left(\mathbf{p}_{n}^{\prime}, \mathbf{q}_{n}^{\prime}\right), 0\right) \longrightarrow$ 0 and $\max \left(M\left(\mathbf{p}_{n}^{\prime}, \mathbf{q}_{n}^{\prime}\right)-M\left(\mathbf{p}_{n}^{\prime}, b_{j}\right), 0\right) \longrightarrow 0$ for all i and j are eventually close in the sense that $\left|\left(\mathbf{p}_{n}, \mathbf{q}_{n}\right)-\left(\mathbf{p}_{n}^{\prime}, \mathbf{q}_{n}^{\prime}\right)\right| \longrightarrow 0$.

Since $M\left(\mathbf{p}_{n}, \mathbf{q}_{n}\right)=\sum_{i=1}^{m} p_{i} M\left(a_{i}, \mathbf{q}_{n}\right)$, it is impossible that $\max \left(M\left(a_{i}, \mathbf{q}_{n}\right)-M\left(\mathbf{p}_{n}, \mathbf{q}_{n}\right), 0\right)>$ 0 for all i such that $p_{i}>0$. Similarly, it is impossible that $M\left(\mathbf{p}_{n}, \mathbf{q}_{n}\right)-\max \left(M\left(\mathbf{p}_{n}, b_{j}\right), 0\right)>$ 0 for all j such that $q_{j}>0 .\left|\Gamma\left(\left(\mathbf{p}_{n}, \mathbf{q}_{n}\right)\right)-\left(\mathbf{p}_{n}, \mathbf{q}_{n}\right)\right| \longrightarrow 0$ means $\left|\bar{p}_{i}-p_{i}\right| \longrightarrow 0$ for all i and $\left|\bar{q}_{j}-q_{j}\right| \longrightarrow 0$ for all j. Therefore, we must have $\max \left(M\left(a_{i}, \mathbf{q}_{n}^{\prime}\right)-M\left(\mathbf{p}_{n}^{\prime}, \mathbf{q}_{n}^{\prime}\right), 0\right) \longrightarrow 0$ and $\max \left(M\left(\mathbf{p}_{n}^{\prime}, \mathbf{q}_{n}^{\prime}\right)-M\left(\mathbf{p}_{n}^{\prime}, b_{j}\right), 0\right) \longrightarrow 0$ for all i and j, and so under Assumption 3.1 we find

All sequences $\left(\left(\mathbf{p}_{n}, \mathbf{q}_{n}\right)\right)_{n \geq 1},\left(\left(\mathbf{p}_{n}^{\prime}, \mathbf{q}_{n}^{\prime}\right)\right)_{n \geq 1}$ in $P \times Q$ such that $\mid \Gamma\left(\left(\mathbf{p}_{n}, \mathbf{q}_{n}\right)\right)-$ $\left(\mathbf{p}_{n}, \mathbf{q}_{n}\right) \mid \longrightarrow 0$ and $\left|\Gamma\left(\left(\mathbf{p}_{n}^{\prime}, \mathbf{q}_{n}^{\prime}\right)\right)-\left(\mathbf{p}_{n}^{\prime}, \mathbf{q}_{n}^{\prime}\right)\right| \longrightarrow 0$ are eventually close in the sense that $\left|\left(\mathbf{p}_{n}, \mathbf{q}_{n}\right)-\left(\mathbf{p}_{n}^{\prime}, \mathbf{q}_{n}^{\prime}\right)\right| \longrightarrow 0$.

Thus, Γ has sequentially at most one fixed point.
Summing up \bar{p}_{i} from 1 to m, for each i

$$
\sum_{i=1}^{m} \bar{p}_{i}(\mathbf{p}, \mathbf{q})=\frac{\sum_{i=1}^{m} p_{i}+\sum_{i=1}^{m} \max \left(M\left(a_{i}, \mathbf{q}\right)-M(\mathbf{p}, \mathbf{q}), 0\right)}{1+\sum_{k=1}^{m} \max \left(M\left(a_{k}, \mathbf{q}\right)-M(\mathbf{p}, \mathbf{q}), 0\right)}=1
$$

Similarly, summing up \bar{q}_{j} from 1 to n, for each j

$$
\sum_{j=1}^{n} \bar{q}_{j}(\mathbf{p}, \mathbf{q})=\frac{\sum_{j=1}^{n} q_{j}+\sum_{j=1}^{n} \max \left(M(\mathbf{p}, \mathbf{q})-M\left(\mathbf{p}, b_{j}\right), 0\right)}{1+\sum_{k=1}^{n} \max \left(M(\mathbf{p}, \mathbf{q})-M\left(\mathbf{p}, b_{k}\right), 0\right)}=1
$$

Let $\overline{\mathbf{p}}(\mathbf{p}, \mathbf{q})=\left(\bar{p}_{1}, \bar{p}_{2}, \ldots, \bar{p}_{m}\right), \overline{\mathbf{q}}(\mathbf{p}, \mathbf{q})=\left(\bar{q}_{1}, \bar{q}_{2}, \ldots, \bar{q}_{n}\right)$. Then, $\Gamma=(\overline{\mathbf{p}}(\mathbf{p}, \mathbf{q}), \overline{\mathbf{q}}(\mathbf{p}, \mathbf{q}))$ is a uniformly continuous function from $P \times Q$ into itself. There are $m+n-2$ independent vectors in $P \times Q$, and so $P \times Q$ is an $m+n-2$-dimensional space. Since it is a product of two simplices, it is a compact subset of a metric space. Therefore, Γ has a fixed
point. Let $(\tilde{\mathbf{p}}, \tilde{\mathbf{q}})$ be the fixed point, and $\lambda=\sum_{k=1}^{n} \max \left(M\left(a_{k}, \tilde{\mathbf{q}}\right)-M(\tilde{\mathbf{p}}, \tilde{\mathbf{q}}), 0\right), \lambda^{\prime}=$ $\sum_{k=1}^{m} \max \left(M(\tilde{\mathbf{p}}, \tilde{\mathbf{q}})-M\left(\tilde{\mathbf{p}}, b_{k}\right), 0\right)$. Then,

$$
\begin{aligned}
& \frac{\tilde{p}_{i}+\max \left(M\left(a_{i}, \tilde{\mathbf{q}}\right)-M(\tilde{\mathbf{p}}, \tilde{\mathbf{q}}), 0\right)}{1+\lambda}=\tilde{p}_{i} \\
& \frac{\tilde{q}_{j}+\max \left(M(\tilde{\mathbf{p}}, \tilde{\mathbf{q}})-M\left(\tilde{\mathbf{p}}, b_{j}\right), 0\right)}{1+\lambda^{\prime}}=\tilde{q}_{j}
\end{aligned}
$$

Thus, we have

$$
\max \left(M\left(a_{i}, \tilde{\mathbf{q}}\right)-M(\tilde{\mathbf{p}}, \tilde{\mathbf{q}}), 0\right)=\lambda \tilde{p}_{i}
$$

and

$$
\max \left(M(\tilde{\mathbf{p}}, \tilde{\mathbf{q}})-M\left(\tilde{\mathbf{p}}, b_{j}\right), 0\right)=\lambda^{\prime} \tilde{q}_{j} .
$$

Since $M(\tilde{\mathbf{p}}, \tilde{\mathbf{q}})=\sum_{i=1}^{m} p_{i} M\left(a_{i}, \tilde{\mathbf{q}}\right)$, it is impossible that $\max \left(M\left(a_{i}, \tilde{\mathbf{q}}\right)-M(\tilde{\mathbf{p}}, \tilde{\mathbf{q}}), 0\right)=$ $M\left(a_{i}, \tilde{\mathbf{q}}\right)-M(\tilde{\mathbf{p}}, \tilde{\mathbf{q}})>0$ for all i such that $\tilde{p}_{i}>0$. Therefore, $\lambda=0$, and we have $\sup _{\mathbf{p}} M(\mathbf{p}, \tilde{\mathbf{q}})=M(\tilde{\mathbf{p}}, \tilde{\mathbf{q}})$. Similarly, we obtain $\lambda^{\prime}=0$ and $\inf _{\mathbf{q}} M(\tilde{\mathbf{p}}, \mathbf{q})=M(\tilde{\mathbf{p}}, \tilde{\mathbf{q}})$. Then,

$$
v_{B}^{*}=\inf _{\mathbf{q}} \sup _{\mathbf{p}} M(\mathbf{p}, \mathbf{q}) \leq M(\tilde{\mathbf{p}}, \tilde{\mathbf{q}}) \leq \sup _{\mathbf{p}} \inf _{\mathbf{q}} M(\mathbf{p}, \mathbf{q})=v_{A}^{*}
$$

With (1)

$$
v_{A}^{*}=v_{B}^{*}=M(\tilde{\mathbf{p}}, \tilde{\mathbf{q}})
$$

Therefore, the value of the game is determined at the fixed point of Γ.

Player 2

Player 1

	X	Y
X	$1,-1$	$-1,1$
Y	$-1,1$	$1,-1$

Table 1. Example of game

Consider an example. See a game in Table 1. It is an example of the so-called MatchingPennies Game. Pure strategies of Player 1 and 2 are X and Y. The left side number in each cell represents the payoff of Player 1 and the right side number represents the payoff of Player 2. Let p_{X} and $1-p_{X}$ denote the probabilities that Player 1 chooses, respectively, X and Y, and q_{X} and $1-q_{X}$ denote the probabilities for Player 2. Denote the expected
payoff of Player 1 by $M\left(p_{X}, q_{X}\right)$. Since we consider a zero-sum game, the expected payoff of Player 2 is $-M\left(p_{X}, q_{X}\right)$. Then,

$$
\begin{aligned}
M\left(p_{X}, q_{X}\right) & =p_{X} q_{X}-\left(1-p_{X}\right) q_{X}-p_{X}\left(1-q_{X}\right)+\left(1-p_{X}\right)\left(1-q_{X}\right) \\
& =\left(2 p_{X}-1\right)\left(2 q_{X}-1\right)
\end{aligned}
$$

Denote the payoff of Player 1 when he chooses X by $M\left(X, q_{X}\right)$, and that when he chooses Y by $M\left(Y, q_{X}\right)$. Similarly for Player B. Then,

$$
\begin{aligned}
& M\left(X, q_{X}\right)=2 q_{X}-1, M\left(Y, q_{X}\right)=1-2 q_{X},-M\left(p_{X}, X\right)=1-2 p_{X},-M\left(p_{X}, Y\right)=2 p_{X}-1 \\
& M\left(X, q_{X}\right)-M\left(p_{X}, q_{X}\right)=2\left(1-p_{X}\right)\left(2 q_{X}-1\right), M\left(Y, q_{X}\right)-M\left(p_{X}, q_{X}\right)=-2 p_{X}\left(2 q_{X}-1\right) \\
& -M\left(p_{X}, X\right)+M\left(p_{X}, q_{X}\right)=2\left(q_{X}-1\right)\left(2 p_{X}-1\right),-M\left(p_{X}, Y\right)+M\left(p_{X}, q_{X}\right)=2 q_{X}\left(2 p_{X}-1\right)
\end{aligned}
$$

And we have

$$
\text { When } q_{X}>\frac{1}{2}, M\left(X, q_{X}\right)>M\left(Y, q_{X}\right) \text { and } M\left(X, q_{X}\right)>M\left(p_{X}, q_{X}\right) \text { for } p_{X}<1
$$

$$
\text { When } q_{X}<\frac{1}{2}, M\left(Y, q_{X}\right)>M\left(X, q_{X}\right) \text { and } M\left(Y, q_{X}\right)>M\left(p_{X}, q_{X}\right) \text { for } p_{X}>0
$$

When $p_{X}>\frac{1}{2},-M\left(p_{X}, Y\right)>-M\left(p_{X}, X\right)$ and $-M\left(p_{X}, Y\right)>-M\left(p_{X}, q_{X}\right)$ for $q_{X}>0$, When $p_{X}<\frac{1}{2},-M\left(p_{X}, X\right)>-M\left(p_{X}, Y\right)$ and $-M\left(p_{X}, X\right)>-M\left(p_{X}, q_{X}\right)$ for $q_{X}<1$.

Consider sequences $\left(p_{X}(n)\right)_{n \geq 1}$ and $\left(q_{X}(n)\right)_{n \geq 1}$, and let $0<\varepsilon<\frac{1}{2}, 0<\delta<\varepsilon$. There are the following cases.
(1) (a) If $p_{X}(n)>\frac{1}{2}+\delta$ and $q_{X}(n)>\frac{1}{2}+\delta$, or
(b) $p_{X}(n)>\frac{1}{2}+\delta$ and $q_{X}(n)<\frac{1}{2}-\delta$, or
(c) $p_{X}(n)<\frac{1}{2}-\delta$ and $q_{X}(n)<\frac{1}{2}-\delta$, or
(d) $p_{X}(n)<\frac{1}{2}-\delta$ and $q_{X}(n)>\frac{1}{2}+\delta$, or
(e) $p_{X}(n)>\frac{1}{2}+\delta$ and $\frac{1}{2}-\varepsilon<q_{X}(n)<\frac{1}{2}+\varepsilon$, or
(f) $p_{X}(n)<\frac{1}{2}-\delta$ and $\frac{1}{2}-\varepsilon<q_{X}(n)<\frac{1}{2}+\varepsilon$, or
(g) $\frac{1}{2}-\varepsilon<p_{X}(n)<\frac{1}{2}+\varepsilon$, and $q_{X}(n)>\frac{1}{2}+\delta$ or
(h) $\frac{1}{2}-\varepsilon<p_{X}(n)<\frac{1}{2}+\varepsilon$, and $q_{X}(n)<\frac{1}{2}-\delta$,
then there exists no pair of $\left(p_{X}(n), q_{X}(n)\right)$ such that $M\left(X, q_{X}(n)\right)-M\left(p_{X}(n), q_{X}(n)\right) \longrightarrow$ $0, M\left(Y, q_{X}(n)\right)-M\left(p_{X}(n), q_{X}(n)\right) \longrightarrow 0,-\left[M\left(p_{X}(n), X\right)-M\left(p_{X}(n), q_{X}(n)\right)\right] \longrightarrow$ 0 and $-\left[M\left(p_{X}(n), Y\right)-M\left(p_{X}(n), q_{X}(n)\right)\right] \longrightarrow 0$.
(2) If $\frac{1}{2}-\varepsilon<p_{X}(n)<\frac{1}{2}+\varepsilon$ and $\frac{1}{2}-\varepsilon<q_{X}(n)<\frac{1}{2}+\varepsilon$ with $0<\varepsilon<\frac{1}{2}, M\left(X, q_{X}(n)\right)-$ $M\left(p_{X}(n), q_{X}(n)\right) \longrightarrow 0, M\left(Y, q_{X}(n)\right)-M\left(p_{X}(n), q_{X}(n)\right) \longrightarrow 0,-\left[M\left(p_{X}(n), X\right)-\right.$ $\left.M\left(p_{X}(n), q_{X}(n)\right)\right] \longrightarrow 0$ and $-\left[M\left(p_{X}(n), Y\right)-M\left(p_{X}(n), q_{X}(n)\right)\right] \longrightarrow 0$, then $\left(p_{X}(n), q_{X}(n)\right) \longrightarrow\left(\frac{1}{2}, \frac{1}{2}\right)$.

Therefore, the payoff functions satisfy Assumption 3.1.

References

[1] J. Berger, D. Bridges, and P. Schuster. The fan theorem and unique existence of maxima. Journal of Symbolic Logic, 71:713-720, 2006.
[2] J. Berger and H. Ishihara. Brouwer's fan theorem and unique existence in constructive analysis. Mathematical Logic Quarterly, 51(4):360-364, 2005.
[3] D. Bridges and F. Richman. Varieties of Constructive Mathematics. Cambridge University Press, 1987.
[4] D. Bridges and L. Vîţă. Techniques of Constructive Mathematics. Springer, 2006.
[5] Jeffry L. Hirst. Notes on reverse mathematics and Brouwer's fixed point theorem. http://www.mathsci.appstate.edu/~jlh/snp/pdfslides/bfp.pdf, pages 1-6, 2000.
[6] R. B. Kellogg, T. Y. Li, and J. Yorke. A constructive proof of Brouwer fixed-point theorem and computational results. SIAM Journal on Numerical Analysis, 13:473-483, 1976.
[7] V. P. Orevkov. A constructive mapping of a square onto itself displacing every constructive point. Soviet Math., 4:1253-1256, 1963.
[8] D. van Dalen. Brouwer's ε-fixed point from Sperner's lemma. Theoretical Computer Science, 412(28):3140-3144, June 2011.
[9] W. Veldman. Brouwer's approximate fixed point theorem is equivalent to Brouwer's fan theorem. In S. Lindström, E. Palmgren, K. Segerberg, and V. Stoltenberg-Hansen, editors, Logicism, Intuitionism and Formalism. Springer, 2009.

[^0]: *Corresponding author
 E-mail address: yasuhito@mail.doshisha.ac.jp (Y. Tanaka)
 This research was partially supported by the Ministry of Education, Science, Sports and Culture of Japan, Grant-in-Aid for Scientific Research (C), 20530165.

