
Available online at http://scik.org

Advances in Fixed Point Theory, 2 (2012), No. 1, 9-17

ISSN: 1927-6303

BROUWER’S FIXED POINT THEOREM WITH SEQUENTIALLY AT
MOST ONE FIXED POINT: A CONSTRUCTIVE ANALYSIS

YASUHITO TANAKA∗

Faculty of Economics, Doshisha University, Kamigyo-ku, Kyoto, 602-8580, Japan

Abstract. In this paper we present a constructive proof of Brouwer’s fixed point theorem with sequen-

tially at most one fixed point, and apply it to the mini-max theorem of zero-sum games.

Keywords: Brouwer’s fixed point theorem; constructive mathematics; sequentially at most one fixed

point; minimax theorem.

2000 AMS Subject Classification: 26E40; 91A10

1. Introduction

It is well known that Brouwer’s fixed point theorem can not be constructively proved.

See [3] or [8].

[6] provided a constructive proof of Brouwer’s fixed point theorem. But it

is not constructive from the view point of constructive mathematics à la

Bishop. It is sufficient to say that one dimensional case of Brouwer’s fixed

point theorem, that is, the intermediate value theorem is non-constructive.
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Sperner’s lemma which is used to prove Brouwer’s theorem, however, can be constructively

proved. Some authors have presented an approximate version of Brouwer’s theorem using

Sperner’s lemma. See [8] and [9]. Thus, Brouwer’s fixed point theorem is constructively,

in the sense of constructive mathematics à la Bishop, proved in its approximate version.

Also Dalen in [8] states a conjecture that a uniformly continuous function f from a

simplex into itself, with property that each open set contains a point x such that x 6= f(x),

which means |x − f(x)| > 0, and also at every point x on the boundaries of the simplex

x 6= f(x), has an exact fixed point. We present a partial answer to Dalen’s conjecture.

Recently [2] showed that the following theorem is equivalent to Brouwer’s fan theorem.

Each uniformly continuous function ϕ from a compact metric space X into

itself with at most one fixed point and approximate fixed points has a fixed

point.

By reference to the notion of sequentially at most one maximum in [1] we require a

stronger condition that a function ϕ has sequentially at most one fixed point, and will

show the following result.

Each uniformly continuous function ϕ from a compact metric space X into

itself with sequentially at most one fixed point and approximate fixed points

has a fixed point,

without the fan theorem. Orevkov in [7] constructed a computably coded continuous

function f from the unit square into itself, which is defined at each computable point

of the square, such that f has no computable fixed point. His map consists of a retract

of the computable elements of the square to its boundary followed by a rotation of the

boundary of the square. As pointed out by Hirst in [5], since there is no retract of the

square to its boundary, his map does not have a total extension.

In the next section we present our theorem and its proof. In Section 3, as an application

of the theorem we consider the mini-max theorem of two-person zero-sum games.

2. Theorem and proof
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Let p be a point in a compact metric space X, and consider a uniformly continuous

function ϕ from X into itself. According to [8] and [9] ϕ has an approximate fixed point.

It means

For each ε > 0 there exists p ∈ X such that |p− ϕ(p)| < ε.

Since ε > 0 is arbitrary,

inf
p∈X
|p− ϕ(p)| = 0.

The notion that ϕ has at most one fixed point is defined as follows;

Definition 2.1. For all p,q ∈ X, if p 6= q, then ϕ(p) 6= p or ϕ(q) 6= q.

Next by reference to the notion of sequentially at most one maximum in [1], we define

the notion that ϕ has sequentially at most one fixed point as follows;

Definition 2.2. All sequences (pn)n≥1, (qn)n≥1 in X such that |ϕ(pn) − pn| −→ 0 and

|ϕ(qn)− qn| −→ 0 are eventually close in the sense that |pn − qn| −→ 0.

Now we show the following lemma, which is based on Lemma 2 of [1].

Lemma 2.1. Let ϕ be a uniformly continuous function from a compact metric space X

into itself. Assume infp∈X |p− ϕ(p)| = 0. If the following property holds,

For each δ > 0 there exists ε > 0 such that if p,q ∈ X, |ϕ(p)−p| < ε and

|ϕ(q)− q| < ε, then |p− q| ≤ δ,

then, there exists a point r ∈ X such that ϕ(r) = r, that is, ϕ has a fixed point.

Proof.

Choose a sequence (pn)n≥1 in X such that |ϕ(pn)− pn| −→ 0. Compute N such that

|ϕ(pn)− pn| < ε for all n ≥ N . Then, for m,n ≥ N we have |pm − pn| ≤ δ. Since δ > 0

is arbitrary, (pn)n≥1 is a Cauchy sequence in X, and converges to a limit r ∈ X. The

continuity of ϕ yields |ϕ(r)− r| = 0, that is, ϕ(r) = r.

This completes the proof.

Next we show the following theorem, which is based on Proposition 3 of [1].

Theorem 2.1. Each uniformly continuous function ϕ from a compact metric space X

into itself with sequentially at most one fixed point and approximate fixed points has a

fixed point.
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Proof.

Choose a sequence (rn)n≥1 in X such that |ϕ(rn)− rn| −→ 0. In view of Lemma 2.1 it

is enough to prove that the following condition holds.

For each δ > 0 there exists ε > 0 such that if p,q ∈ X, |ϕ(p)−p| < ε and

|ϕ(q)− q| < ε, then |p− q| ≤ δ.

Assume that the set

K = {(p,q) ∈ X ×X : |p− q| ≥ δ}

is nonempty and compact (See Theorem 2.2.13 of [4]). Since the mapping (p,q) −→

max(|ϕ(p)−p|, |ϕ(q)−q|) is uniformly continuous, we can construct an increasing binary

sequence (λn)n≥1 such that

λn = 0⇒ inf
(p,q)∈K

max(|ϕ(p)− p|, |ϕ(q)− q|) < 2−n,

λn = 1⇒ inf
(p,q)∈K

max(|ϕ(p)− p|, |ϕ(q)− q|) > 2−n−1.

It suffices to find n such that λn = 1. In that case, if |ϕ(p)−p| < 2−n−1, |ϕ(q)−q| < 2−n−1,

we have (p,q) /∈ K and |p − q| ≤ δ. Assume λ1 = 0. If λn = 0, choose (pn,qn) ∈ K

such that max(|ϕ(pn)− pn|, |ϕ(qn)− qn|) < 2−n, and if λn = 1, set pn = qn = rn. Then,

|ϕ(pn)− pn| −→ 0 and |ϕ(qn)− qn| −→ 0, so |pn − qn| −→ 0. Computing N such that

|pN − qN | < δ, we must have λN = 1.

This completes the proof.

3. Application: Minimax theorem of zero-sum games

Consider a two person zero-sum game. There are two players A and B. Player

A has m alternative pure strategies, and the set of his pure strategies is denoted by

SA = {a1, a2, . . . , am}. Player B has n alternative pure strategies, and the set of his

pure strategies is denoted by SB = {b1, b2, . . . , bn}. m and n are finite natural numbers.

The payoff of player A when a combination of players’ strategies is (ai, bj) is denoted

by M(ai, bj). Since we consider a zero-sum game, the payoff of player B is equal to

−M(ai, bj). Let pi be a probability that A chooses his strategy ai, and qj be a probability
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that B chooses his strategy bj. A mixed strategy of A is represented by a probability

distribution over SA, and is denoted by p = (p1, p2, . . . , pm) with
∑m

i=1 pi = 1. Similarly,

a mixed strategy of B is denoted by q = (q1, q2, . . . , qn) with
∑n

j=1 qj = 1. A combination

of mixed strategies (p,q) is called a profile. The expected payoff of player A at a profile

(p,q) is written as follows,

M(p,q) =
m∑
i=1

n∑
j=1

piM(ai, bj)qj.

We assume that M(ai, bj) is finite. Then, since M(p,q) is linear with respect to proba-

bility distributions over the sets of pure strategies of players, it is a uniformly continuous

function. The expected payoff of A when he chooses a pure strategy ai and B chooses a

mixed strategy q is M(ai,q) =
∑n

j=1M(ai, bj)qj, and his expected payoff when he chooses

a mixed strategy p and B chooses a pure strategy bj is M(p, bj) =
∑m

i=1 piM(ai, bj). The

set of all mixed strategies of A is denoted by P , and that of B is denoted by Q. P is an

m− 1-dimensional simplex, and Q is an n− 1-dimensional simplex.

We call vA(p) = infqM(p,q) the guaranteed payoff of A at p. And we define v∗A as

follows,

v∗A = sup
p

inf
q
M(p,q)

This is a constructive version of the maximin payoff. Similarly, we call vB(q) = suppM(p,q)

the guaranteed payoff of player B at q, and define v∗B as follows,

v∗B = inf
q

sup
p
M(p,q).

This is a constructive version of the minimax payoff. For a fixed p we have infqM(p,q) ≤

M(p,q) for all q, and so

sup
p

inf
q
M(p,q) ≤ sup

p
M(p,q) for all q

holds. Then, we obtain supp infqM(p,q) ≤ infq suppM(p,q). This is rewritten as

(1) v∗A ≤ v∗B.
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Define a function Γ = (p̄(p,q), q̄(p,q)) as follows;

p̄i(p,q) =
pi + max(M(ai,q)−M(p,q), 0)

1 +
∑m

k=1 max(M(ak,q)−M(p,q), 0)
,

q̄j(p,q) =
qj + max(M(p,q)−M(p, bj), 0)

1 +
∑n

k=1 max(M(p,q)−M(p, bk), 0)
.

We assume the following condition;

Assumption 3.1. All sequences ((pn,qn))n≥1, ((p′n,q
′
n))n≥1 in P×Q such that max(M(ai,qn)−

M(pn,qn), 0) −→ 0, max(M(pn,qn)−M(pn, bj), 0) −→ 0, max(M(ai,q
′
n)−M(p′n,q

′
n), 0) −→

0 and max(M(p′n,q
′
n) −M(p′n, bj), 0) −→ 0 for all i and j are eventually close in the

sense that |(pn,qn)− (p′n,q
′
n)| −→ 0.

SinceM(pn,qn) =
∑m

i=1 piM(ai,qn), it is impossible that max(M(ai,qn)−M(pn,qn), 0) >

0 for all i such that pi > 0. Similarly, it is impossible thatM(pn,qn)−max(M(pn, bj), 0) >

0 for all j such that qj > 0. |Γ((pn,qn)) − (pn,qn)| −→ 0 means |p̄i − pi| −→ 0 for all i

and |q̄j−qj| −→ 0 for all j. Therefore, we must have max(M(ai,q
′
n)−M(p′n,q

′
n), 0) −→ 0

and max(M(p′n,q
′
n) −M(p′n, bj), 0) −→ 0 for all i and j, and so under Assumption 3.1

we find

All sequences ((pn,qn))n≥1, ((p′n,q
′
n))n≥1 in P×Q such that |Γ((pn,qn))−

(pn,qn)| −→ 0 and |Γ((p′n,q
′
n)) − (p′n,q

′
n)| −→ 0 are eventually close in

the sense that |(pn,qn)− (p′n,q
′
n)| −→ 0.

Thus, Γ has sequentially at most one fixed point.

Summing up p̄i from 1 to m, for each i

m∑
i=1

p̄i(p,q) =

∑m
i=1 pi +

∑m
i=1 max(M(ai,q)−M(p,q), 0)

1 +
∑m

k=1 max(M(ak,q)−M(p,q), 0)
= 1.

Similarly, summing up q̄j from 1 to n, for each j

n∑
j=1

q̄j(p,q) =

∑n
j=1 qj +

∑n
j=1 max(M(p,q)−M(p, bj), 0)

1 +
∑n

k=1 max(M(p,q)−M(p, bk), 0)
= 1.

Let p̄(p,q) = (p̄1, p̄2, . . . , p̄m), q̄(p,q) = (q̄1, q̄2, . . . , q̄n). Then, Γ = (p̄(p,q), q̄(p,q)) is a

uniformly continuous function from P ×Q into itself. There are m + n− 2 independent

vectors in P ×Q, and so P ×Q is an m+ n− 2-dimensional space. Since it is a product

of two simplices, it is a compact subset of a metric space. Therefore, Γ has a fixed
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point. Let (p̃, q̃) be the fixed point, and λ =
∑n

k=1 max(M(ak, q̃) −M(p̃, q̃), 0), λ′ =∑m
k=1 max(M(p̃, q̃)−M(p̃, bk), 0). Then,

p̃i + max(M(ai, q̃)−M(p̃, q̃), 0)

1 + λ
= p̃i,

q̃j + max(M(p̃, q̃)−M(p̃, bj), 0)

1 + λ′
= q̃j.

Thus, we have

max(M(ai, q̃)−M(p̃, q̃), 0) = λp̃i,

and

max(M(p̃, q̃)−M(p̃, bj), 0) = λ′q̃j.

Since M(p̃, q̃) =
∑m

i=1 piM(ai, q̃), it is impossible that max(M(ai, q̃) − M(p̃, q̃), 0) =

M(ai, q̃) − M(p̃, q̃) > 0 for all i such that p̃i > 0. Therefore, λ = 0, and we have

suppM(p, q̃) = M(p̃, q̃). Similarly, we obtain λ′ = 0 and infqM(p̃,q) = M(p̃, q̃). Then,

v∗B = inf
q

sup
p
M(p,q) ≤M(p̃, q̃) ≤ sup

p
inf
q
M(p,q) = v∗A.

With (1)

v∗A = v∗B = M(p̃, q̃).

Therefore, the value of the game is determined at the fixed point of Γ.

Player 2

X Y

Player 1 X 1, -1 -1, 1

Y -1, 1 1, -1

Table 1. Example of game

Consider an example. See a game in Table 1. It is an example of the so-called Matching-

Pennies Game. Pure strategies of Player 1 and 2 are X and Y . The left side number in

each cell represents the payoff of Player 1 and the right side number represents the payoff

of Player 2. Let pX and 1−pX denote the probabilities that Player 1 chooses, respectively,

X and Y , and qX and 1− qX denote the probabilities for Player 2. Denote the expected
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payoff of Player 1 by M(pX , qX). Since we consider a zero-sum game, the expected payoff

of Player 2 is −M(pX , qX). Then,

M(pX , qX) = pXqX − (1− pX)qX − pX(1− qX) + (1− pX)(1− qX)

= (2pX − 1)(2qX − 1)

Denote the payoff of Player 1 when he chooses X by M(X, qX), and that when he chooses

Y by M(Y, qX). Similarly for Player B. Then,

M(X, qX) = 2qX−1, M(Y, qX) = 1−2qX , −M(pX , X) = 1−2pX , −M(pX , Y ) = 2pX−1,

M(X, qX)−M(pX , qX) = 2(1− pX)(2qX − 1), M(Y, qX)−M(pX , qX) = −2pX(2qX − 1),

−M(pX , X)+M(pX , qX) = 2(qX−1)(2pX−1), −M(pX , Y )+M(pX , qX) = 2qX(2pX−1).

And we have

When qX >
1

2
, M(X, qX) > M(Y, qX) and M(X, qX) > M(pX , qX) for pX < 1,

When qX <
1

2
, M(Y, qX) > M(X, qX) and M(Y, qX) > M(pX , qX) for pX > 0,

When pX >
1

2
, −M(pX , Y ) > −M(pX , X) and −M(pX , Y ) > −M(pX , qX) for qX > 0,

When pX <
1

2
, −M(pX , X) > −M(pX , Y ) and −M(pX , X) > −M(pX , qX) for qX < 1.

Consider sequences (pX(n))n≥1 and (qX(n))n≥1, and let 0 < ε < 1
2
, 0 < δ < ε. There

are the following cases.

(1) (a) If pX(n) > 1
2

+ δ and qX(n) > 1
2

+ δ, or

(b) pX(n) > 1
2

+ δ and qX(n) < 1
2
− δ, or

(c) pX(n) < 1
2
− δ and qX(n) < 1

2
− δ, or

(d) pX(n) < 1
2
− δ and qX(n) > 1

2
+ δ, or

(e) pX(n) > 1
2

+ δ and 1
2
− ε < qX(n) < 1

2
+ ε, or

(f) pX(n) < 1
2
− δ and 1

2
− ε < qX(n) < 1

2
+ ε, or

(g) 1
2
− ε < pX(n) < 1

2
+ ε, and qX(n) > 1

2
+ δ or
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(h) 1
2
− ε < pX(n) < 1

2
+ ε, and qX(n) < 1

2
− δ,

then there exists no pair of (pX(n), qX(n)) such thatM(X, qX(n))−M(pX(n), qX(n)) −→

0, M(Y, qX(n))−M(pX(n), qX(n)) −→ 0, −[M(pX(n), X)−M(pX(n), qX(n))] −→

0 and −[M(pX(n), Y )−M(pX(n), qX(n))] −→ 0.

(2) If 1
2
−ε < pX(n) < 1

2
+ε and 1

2
−ε < qX(n) < 1

2
+ε with 0 < ε < 1

2
, M(X, qX(n))−

M(pX(n), qX(n)) −→ 0, M(Y, qX(n))−M(pX(n), qX(n)) −→ 0, −[M(pX(n), X)−

M(pX(n), qX(n))] −→ 0 and −[M(pX(n), Y ) − M(pX(n), qX(n))] −→ 0, then

(pX(n), qX(n)) −→ (1
2
, 1
2
).

Therefore, the payoff functions satisfy Assumption 3.1.
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