1. Introduction and Preliminaries

Menger [5] in 1942 introduced the notation of the probabilistic metric space. The probabilistic generalization of metric space appears to be well adopted for the investigation of physical quantities and physiological thresholds. Schweizer and Sklar [7] studied this concept and then the important development of Menger space theory was due to Sehgal and Bharucha-Reid [8]. Sessa [9] introduced weakly commuting maps in metric spaces. Jungck [2] enlarged this concept to compatible maps. The notion of compatible maps in Menger spaces has been introduced by Mishra [6]. Cho [1] et al. and Sharma [10] gave fuzzy version of compatible maps and proved common fixed point theorems for compatible maps in fuzzy metric spaces. So many works have been done in fuzzy and menger space [3], [4] and [12]. Sevet Kutukcu and Sushil Sharma introduce the concept of compatible maps of type (P-1) and type (P-2), show that they are equivalent to compatible maps under certain conditions and prove a common fixed point theorem.
for such maps in Menger spaces. Rajesh Shrivastav [11] et al. have given the definition of fuzzy probabilistic metric space and proved fixed point theorem for such space.

In this paper we prove fixed point results for fuzzy probabilistic space with compatible P-1.

Definition 1.1.1: A fuzzy probabilistic metric space (FPM space) is an ordered pair \((X,F_\alpha)\) consisting of a nonempty set \(X\) and a mapping \(F_\alpha\) from \(X\times X\) into the collections of all fuzzy distribution functions \(F_\alpha \in \mathbb{R}\) for all \(\alpha \in [0,1]\). For \(x, y \in X\) we denote the fuzzy distribution function \(F_\alpha(x,y)\) by \(F_\alpha(x,y)(u)\) is the value of \(F_\alpha(x,y)\) at \(u\) in \(\mathbb{R}\).

The functions \(F_\alpha(x,y)\) for all \(\alpha \in [0,1]\) assumed to satisfy the following conditions:

1. \(F_\alpha(x,y)(u) = 1 \quad \forall \ u > 0 \text{ iff } x = y,\)
2. \(F_\alpha(x,y)(0) = 0 \quad \forall \ x, y \text{ in } X,\)
3. \(F_\alpha(x,y) = F_\alpha(y,x) \quad \forall \ x, y \text{ in } X,\)
4. If \(F_\alpha(x,y)(u) = 1\) and \(F_\alpha(y,z)(v) = 1\) \(\Rightarrow F_\alpha(x,z)(u+v) = 1 \quad \forall \ x, y, z \in X\) and \(u, v > 0.\)

Definition 1.1.2: A commutative, associative and non-decreasing mapping \(t: [0,1] \times [0,1] \rightarrow [0,1]\) is a t-norm if and only if \(t(a,1) = a \quad \forall a \in [0,1], t(0,0) = 0\) and \(t(c,d) \geq t(a,b)\) for \(c \geq a, \ d \geq b\)

Definition 1.1.3: A Fuzzy Menger space is a triplet \((X,F_\alpha,t)\), where \((X,F_\alpha)\) is a FPM-space, \(t\) is a t-norm and the generalized triangle inequality

\[
F_\alpha(x,z)(u+v) \geq t(F_\alpha(x,z)(u), F_\alpha(y,z)(v))
\]

holds for all \(x, y, z \in X, u, v > 0\) and \(\alpha \in [0,1]\).

The concept of neighborhoods in Fuzzy Menger space is introduced as

Definition 1.1.4: Let \((X,F_\alpha,t)\) be a Fuzzy Menger space. If \(x \in X, \varepsilon > 0\) and \(\lambda \in (0,1)\), then \((\varepsilon,\lambda)\) - neighborhood of \(x\), called \(U_x(\varepsilon,\lambda)\), is defined by

\[
U_x(\varepsilon,\lambda) = \{y \in X: F_\alpha(x,y)(\varepsilon) > (1-\lambda)\}.
\]

An \((\varepsilon,\lambda)\)-topology in \(X\) is the topology induced by the family \(\{U_x(\varepsilon,\lambda): x \in X, \varepsilon > 0, \alpha \in [0,1] \text{ and } \lambda \in (0,1)\}\) of neighborhood.
Remark: If \(t \) is continuous, then Fuzzy Menger space \((X,F_\alpha,t)\) is a Hausdorff space in \((\varepsilon,\lambda)\)-topology.

Let \((X,F_\alpha,t)\) be a complete Fuzzy Menger space and \(A \subseteq X\). Then \(A\) is called a bounded set if

\[
\lim_{u \to \infty} \inf_{x,y \in A} F_\alpha(x,y)(u) = 1
\]

Definition 1.1.5: A sequence \(\{x_n\}\) in \((X,F_\alpha,t)\) is said to be convergent to a point \(x\) in \(X\) if for every \(\varepsilon > 0\) and \(\lambda > 0\), there exists an integer \(N = N(\varepsilon,\lambda)\) such that \(x_n \in U_x(\varepsilon,\lambda) \ \forall n \geq N\) or equivalently \(F_\alpha(x_n, x; \varepsilon) > 1 - \lambda\) for all \(n \geq N\) and \(\alpha \in [0,1]\).

Definition 1.1.6: A sequence \(\{x_n\}\) in \((X,F_\alpha,t)\) is said to be cauchy sequence if for every \(\varepsilon > 0\) and \(\lambda > 0\), there exists an integer \(N = N(\varepsilon,\lambda)\) such that for all \(\alpha \in [0,1]\), \(F_\alpha(x_n, x_m; \varepsilon) > 1 - \lambda\) \(\forall n, m \geq N\).

Definition 1.1.7: A Fuzzy Menger space \((X,F_\alpha,t)\) with the continuous \(t\)-norm is said to be complete if every Cauchy sequence in \(X\) converges to a point in \(X\) for all \(\alpha \in [0,1]\).

Following lemmas is selected from [8] and [12] respectively in fuzzy menger space.

Lemma 1: Let \(\{x_n\}\) be a sequence in a Menger space \((X, F_\alpha, \ast)\) with continuous \(t\)-norm \(\ast\) and \(t \ast t \geq t\). If there exists a constant \(k \in (0, 1)\) such that

\[
F_{\alpha(x_n,x_{n+1})}(kt) \geq F_{\alpha(x_{n-1},x_n)}(t) \text{ for all } t > 0 \text{ and } n = 1, 2, \ldots,
\]

then \(\{x_n\}\) is a Cauchy sequence in \(X\).

Lemma 2: ([12]). Let \((X, F_\alpha, \ast)\) be a Menger space. If there exists \(k \in (0, 1)\) such that

\[
F_{\alpha(x,y)}(kt) \geq F_{\alpha(x,y)}(t) \text{ for all } x, y \in X \text{ and } t > 0,
\]

then \(x = y\).

Definition 1.1.8: Self maps \(A\) and \(B\) of a Menger space \((X, F_\alpha, \ast)\) are said to be compatible of type \((P)\) if \(F_{\alpha(ABx_n,BAx_n)}(t) \to 1\) and \(F_{\alpha(BAx_n,AAx_n)}(t) \to 1\) \(\forall t > 0\), whenever \(\{x_n\}\) is a sequence in \(X\) such that \(Ax_n, Bx_n \to z\) for some \(z \in X\) as \(n \to \infty\).
Definition 1.1.9: Self maps A and B of a Menger space (X, F_{α}, \ast) are said to be compatible of type (P-1) if $F_{\alpha}(ABx_nBBx_n)(t) \to 1$ for all $t > 0$, whenever $\{x_n\}$ is a sequence in X such that $Ax_n, Bx_n \to z$ for some z in X as $n \to \infty$.

2. Main Results

Theorem 1. Let $A, P, Q,$ and S be self maps on a complete Menger space (X, F_{α}, \ast) with continuous t-norm \ast and $\ast \geq t$, for all $t \in [0, 1]$, satisfying:

(1.1) $P(X) \subseteq S(X)$, $Q(X) \subseteq A(X)$,

(1.2) there exists a constant $k \in (0, 1)$ such that

$$F_{\alpha}(Pz, Qy)(kt) \geq F_{\alpha}(ABz, Sy)(t) \ast F_{\alpha}(Ax, Sy)(\beta t) \ast F_{\alpha}(Pz, Ay)((2-\beta)t)$$

$$\forall x, y \in X, \beta \in (0, 2) \text{ and } t > 0,$$

(1.3) either P or A is continuous,

(1.4) the pairs (P, A) and (Q, S) are compatible of type (P-1).

Then A, P, Q and S have a unique common fixed point.

Proof. Let x_0 be an arbitrary point of X. By (1.1) there exists $x_1, x_2 \in X$ such that

$$Px_0 = Sx_1 = y_0 \text{ and } Qx_1 = Ax_2 = y_1.$$ Inductively, we can construct sequences $\{x_n\}$ and $\{y_n\}$ in X such that

$$Px_{2n} = Sx_{2n+1} = y_{2n} \text{ and } Qx_{2n+1} = Ax_{2n+2} = y_{2n+1} \text{ for } n = 0, 1, 2, \ldots$$

Step 1. By taking $x = x_{2n}$, $y = y_{2n+1}$ for all $t > 0$ and $\beta = 1 - q$ with $q \in (0, 1)$ in (1.2), we have

$$F_{\alpha}(Pz, Qy)(kt) = F_{\alpha}(y_{2n}, y_{2n+1})(kt)$$

$$\geq F_{\alpha}(y_{2n}, y_{2n+1})(t) \ast F_{\alpha}(y_{2n}, y_{2n+1})(t) \ast F_{\alpha}(y_{2n}, y_{2n+1})((1-q)t) \ast F_{\alpha}(y_{2n}, y_{2n+1})((1 + q)t)$$

$$\geq F_{\alpha}(y_{2n}, y_{2n+1})(t) \ast F_{\alpha}(y_{2n}, y_{2n+1})(t) \ast F_{\alpha}(y_{2n}, y_{2n+1})(t) \ast 1 \ast F_{\alpha}(y_{2n}, y_{2n+1})(t) \ast F_{\alpha}(y_{2n}, y_{2n+1})(qt)$$

$$\geq F_{\alpha}(y_{2n}, y_{2n+1})(t) \ast F_{\alpha}(y_{2n}, y_{2n+1})(t) \ast F_{\alpha}(y_{2n}, y_{2n+1})(qt).$$

Since t-norm is continuous, letting $q \to 1$, we have

$$\geq F_{\alpha}(y_{2n}, y_{2n+1})(kt) \ast F_{\alpha}(y_{2n}, y_{2n+1})(t) \ast F_{\alpha}(y_{2n}, y_{2n+1})(t).$$

Similarly, we also have

$$F_{\alpha}(y_{2n}, y_{2n+1})(kt) \ast F_{\alpha}(y_{2n}, y_{2n+1})(t) \ast F_{\alpha}(y_{2n}, y_{2n+1})(t).$$

In general, for all n even or odd, we have
\[F_{\alpha(y_n,y_{n+1})}(kt) \ast F_{\alpha(y_n,y_{n+1})}(t) \ast F_{\alpha(y_n,y_{n+1})}(t). \]

Consequently, for \(p = 1, 2, \ldots \), it follows that,

\[F_{\alpha(y_n,y_{n+1})}(kt) \ast F_{\alpha(y_n,y_{n+1})}(t) \ast F_{\alpha(y_n,y_{n+1})}(t) \left(\frac{1}{k^p} \right). \]

By nothing that \(F_{\alpha(y_n,y_{n+1})}(t) \left(\frac{1}{k^p} \right) \to 1 \quad as \quad p \to \infty \)

we have

\[F_{\alpha(y_n,y_{n+1})}(kt) \geq F_{\alpha(y_n,y_{n+1})}(t) \]

for \(k \in (0, 1) \) all \(n \in N \) and \(t > 0 \). Hence, by Lemma 1, \(\{y_n\} \) is a Cauchy sequence in \(X \). Since \((X, F, \ast) \) is complete, it converges to a point \(z \) in \(X \). Also its subsequences converge as follows:

\(\{P_{x_{2n}}\} \to z, \{A_{x_{2n}}\} \to z, \{Q_{x_{2n+1}}\} \to z \) and \(\{S_{x_{2n+1}}\} \to z \).

Case I. \(A \) is continuous and \((P,A)\) and \((Q, S)\) are compatible of type \((P-1)\).

Since \(A \) is continuous, \(A_{x_{2n}} \to Az \) and \(AP_{x_{2n}} \to Az \). Since \((P,A)\) is compatible of type \((P-1)\), \(PP_{x_{2n}} \to Az \).

Step 2. By taking \(x = P_{x_{2n}}, y = x_{2n+1} \) with \(\beta = 1 \) in (1.2), we have

\[F_{\alpha(P_{x_{2n}},Q_{x_{2n}})}(kt) \geq F_{\alpha(AP_{x_{2n}},AP_{x_{2n}})}(t) \ast F_{\alpha(Q_{x_{2n}},Q_{x_{2n}})}(t) \ast F_{\alpha(P_{x_{2n}},P_{x_{2n}})}(t) \ast F_{\alpha(Q_{x_{2n}},AP_{x_{2n}})}(t). \]

This implies that, as \(n \to \infty \)

\[F_{\alpha(z,Az)}(kt) \geq F_{\alpha(Az,Az)}(t) \ast F_{\alpha(Az,Az)}(t) \ast F_{\alpha(Az,Az)}(t) \ast F_{\alpha(Az,Az)}(t) \]
\[= F_{\alpha(Az,Az)}(t) \ast 1 \ast 1 \ast F_{\alpha(Az,Az)}(t) \ast F_{\alpha(Az,Az)}(t) \ast F_{\alpha(Az,Az)}(t). \]

Thus, by Lemma 2, it follows that \(z = Az \).

Step 3. By taking \(x = z, y = x_{2n+1} \) with \(\beta = 1 \) in (1.2), we have

\[F_{\alpha(P_{z},Q_{z})}(kt) \geq F_{\alpha(Az,SS_{z_{2n+1}})}(t) \ast F_{\alpha(Pz,Ap)}(t) \ast F_{\alpha(Qz,SS_{z_{2n+1}})}(t) \ast F_{\alpha(Pz,SS_{z_{2n+1}})}(t) \ast F_{\alpha(Qz,SS_{z_{2n+1}})}(t). \]

This implies that, as \(n \to \infty \)

\[F_{\alpha(z,Pz)}(kt) \geq F_{\alpha(z,Pz)}(t) \ast F_{\alpha(z,Pz)}(t) \ast F_{\alpha(z,Pz)}(t) \ast F_{\alpha(z,Pz)}(t) \ast F_{\alpha(z,Pz)}(t) \]
\[= 1 \ast 1 \ast F_{\alpha(z,Pz)}(t) \ast 1 \]
\[\geq F\alpha(z,Pz)(t). \]

Thu by Lemma 2, it follows that \(z = Pz \). Therefore, \(z = Az = Pz \).
Step 4. Since \(P(X) \subset S(X) \), there exists \(w \in X \) such that \(z = Pz = Sw \). By taking \(x = x_{2n}, y = w \) with \(\beta = 1 \) in (1.2), we have

\[
F_{a|P_{h_{2n}}Q_{w}}(kt) \geq F_{a|(A_{h_{2n}}S_{w})}(t) * F_{a|(P_{h_{2n}}A_{h_{2n}})}(t) * F_{a|(P_{h_{2n}}S_{w})}(t) * F_{a|(P_{h_{2n}}A_{h_{2n}})}(t)
\]

which implies that, as \(n \rightarrow \infty \)

\[
F_{a|(z,Q_{w})}(kt) \geq F_{a|(z,Q_{w})}(t) * F_{a|(z,Q_{w})}(t) * F_{a|(z,Q_{w})}(t) \geq F_{a|(z,Q_{w})}(t).
\]

Thus, by Lemma 2, we have \(z = Qw \). Hence, \(Sw = z = Qw \). Since \((Q, S)\) is compatible of type (P-1), we have QSw = SSw. Thus, Sz = Qz.

Step 5. By taking \(x = x_{2n}, y = z \) with \(\beta = 1 \) in (1.2) and using Step 4, we have

\[
F_{a|(P_{h_{2n}}Q_{z})}(kt) \geq F_{a|(A_{h_{2n}}S_{z})}(t) * F_{a|(P_{h_{2n}}A_{h_{2n}})}(t) * F_{a|(P_{h_{2n}}S_{z})}(t) * F_{a|(P_{h_{2n}}A_{h_{2n}})}(t)
\]

which implies that, as \(n \rightarrow \infty \)

\[
F_{a|(z,P_{z})}(kt) \geq F_{a|(z,P_{z})}(t) * F_{a|(z,P_{z})}(t) * F_{a|(z,P_{z})}(t) \geq F_{a|(z,P_{z})}(t).
\]

Thus, by Lemma 2, we have \(z = Qz \). Since Sz = Qz, we have \(z = Sz \).

Therefore, \(z = Az = Pz = Qz = Sz \).

Case II. \(P \) is continuous, and \((P, A)\) and \((Q, S)\) are compatible of type (P-1). Since \(P \) is continuous, \(PP_{2n} \rightarrow Pz \) and \(PA_{2n} \rightarrow Pz \). Since \((P, A)\) is compatible of type (P-1), \(AAx_{2n} \rightarrow Pz \).

Step 6. By taking \(x = Ax_{2n}, y = x_{2n+1} \) with \(\beta = 1 \) in (1.2), we have

\[
F_{a|(P_{h_{2n}}Q_{z_{2n+1}})}(kt) \geq F_{a|(A_{h_{2n}}S_{z_{2n+1}})}(t) * F_{a|(P_{h_{2n}}A_{h_{2n}})}(t) * F_{a|(P_{h_{2n}}S_{z_{2n+1}})}(t) * F_{a|(P_{h_{2n}}A_{h_{2n}})}(t) * F_{a|(Q_{z_{2n+1}}A_{h_{2n}})}(t).
\]

This implies that, as \(n \rightarrow \infty \)

\[
F_{a|(z,P_{z})}(kt) \geq F_{a|(z,P_{z})}(t) * F_{a|(z,P_{z})}(t) * F_{a|(z,P_{z})}(t) \geq F_{a|(z,P_{z})}(t) \geq F_{a|(z,P_{z})}(t).
\]

Thus, by Lemma 2, it follows that \(z = Pz \). Now using Step 4 and 5, we have \(z = Qz = Sz \).

Step 9. Since \(Q(X) \subset A(X) \), there exists \(w \in X \) such that \(z = Qz = Aw \). By taking \(x = w, y = x_{2n+1} \) with \(\beta = 1 \) in (1.2), we have
\[F_{\alpha(Pw,Qx)}(kt) \geq F_{\alpha(Aw,Sx)}(t) \ast F_{\alpha(Pw,Aw)}(t) \ast F_{\alpha(Qx,Sx)}(t) \ast F_{\alpha(Pw,Sx)}(t) \ast F_{\alpha(Qx,Aw)}(t) \]

which implies that, as \(n \to \infty \)
\[F_{\alpha(Pw)}(kt) \geq F_{\alpha(Qx)}(t) \ast F_{\alpha(Pw)}(t) \ast F_{\alpha(Qx)}(t) \ast F_{\alpha(Pw)}(t) \ast F_{\alpha(Qx)}(t) \]
\[= 1 \ast F_{\alpha(Pw)}(t) \ast 1 \ast F_{\alpha(Pw)}(t) \ast 1 \]
\[\geq F_{\alpha(Pw)}(t) \]

Thus, by Lemma 2, we have \(z = Pw \). Since \(z = Qz = Aw, Pw = Aw \).

Since \((P,A)\) is compatible of type \((P-1)\), we have \(Pz = Az \). Thus, \(z = Az = Pz \). Hence, \(z \) is the common fixed point of the four maps.

Step 10. For uniqueness, let \(v (v \neq z) \) be another common fixed point of \(A, P, Q, \) and \(S \). Taking \(x = z, y = v \) with \(\beta = 1 \) in (1.2), we have
\[F_{\alpha(Px,Qy)}(kt) \geq F_{\alpha(Ax,Sy)}(t) \ast F_{\alpha(Px,As)}(t) \ast F_{\alpha(Qx,Sy)}(t) \ast F_{\alpha(Px,As)}(t) \ast F_{\alpha(Qx,Ax)}(t) \]

which implies that
\[F_{\alpha(x,y)}(kt) \geq F_{\alpha(x,y)}(t) \ast F_{\alpha(x,z)}(t) \ast F_{\alpha(y,v)}(t) \ast F_{\alpha(x,v)}(t) \ast F_{\alpha(v,z)}(t) \]
\[= F_{\alpha(x,y)}(t) \ast 1 \ast 1 \ast F_{\alpha(x,v)}(t) \ast F_{\alpha(v,z)}(t) \]
\[\geq F_{\alpha(x,y)}(t) \]

Thus, by Lemma 2, we have \(z = v \).

This completes the proof of the theorem.

If we take \(A = S = IX \) (the identity map on \(X \)) in Theorem 1, we have the following:

Corollary. Let \(P \) and \(Q \) be self maps on a complete Fuzzy Menger space \((X,F_{\alpha,*})\) with continuous \(t \)-norm \(* \) and \(t^*t \geq t \) for all \(t \in [0,1] \). If there exists a constant \(k \in (0,1) \) such that
\[F_{\alpha(Px,Qy)}(kt) \geq F_{\alpha(x,y)}(t) \ast F_{\alpha(x,Px)}(t) \ast F_{\alpha(y,Qy)}(t) \ast F_{\alpha(y,Px)}(t) \ast F_{\alpha(x,Qy)}((2 - \beta)t) \]

for all \(x, y \in X, \beta \in (0,2) \) and \(t > 0 \), then \(P \) and \(Q \) have a unique common fixed point.

Conflict of Interests

The authors declare that there is no conflict of interests.
REFERENCES

