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1. Introduction

The notion of partial metric spaces was introduced by Matthews [14] in 1994 who then further

extended the banach contraction principle from metric spaces to partial metric spaces. Since

then several authors (for example, [2,3,4,9]) worked on this notion of partial metric spaces and

obtained fixed point results for mappings satisfying different contractive conditions.

The concept of b-metric spaces was introduced by Bakhtin [5] which was further extended

by Czerwick [8]. Later Shukla [16] generalized both the concept of b-metric and partial metric
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spaces by introducing the partial b-metric spaces. Motivated by this we introduced the notion of

Quasi-partial b-metric space [10] and proved fixed point theorem on it. Then we extended this

study to coupled fixed point theorems on Quasi-partial b-metric spaces [11]. Earlier in 2012,

Karapinar et al. [12] had introduced the concept of quasi-partial metric space which is defined

as follows:

Definition 1.1. [12] A quasi-partial metric on nonempty set X is a function q : X ×X → R+

which satisfies:

(QPM1) If q(x,x) = q(x,y) = q(y,y), then x = y,

(QPM2) q(x,x)6 q(x,y),

(QPM3) q(x,x)6 q(y,x), and

(QPM4) q(x,y)+q(z,z)6 q(x,z)+q(z,y)

for all x,y,z ∈ X .

A quasi-partial metric space is a pair (X ,q) such that X is a nonempty set and q is a quasi-

partial metric on X .

Let q be a quasi-partial metric on the set X . Then

dq(x,y) = q(x,y)+q(y,x)−q(x,x)−q(y,y) is a metric on X .

Lemma 1.2. [12] Let (X ,q) be a quasi-partial metric space. Let (X , pq) be the corresponding

partial metric space, and let (X ,dpq) be the corresponding metric space. Then the following

statements are equivalent

(i) (X ,q) is complete,

(ii) (X , pq) is complete,

(iii) (X ,dpq) is complete.

Moreover,

lim
n→∞

dpq(x,xn) = 0 ⇔ pq(x,x) = lim
n→∞

pq(x,xn) = lim
n,m→∞

pq(xn,xm)

⇔ q(x,x) = lim
n→∞

q(x,xn) = lim
n,m→∞

q(xn,xm)

= lim
n→∞

q(xn,x) = lim
n,m→∞

q(xm,xn) .
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Definition 1.3. [16] A partial b-metric on a nonempty set X is a mapping pb : X ×X → R+

such that for some real number s > 1 and for all x,y,z ∈ X

(Pb1) x = y if and only if pb(x,x) = pb(x,y) = pb(y,y),

(Pb2) pb(x,x)6 pb(x,y),

(Pb3) pb(x,y) = pb(y,x),

(Pb4) pb(x,y)6 s[pb(x,z)+ pb(z,y)]− pb(z,z).

A partial b-metric space is a pair (X , pb) such that X is a nonempty set and pb is a partial

b-metric on X . The number s is called the coefficient of (X , pb).

Definition 1.4. [6] Let X be a nonempty set. An element (x,y) ∈ X×X is a coupled fixed point

of the mapping

F : X×X → X if F(x,y) = x and F(y,x) = y .

Definition 1.5. [13] An element (x,y) ∈ X×X is called

(i) a coupled coincidence point of the mappings F : X×X→ X and g : X→ X if F(x,y) = gx

and F(y,x) = gy; in this case (gx,gy) is called coupled point of coincidence of mappings

F and g;

(ii) a common coupled fixed point of mappings F : X×X→X and g : X→X if F(x,y)= gx= x

and F(y,x) = gy = y .

The concept of w-compatible mappings was introduced by Abbas et al. [1].

Definition 1.6. [1] Let X be a nonempty set. The mappings F : X×X→X and g : X → X are

w-compatible if gF(x,y) = F(gx,gy) whenever gx = F(x,y) and gy = F(y,x).

Shatanawi and Pitea [15] obtained some common coupled fixed point results for a pair of

mappings in quasi-partial metric space. Later Gu and Wang [9] proved coupled fixed-point

theorems in two quasi-partial metric spaces.

Theorem 1.7 ([9], Theorem 2.1). Let q1 and q2 be two quasi partial metrics on X such that

q2(x,y)6 q1(x,y), for all x,y∈ X, and let F : X×X → X, g : X → X be two mappings. Suppose

that there exists k1, k2, k3, k4, and k5 in [0,1) with

k1 + k2 + k3 +2k4 + k5 < 1 (1)
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such that the condition

q1(F(x,y),F(u,v))+q1(F(y,x),F(v,u))

6 k1[q2(gx,gu)+q2(gy,gv)]+ k2[q2(gx,F(x,y))+q2(gy,F(y,x))]

+ k3[q2(gu,F(u,v))+q2(gv,F(v,u))]+ k4[q2(gx,F(u,v))+q2(gy,F(v,u))]

+ k5[q2(gu,F(x,y))+q2(gv,F(y,x))]
(2)

holds for all x,y,u,v ∈ X. Also, suppose we have the following hypotheses:

(i) F(X×X)⊆ g(X).

(ii) g(X) is complete subspace of X with respect to the quasi-partial metric q1.

Then the mapping F and g have a coupled coincidence point (x,y) satisfying gx = F(x,y) =

F(y,x) = gy. Moreover, if F and g are w-compatible, then F and g have a unique common

coupled fixed point of the form (u,u).

The aim of this paper is to prove some coupled common fixed-point theorems on quasi-partial

b-metrics spaces for mappings defined on a set equipped with two quasi-partial b-metrics with

different coefficients s1 and s2 respectively such that s2 > s1.

2. Quasi-partial b-metric spaces

Definition 2.1. A quasi-partial b-metric on a nonempty set X is a mapping qpb : X ×X → R+

such that for some real number s > 1 and for all x,y,z ∈ X

(QPb1) qpb(x,x) = qpb(x,y) = qpb(y,y)⇒ x = y,

(QPb2) qpb(x,x)6 qpb(x,y),

(QPb3) qpb(x,x)6 qpb(y,x),

(QPb4) qpb(x,y)6 s[qpb(x,z)+qpb(z,y)]−qpb(z,z).

A quasi-partial b-metric space is a pair (X ,qpb) such that X is a nonempty set and qpb is a

quasi-partial b-metric on X . The number s is called the coefficient of (X ,qpb).

Let qpb be a quasi-partial b-metric on the set X . Then

dqpb(x,y) = qpb(x,y)+qpb(y,x)−qpb(x,x)−qpb(y,y)
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is a b-metric on X .

Lemma 2.2. Every Partial b-metric space is a quasi-partial b-metric space. But the converse

need not be true.

Lemma 2.3. Let (X ,qpb) be a quasi-partial b-metric space. Then the following hold

(A) If qpb(x,y) = 0 then x = y,

(B) If x 6= y, then qpb(x,y)> 0 and qpb(y,x)> 0.

Proof is similar as for the case of quasi-partial metric space (Refer [12]).

Definition 2.4. Let (X ,qpb) be a quasi-partial b-metric space. Then

(i) a sequence {xn} ⊂ X Converges to x ∈ X if and only if

qpb(x,x) = lim
n→∞

qpb(x,xn) = lim
n→∞

qpb(xn,x).

(ii) a sequence {xn} ⊂ X is called a Cauchy sequence if and only if

lim
n,m→∞

qpb(xn,xm) and lim
n,m→∞

qpb(xm,xn) exist (and are finite).

(iii) the quasi partial b-metric space (X ,qpb) is said to be Complete if every cauchy sequence

{xn} ⊂ X converges with respect to τqpb to a point x ∈ X such that

qpb(x,x) = lim
n,m→∞

qpb(xm,xn) = lim
n,m→∞

qpb(xn,xm).

(iv) a mapping f : X → X is said to be Continuous at x0 ∈ X if, for every ε > 0, there exists

δ > 0 such that f (B(x0,δ ))⊂ B( f (x0),ε).

Lemma 2.5. Let (X ,qpb) be a quasi-partial b-metric space and (X ,dqpb) be the corresponding

b-metric space. Then (X ,dqpb) is complete if (X ,qpb) is complete.

Proof. Since (X ,qpb) is complete, every cauchy sequence {xn} in X converges, with respect to

τqpb to a point x ∈ X such that

qpb(x,x) = lim
n,m→∞

qpb(xn,xm) = lim
n,m→∞

qpb(xm,xn). (3)

Consider a Cauchy sequence {xn} in (X ,dqpb). We will show that {xn} is Cauchy in (X ,qpb).

Since {xn} is Cauchy in (X ,dqpb), therefore lim
n,m→∞

dqpb(xn,xm) exists and is finite.
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Also,

dqpb(xn,xm) = qpb(xn,xm)+qpb(xm,xn)−qpb(xn,xn)−qpb(xm,xm).

Clearly, lim
n,m→∞

qpb(xn,xm) and lim
n,m→∞

qpb(xm,xn) exists and are finite. Therefore, {xn} is Cauchy

sequence in (X ,qpb). Now, since (X ,qpb) is complete, the sequence {xn} converges with re-

spect to τqpb to a point x ∈ X such that (3) holds. For {xn} to be convergent in (X ,dqpb) we will

show that

dqpb(x,x) = lim
n→∞

dqpb(x,xn).

It follows from definition of dqpb that dqpb(x,x) = 0. Also,

lim
n→∞

dqpb(x,xn) = lim
n→∞

qpb(x,xn)+ lim
n→∞

qpb(xn,x)− lim
n→∞

qpb(xn,xn)− lim
n→∞

qpb(x,x)

= 0 by (3) and definition of convergence in (X ,qpb).

Hence, dqpb(x,x) = lim
n→∞

dqpb(x,xn).

3. The main results

Now, we shall prove our main result.

Theorem 3.1. Let qpb1 and qpb2 be two quasi-partial b-metrics on X with different coeffi-

cients s1 and s2 respectively such that s2 > s1 and qpb2(x,y) 6 qpb1(x,y), for all x,y ∈ X. Let

F : X×X → X, g : X → X be two mappings. Suppose that there exist k1,k2,k3,k4, and k5 in

[0,1) with

k1 + k2 + k3 +2s2k4 + k5 <
1
s1

(4)

such that the condition

qpb1(F(x,y),F(u,v))+qpb1(F(y,x),F(v,u))

6 k1[qpb2(gx,gu)+qpb2(gy,gv)]+k2[qpb2(gx,F(x,y))+qpb2(gy,F(y,x))]

+ k3[qpb2(gu,F(u,v))+qpb2(gv,F(v,u))]+ k4[qpb2(gx,F(u,v))+qpb2(gy,F(v,u))]

+ k5[qpb2(gu,F(x,y))+qpb2(gv,F(y,x))]
(5)

holds for all x,y,u,v ∈ X. Also, suppose we have the following hypotheses:

(i) F(X×X)⊂ g(X)
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(ii) g(X) is a complete subspace of X with respect to the quasi-partial b-metric qpb1 .

Then the mappings F and g have a coupled coincidence point (x,y) satisfying gx = F(x,y) =

F(y,x) = gy. Moreover, if F and g are w-compatible, then F and g have a unique common

coupled fixed point of the form (u,u).

Proof. Let x0,y0 ∈ X . Since F(X ×X) ⊂ g(X), we can choose x1,y1 ∈ X such that gx1 =

F(x0,y0) and gy1 = F(y0,x0). Similarly, we can choose x2,y2 ∈ X such that gx2 = F(x1,y1) and

gy2 = F(y1,x1).

Continuing in this way we can construct two sequences {xn} and {yn} in X such that

gxn+1 = F(xn,yn) and gyn+1 = F(yn,xn), ∀ n > 0. (6)

It follows from (5), (QPb4) and (QPb2) that,

qpb1(gxn,gxn+1)+qpb1(gyn,gyn+1)

= qpb1(F(xn−1,yn−1),F(xn,yn))+qpb1(F(yn−1,xn−1),F(yn,xn))

6 k1[qpb2(gxn−1,gxn)+qpb2(gyn−1,gyn)]

+ k2[qpb2(gxn−1,F(xn−1,yn−1))+qpb2(gyn−1,F(yn−1,xn−1))]

+ k3[qpb2(gxn,F(xn,yn))+qpb2(gyn,F(yn,xn))]

+ k4[qpb2(gxn−1,F(xn,yn))+qpb2(gyn−1,F(yn,xn))]

+ k5[qpb2(gxn,F(xn−1,yn−1))+qpb2(gyn,F(yn−1,xn−1))]

= (k1 + k2)[qpb2(gxn−1,gxn)+qpb2(gyn−1,gyn)]

+ k3[qpb2(gxn,gxn+1)+qpb2(gyn,gyn+1)]

+ k4[qpb2(gxn−1,gxn+1)+qpb2(gyn−1,gyn+1)]

+ k5[qpb2(gxn,gxn)+qpb2(gyn,gyn)]
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6 (k1 + k2)[qpb2(gxn−1,gxn)+qpb2(gyn−1,gyn)]

+ k3[qpb2(gxn,gxn+1)+qpb2(gyn,gyn+1)]

+ k4[s2{qpb2(gxn−1,gxn)+qpb2(gxn,gxn+1)}−qpb2(gxn,gxn)

+ s2{qpb2(gyn−1,gyn)+qpb2(gyn,gyn+1)}−qpb2(gyn,gyn)]

+ k5[qpb2(gxn,gxn+1)+qpb2(gyn,gyn+1)]

6 (k1 + k2 + s2k4)[qpb2(gxn−1,gxn)+qpb2(gyn−1,gyn)]

+(k3 + s2k4 + k5)[qpb2(gxn,gxn+1)+qpb2(gyn,gyn+1)]

6 (k1 + k2 + s2k4)[qpb1(gxn−1,gxn)+qpb1(gyn−1,gyn)]

+(k3 + s2k4 + k5)[qpb1(gxn,gxn+1)+qpb1(gyn,gyn+1)],

which implies that

qpb1(gxn,gxn+1)+qpb1(gyn,gyn+1)

6
k1 + k2 + s2k4

1− k3− s2k4− k5
[qpb1(gxn−1,gxn)+qpb1(gyn−1,gyn)].

(7)

Put k =
k1 + k2 + s2k4

1− k3− s2k4− k5
. Obviously, 0 6 k <

1
s1

< 1. By repetition of the above inequality

(7) n times we get

qpb1(gxn,gxn+1)+qpb1(gyn,gyn+1)6 kn[qpb1(gx0,gx1)+qpb1(gy0,gy1)]. (8)

Next, we shall prove that {gxn} and {gyn} are Cauchy sequences in g(X). In fact, for each

n,m ∈ N, m > n, from (QPb4) and (8), we have

qpb1(gxn,gxm)+qpb1(gyn,gym)6
m−1

∑
i=n

sm−i
1 [qpb1(gxi,gxi+1)+qpb1(gyi,gyi+1)]

6
m−1

∑
i=n

sm−i
1 · ki[qpb1(gx0,gx1)+qpb1(gy0,gy1)]

=
m−1

∑
i=n

(
k
s1

)i

sm
1 [qpb1(gx0,gx1)+qpb1(gy0,gy1)]



456 A. GUPTA, P. GAUTAM

6
∞

∑
i=n

(
k
s1

)i

sm
1 [qpb1(gx0,gx1)+qpb1(gy0,gy1)]

=

(
k
s1

)n

(
1− k

s1

) · sm
1 [qpb1(gx0,gx1)+qpb1(gy0,gy1)].

(9)

On letting n→ ∞ in (9); holding m fixed, we get

lim
n→∞

[qpb1(gxn,gxm)+qpb1(gyn,gym)]6 0 .

But

lim
n→∞

[qpb1(gxn,gxm)+qpb1(gyn,gym)]> 0.

This implies that

lim
n→∞

[qpb1(gxn,gxm)] = lim
n→∞

[qpb1(gyn,gym)] = 0 .

Now letting m→+∞, one has

lim
n,m→∞

qpb1(gxn,gxm) = lim
n,m→∞

qpb1(gyn,gym) = 0 . (10)

By similar arguments as above, we can show that

lim
n,m→∞

qpb1(gxm,gxn) = 0 and lim
n,m→∞

qpb1(gym,gyn) = 0 . (11)

So, {gxn} and {gyn} are Cauchy sequences in (g(X),qpb1). Since (g(X),qpb1) is complete,

there exist gx,gy∈ g(X) such that {gxn} and {gyn} converges to gx and gy with respect to τqpb1
,

that is,
qpb1(gx,gx) = lim

n→∞
qpb1(gx,gxn) = lim

n→∞
qpb1(gxn,gx)

= lim
n,m→∞

qpb1(gxm,gxn) = lim
n,m→∞

qpb1(gxn,gxm)
(12)

and
qpb1(gy,gy) = lim

n→∞
qpb1(gy,gyn) = lim

n→∞
qpb1(gyn,gy)

= lim
n,m→∞

qpb1(gym,gyn) = lim
n,m→∞

qpb1(gyn,gym).
(13)

Combining (10)-(13), we have

qpb1(gx,gx) = lim
n→∞

qpb1(gx,gxn) = lim
n→∞

qpb1(gxn,gx)

= lim
n,m→∞

qpb1(gxm,gxn) = lim
n,m→∞

qpb1(gxn,gxm) = 0
(14)
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and

qpb1(gy,gy) = lim
n→∞

qpb1(gy,gyn) = lim
n→∞

qpb1(gyn,gy)

= lim
n,m→∞

qpb1(gym,gyn) = lim
n,m→∞

qpb1(gyn,gym) = 0.
(15)

By (QPb4), we have

qpb1(gxn+1,F(x,y))6 s1{qpb1(gxn+1,gx)+qpb1(gx,F(x,y))}−qpb1(gx,gx)

6 s1{qpb1(gxn+1,gx)+qpb1(gx,F(x,y))}

6 s1 [qpb1(gxn+1,gx)+ s1{qpb1(gx,gxn+1)

+ qpb1(gxn+1,F(x,y))}−qpb1(gxn+1,gxn+1)]

6 s1[qpb1(gxn+1,gx)]+ s2
1[qpb1(gx,gxn+1)]

+ s2
1[qpb1(gxn+1,F(x,y))] .

Letting n→ ∞ in the above inequalities and using (14), we have

1
s1

qpb1(gx,F(x,y))6 lim
n→∞

qpb1(gxn+1,F(x,y))

6 s1qpb1(gx,F(x,y)) .
(16)

Similarly using (15), one has

1
s1

qpb1(gy,F(y,x))6 lim
n→∞

qpb1(gyn+1,F(y,x))

6 s1qpb1(gy,F(y,x)) .
(17)

Now, we prove that F(x,y) = gx and F(y,x) = gy. Infact, it follows from (5) and (6) that

qpb1(gxn+1,F(x,y))+qpb1(gyn+1,F(y,x))

= qpb1(F(xn,yn),F(x,y))+qpb1(F(yn,xn),F(y,x))

6 k1[qpb2(gxn,gx)+qpb2(gyn,gy)]+ k2[qpb2(gxn,F(xn,yn))+qpb2(gyn,F(yn,xn))]

+ k3[qpb2(gx,F(x,y))+qpb2(gy,F(y,x))]+ k4[qpb2(gxn,F(x,y))+qpb2(gyn,F(y,x))]

+ k5[qpb2(gx,F(xn,yn))+qpb2(gy,F(yn,xn))]
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= k1[qpb2(gxn,gx)+qpb2(gyn,gy)]+ k2[qpb2(gxn,gxn+1)+qpb2(gyn,gyn+1)]

+ k3[qpb2(gx,F(x,y))+qpb2(gy,F(y,x))]+ k4[qpb2(gxn,F(x,y))+qpb2(gyn,F(y,x))]

+ k5[qpb2(gx,gxn+1)+qpb2(gy,gyn+1)]

6 k1[qpb1(gxn,gx)+qpb1(gyn,gy)]+ k2[qpb1(gxn,gxn+1)+qpb2(gyn,gyn+1)]

+ k3[qpb1(gx,F(x,y))+qpb1(gy,F(y,x))]+ k4[qpb1(gxn,F(x,y))+qpb1(gyn,F(y,x))]

+ k5[qpb1(gx,gxn+1)+qpb1(gy,gyn+1)].

Letting n→ ∞ in the above inequality, using (14)-(17), we get

lim
n→∞

[qpb1(gxn+1,F(x,y))+qpb1(gyn+1,F(y,x))]

6 lim
n→∞
{[k1(qpb1(gxn,gx)+qpb1(gyn,gy)]+ k2[qpb1(gxn,gxn+1)+qpb1(gyn,gyn+1)]

+ k3[qpb1(gx,F(x,y))+qpb1(gy,F(y,x))]+ k4[qpb1(gxn,F(x,y))+qpb1(gyn,F(y,x))]

+ k5[qpb1(gx,gxn+1)+qpb1(gy,gyn+1)]}.

Therefore,

lim
n→∞

[qpb1(gxn+1,F(x,y))+qpb1(gyn+1,F(y,x))]

6 k1[qpb1(gx,gx)+qpb1(gy,gy)]+ k2[qpb1(gx,gx)+qpb1(gy,gy)]

+ k3[qpb1(gx,F(x,y))+qpb1(gy,F(y,x))]+ lim
n→∞

k4[qpb1(gxn,F(x,y))+qpb1(gyn,F(y,x))]

+ k5[qpb1(gx,gx)+qpb1(gy,gy)]

= k3[qpb1(gx,F(x,y))+qpb1(gy,F(y,x))]+ lim
n→∞

k4[qpb1(gxn,F(x,y))+qpb1(gyn,F(y,x))].

By using (14)-(17), we get

lim
n→∞

[qpb1(gxn+1,F(x,y))+qpb1(gyn+1,F(y,x))]

6 k3[qpb1(gx,F(x,y))+qpb1(gy,F(y,x))]+ k4 · s1[qpb1(gx,F(x,y))+qpb1(gy,F(y,x))]

= (k3 + s1k4)[qpb1(gx,F(x,y))+qpb1(gy,F(y,x))].
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And also

1
s1
[qpb1(gx,F(x,y))+qpb1(gy,F(y,x))]

6 (k3 + s1k4)[qpb1(gx,F(x,y))+qpb1(gy,F(y,x))]

⇒
[

1
s1
− k3− s1k4

]
[qpb1(gx,F(x,y))+qpb1(gy,F(y,x))]6 0.

(18)

Also k3 + s1k4 < k3 + s2k4 since s2 > s1. Further it follows from (4) that k3 + s2k4 <
1
s1

. Hence

k3 + s1k4 <
1
s1

. Thus it follows from (18) that

qpb1(gx,F(x,y)) = qpb1(gy,F(y,x)) = 0.

By Lemma 2.3, we get F(x,y) = gx and F(y,x) = gy. Hence, (gx,gy) is a coupled point of

coincidence of mappings F and g.

Next, we will show that the coupled point of coincidence is unique. Suppose that (x∗,y∗) ∈

X×X with F(x∗,y∗) = gx∗ and F(y∗,x∗) = gy∗ . Using (5), (14), (15), and (QPb3), we obtain

qpb1(gx,gx∗)+qpb1(gy,gy∗)

= qpb1(F(x,y),F(x∗,y∗))+qpb1(F(y,x),F(y∗,x∗))

6 k1[qpb2(gx,gx∗)+qpb2(gy,gy∗)]+ k2[qpb2(gx,F(x,y))+qpb2(gy,F(y,x))]

+ k3[qpb2(gx∗,F(x∗,y∗))+qpb2(gy∗,F(y∗,x∗))]+ k4[qpb2(gx,F(x∗,y∗))+qpb2(gy,F(y∗,x∗))]

+ k5[qpb2(gx∗,F(x,y))+qpb2(gy∗,F(y,x))]

= k1[qpb2(gx,gx∗)+qpb2(gy,gy∗)]+ k2[qpb2(gx,gx)+qpb2(gy,gy)]

+ k3[qpb2(gx∗,gx∗)+qpb2(gy∗,gy∗)]+ k4[qpb2(gx,gx∗)+qpb2(gy,gy∗)]

+ k5[qpb2(gx∗,gx)+qpb2(gy∗,gy)]

6 (k1 + k4)[qpb1(gx,gx∗)+qpb1(gy,gy∗)]+ k2[qpb1(gx,gx)+qpb1(gy,gy)]

+ k3[qpb1(gx∗,gx∗)+qpb1(gy∗,gy∗)]+ k5[qpb1(gx∗,gx)+qpb1(gy∗,gy)]

6 (k1 + k3 + k4)[qpb1(gx,gx∗)+qpb1(gy,gy∗)]+ k5[qpb1(gx∗,gx)+qpb1(gy∗,gy)].
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This implies that

qpb1(gx,gx∗)+qpb1(gy,gy∗)6
k5

1− k1− k3− k4
[qpb1(gx∗,gx)+qpb1(gy∗,gy)]. (19)

Similarly, we have

qpb1(gx∗,gx)+qpb1(gy∗,gy)6
k5

1− k1− k3− k4
[qpb1(gx,gx∗)+qpb1(gy,gy∗)]. (20)

Substituting (20) into (19), we obtain

qpb1(gx,gx∗)+qpb1(gy,gy∗)6
(

k5

1− k1− k3− k4

)2

[qpb1(gx,gx∗)+qpb1(gy,gy∗)]. (21)

Since
k5

1− k1− k3− k4
< 1, from (21), we must have

qpb1(gx,gx∗) = qpb1(gy,gy∗) = 0.

By Lemma 2.3, we get gx = gx∗ and gy = gy∗, which implies the uniqueness of the coupled

point of coincidence of F and g, that is, (gx,gy).

Next, we will show that gx = gy. Infact, from (5), (14) and (15), we have

qpb1(gx,gy)+qpb1(gy,gx)

= qpb1(F(x,y),F(y,x))+qpb1(F(y,x),F(x,y))

6 k1[qpb2(gx,gy)+qpb2(gy,gx)]+ k2[qpb2(gx,F(x,y))+qpb2(gy,F(y,x))]

+ k3[qpb2(gy,F(y,x))+qpb2(gx,F(x,y))]+ k4[qpb2(gx,F(y,x))+qpb2(gy,F(x,y))]

+ k5[qpb2(gy,F(x,y))+qpb2(gx,F(y,x))]

= k1[qpb2(gx,gy)+qpb2(gy,gx)]+ k2[qpb2(gx,gx)+qpb2(gy,gy)]

+ k3[qpb2(gy,gy)+qpb2(gx,gx)]+ k4[qpb2(gx,gy)+qpb2(gy,gx)]

+ k5[qpb2(gy,gx)+qpb2(gx,gy)]

6 k1[qpb1(gx,gy)+qpb1(gy,gx)]+ k2[qpb1(gx,gx)+qpb1(gy,gy)]

+ k3[qpb1(gy,gy)+qpb1(gx,gx)]+ k4[qpb1(gx,gy)+qpb1(gy,gx)]

+ k5[qpb1(gy,gx)+qpb1(gx,gy)]

= (k1 + k4 + k5)[qpb1(gx,gy)+qpb1(gy,gx)].
(22)
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Since k1 + k4 + k5 < 1 from (22) we have

qpb1(gx,gy) = qpb1(gy,gx) = 0.

By Lemma 2.3, we get gx = gy.

Finally, assume that g and F are w-compatible. Let u = gx, then we have u = gx = F(x,y) =

gy = F(y,x), so that

gu = ggx = g(F(x,y)) = F(gx,gy) = F(u,u). (23)

Consequently, (u,u) is a coupled coincidence point of F and g, and therefore (gu,gu) is a

coupled point of coincidence of F and g, and by its uniqueness, we get gu = gx. Thus, we

obtain F(u,u) = gu = u. Therefore, (u,u) is the unique common coupled fixed point of F and

g. This completes the proof.

Corollary 3.2. Let qpb1 and qpb2 be two quasi-partial b-metrics on X with different co-

efficients s1 and s2 respectively such that s2 > s1 and qpb2(x,y) 6 qpb1(x,y), for all x,y ∈

X. Let F : X×X → X, g : X → X be two mappings. Suppose that there exist ai ∈ [0,1) (i =

1,2,3, . . . ,10) with

a1 +a2 +a3 +a4 +a5 +a6 +2s2(a7 +a8)+a9 +a10 <
1
s1

such that the condition

qpb1(F(x,y),F(u,v))

6 a1qpb2(gx,gu)+a2qpb2(gy,gv)+a3qpb2(gx,F(x,y))

+a4qpb2(gy,F(y,x))+a5qpb2(gu,F(u,v))+a6qpb2(gv,F(v,u))

+a7qpb2(gx,F(u,v))+a8qpb2(gy,F(v,u))+a9qpb2(gu,F(x,y))

+a10qpb2(gv,F(y,x))

(24)

holds for all x,y,u,v ∈ X. Also suppose we have the following hypotheses:

(i) F(X×X)⊆ g(X)

(ii) g(X) is a complete subspace of X with respect to the quasi-partial b-metric qpb1 .
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Then the mappings F and g have a coincidence point (x,y) satisfying gx = F(x,y) = F(y,x) =

gy. Moreover, if F and g are w-compatible, then F and g have a unique common coupled fixed

point of the form (u,u).

Proof. Given x,y,u,v ∈ X , it follows from (24) that

qpb1(F(x,y),F(u,v))

6 a1qpb2(gx,gu)+a2qpb2(gy,gv)+a3qpb2(gx,F(x,y))

+a4qpb2(gy,F(y,x))+a5qpb2(gu,F(u,v))+a6qpb2(gv,F(v,u))

+a7qpb2(gx,F(u,v))+a8qpb2(gy,F(v,u))+a9qpb2(gu,F(x,y))

+a10qpb2(gv,F(y,x))

(25)

and
qpb1(F(y,x),F(v,u))

6 a1qpb2(gy,gv)+a2qpb2(gx,gu)+a3qpb2(gy,F(y,x))

+a4qpb2(gx,F(x,y))+a5qpb2(gv,F(v,u))+a6qpb2(gu,F(u,v))

+a7qpb2(gy,F(v,u))+a8qpb2(gx,F(u,v))+a9qpb2(gv,F(y,x))

+a10qpb2(gu,F(x,y)).

(26)

Adding inequality (25) to inequality (26), we get

qpb1(F(x,y),F(u,v))+qpb1(F(y,x),F(v,u))

6 (a1 +a2)[qpb2(gx,gu)+qpb2(gy,gv)]+(a3 +a4)[qpb2(gx,F(x,y))+qpb2(gy,F(y,x))]

+(a5 +a6)[qpb2(gu,F(u,v))+qpb2(gv,F(v,u)

+(a7 +a8)[qpb2(gx,F(u,v))+qpb2(gy,F(v,u))]

+(a9 +a10)[qpb2(gu,F(x,y))+qpb2(gv,F(y,x))].
(27)

Therefore, letting a1+a2 = k1, a3+a4 = k2, a5+a6 = k3, a7+a8 = k4, a9+a10 = k5, the result

follows from Theorem 3.1.

Corollary 3.3. Let qpb1 and qpb2 be two quasi-partial b-metrics on X with different coeffi-

cients s1 and s2 respectively such that s2 > s1 and qpb2(x,y) 6 qpb1(x,y), for all x,y ∈ X. Let



SOME COUPLED FIXED POINT THEOREMS 463

F : X×X → X, g : X → X be two mappings. Suppose that there exists k ∈
[

0,
1
s1

)
such that the

condition

qpb1(F(x,y),F(u,v))+qpb1(F(y,x),F(v,u))6 k[qpb2(gx,gu)+qpb2(gy,gv)]

holds for all x,y,u,v ∈ X. Also, suppose we have the following hypotheses:

(i) F(X×X)⊆ g(X)

(ii) g(X) is a complete subspace of X with respect to the quasi-partial b-metric qpb1 .

Then the mappings F and g have a coincidence point (x,y) satisfying gx = F(x,y) = F(y,x) =

gy. Moreover, if F and g are w-compatible, then F and g have a unique common coupled fixed

point of the form (u,u).

Proof. By putting k1 = k and k2 = k3 = k4 = k5 = 0 in Theorem 3.1 we get the result.

Corollary 3.4. Let qpb1 and qpb2 be two quasi-partial b-metrics on X with different coeffi-

cients s1 and s2 respectively such that s2 > s1 and qpb2(x,y) 6 qpb1(x,y), for all x,y ∈ X. Let

F : X×X → X, g : X → X be two mappings.Suppose that there exists k ∈
[

0,
1

2s1s2

)
such that

the condition

qpb1(F(x,y),F(u,v))+qpb1(F(y,x),F(v,u))6 k[qpb2(gx,F(u,v))+qpb2(gy,F(v,u))]

holds for all x,y,u,v ∈ X. Also, suppose we have the following hypotheses:

(i) F(X×X)⊆ g(X)

(ii) g(X) is a complete subspace of X with respect to the quasi-partial b-metric qpb1 .

Then the mappings F and g have a coincidence point (x,y) satisfying gx = F(x,y) = F(y,x) =

gy. Moreover, if F and g are w-compatible, then F and g have a unique common coupled fixed

point of the form (u,u).

Proof. By putting k4 = k and k1 = k2 = k3 = k5 = 0 in Theorem 3.1 we get the result.

Example 3.5. Let X = [0,1] and two quasi-partial b-metrics qpb1 and qpb2 on X be given as

qpb1(x,y) = |x− y|+ x and qpb2(x,y) =
1
2
(|x− y|+ x)
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for all x,y ∈ X with different coefficients s1 and s2 respectively. Also, define F : X×X → X and

g : X → X as F(x,y) =
x+ y
32

and g(x) =
x
4

for all x,y ∈ X. Then

(i) (X ,qpb1) is a complete quasi-partial b-metric space.

(ii) F(X×X)⊆ g(X)

(iii) F and g is w-compatible.

(iv) For any x,y,u,v ∈ X, we have

qpb1(F(x,y),F(u,v))+qpb1(F(y,x),F(v,u))6
1
2
(qpb2(gx,gu)+qpb2(gy,gv))

Proof. Here qpb1 and qpb2 are quasi-partial b-metrics with coefficients s1 = 1 and s2 = 2,

respectively. Also qpb2(x,y)≤ qpb1(x,y) for all x,y ∈ X . To prove (i) we proceed by observing

that qpb1(x,y) = |x− y|+ x is a quasi-partial b-metric with s = 1. Hence a quasi-partial metric.

By Lemma 1.2, (g(X),qpb1) is complete if and only if (g(X), pqpb1
) is complete if and only

if (g(X),dpqpb1
) is complete. Here

pqpb1
(x,y) =

1
2
[qpb1(x,y)+qpb1(y,x)] = |x− y|+ x+ y

2

and

dpqpb1
(x,y) = 2pqpb1

(x,y)− pqpb1
(x,x)− pqpb1

(y,y)

= 2|x− y|+ x+ y− x− y

= 2|x− y| .

Clearly, (g(X),dpqpb1
) is a complete metric space being a compact space.

The proof of (ii) and (iii) are clear.

Next, we prove (iv). In fact, for x,y,u,v ∈ X , we have

qpb1(F(x,y),F(u,v))+qpb1(F(y,x),F(v,u))

= qpb1

(
x+ y
16

,
u+ v
16

)
+qpb1

(
y+ x
16

,
v+u
16

)
=

∣∣∣∣x+ y
16
− u+ v

16

∣∣∣∣+ x+ y
16

+

∣∣∣∣y+ x
16
− v+u

16

∣∣∣∣+ y+ x
16

=
1

16
[2|(x+ y)− (u+ v)|+2(x+ y)]
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6
1
8
[|x−u|+ |y− v|+(x+ y)]

6
1
2

[
1
2
|x−u|+ 1

2
|y− v|+ x

4
+

y
4

]
=

1
2

(
qpb2

(x
2
,
u
2

)
+qpb2

(y
2
,

v
2

))
=

1
2
(qpb2(gx,gu)+qpb2(gy,gv)).

Thus, F and g satisfy all the hypotheses of Corollary 3.4. So, F and g have a unique common

coupled fixed point. Here (0,0) is the unique common coupled fixed point of F and g.
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