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1. Introduction  

The concept of fuzzy set was introduced by Zadeh in 1965 [1]. Ten year later, in 1975, Kramosil 

and Michalek introduced the notion of fuzzy metric space [2] and George and Veeramani 

modified the concept in 1994 [6]. In 2004, Park introduced the notion of intuitionistic fuzzy 

metric space. In his elegant article [7], he showed that for each intuitionistic fuzzy metric space 

(X, M, N, ∗, ⋄), the topology generated by the intuitionistic fuzzy metric (M, N) coincides with 

the topology generated by the fuzzy metric M. Actually, Park’s notion is useful in modelling 

some phenomena where it is necessary to study the relationship between two probability 

functions. For more details on intuitionistic fuzzy metric space and related results we refer the 

reader to [8-11, 15-18]. In this paper, we establish some new common fixed point theorems for a 

class of nonlinear contractions in intuitionistic fuzzy metric spaces. 
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2. Preliminaries  

Throughout this paper  ℝ  and  ℝ+ will represents the set of real numbers and nonnegative real 

numbers, respectively. 

The following two definitions are required in the sequel which can be found in [7]. 

Definition 2.1 A binary operation ∗ ∶  [0, 1]×[0, 1]  → [0, 1] is continuous t-norm if ∗ satisfying 

the following conditions: 

1. ∗ is commutative and associative; 

2. ∗ is continuous; 

3. a ∗ 1 = a, ∀ a ∈ [0, 1]; 

4.   𝑎 ∗ 𝑏 ≤ 𝑐 ∗ 𝑑 whenever 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑, ∀ 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0,1]. 

Definition 2.2 A binary operation ⋄ ∶  [0, 1]×[0, 1]  → [0, 1]  is continuous t-conorm if ⋄

 satisfying the following conditions: 

1. ⋄ is commutative and associative; 

2. ⋄ is continuous; 

3. a ⋄ 0 = a, ∀ a ∈ [0, 1]; 

4. 𝑎 ⋄ 𝑏 ≤ 𝑐 ⋄ 𝑑 whenever 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑, ∀ 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0,1]. 

Definition 2.3 A 5-tuple (X, M, N, ∗, ⋄)  is said to be an intuitionistic fuzzy metric space if X is 

an arbitrary set, ∗ is a continuous t-norm, ⋄ is a continuous t-conorm, and M, N are two fuzzy sets 

on X2×(0, ∞)satisfying the following conditions, for all x, y, z ∈ X and s, t > 0: 

 (i).  M(x, y, t) + N(x, y, t) ≤ 1; 

(ii).  M(x, y, t) > 0; 

(iii). M(x, y, t) = 1 for all t > 0 if and only if x = y; 

(iv).  M(x, y, t) = M(y, x, t); 

(v).  M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s); 

(vi). M(x, y, . ): (0, ∞) → [0,1] is left continuous; 

(vii).  lim
t→∞

M(x, y, t) = 1; 

(viii). N(x, y, t) > 0; 

(ix).  N(x, y, t) = 0 for all t > 0 if and only if x = y; 

(x).  N(x, y, t) = N(y, x, t); 

(v).  N(x, y, t) ⋄ N(y, z, s) ≥ N(x, z, t + s); 
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(xi).  N(x, y, . ): (0, ∞) → [0,1] is right continuous; 

(xii).  lim
t→∞

N(x, y, t) = 0; 

Then(M, N) is called an intuitionistic fuzzy metric space on X. The functions M(x, y, t) and 

N(x, y, t) denote the degree of nearness and the degree on non-nearness between x and y with 

respect to t, respectively.  

Definition 2.4 Let  (X, M, N, ∗, ⋄) be an intuitionistic fuzzy metric space. Then  

1) A sequence {xn} is said to be Cauchy sequence whenever lim
m,n→∞

M(xn, xm, t) = 1  and 

lim
m,n→∞

N(xn, xm, t) = 0  for all t > 0 . That is, for each ε > 0  and t > 0,  there exists a 

natural number n0 such that M(xn, xm, t) > 1 − ε  and N(xn, xm, t) < ε for all n, m ≥ n0. 

2) (X, M, N, ∗, ⋄) is called complete whenever every Cauchy sequence is convergent with 

respect to the topology τ(M,N). 

Remark 2.5 Note that, if (M, N) is called an intuitionistic fuzzy metric space on X and {xn} is a 

sequence in X such that lim
m,n→∞

M(xn, xm, t) = 1 and lim
m,n→∞

N(xn, xm, t) = 0 for all t > 0 as from 

(i) of Definition 2.3, we know that  M(x, y, t) + N(x, y, t) ≤ 1 for all x, y ∈ X and t > 0. 

Let  (X, M, N, ∗, ⋄) be an intuitionistic fuzzy metric space. According to [8, 10], the fuzzy 

metric (M, N) is called triangular whenever   

(2.1)                          
1

M(x,y,t)
− 1 ≤

1

M(x,z,t)
− 1 +

1

M(z,y,t)
− 1 

and  

(2.2)                         N(x, y, t) ≤ N(x, z, t) + N(z, y, t) 

for all x, y, z ∈ X and t > 0. 

Example 2.6 Let X = {(0,0), (0,4), (4,0), (4,5), (5,4)}  endowed with the metric d: X×X →

[0, +∞)  given by 

(2.3)                        d((x1, x2), (y1, y2)) = |x1 − y1| + |x2 − y2| 

for all (x1, x2), (y1, y2) ∈ X. Define intuitionistic fuzzy metric by 

(2.4)                        M((x1, x2), (y1, y2), t) =
t

t+d((x1,x2),(y1,y2))
 

and 

(2.5)                         N((x1, x2), (y1, y2), t) =
d((x1,x2),(y1,y2))

t+d((x1,x2),(y1,y2))
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for all (x1, x2), (y1, y2) ∈ X and t > 0, where  a ∗ b = min{a, b} and a ⋄ b = max{a, b}. Then X 

is a complete triangular intuitionistic fuzzy metric space. 

Example 1.4 Let X = {0,1,3,4} be a set with usual metric. Define intuitionistic fuzzy metric by 

(2.6)                        M(x, y, t) =
t

t+|x−y|
    and 

(2.7)                         N(x, y, t) =
|x−y|

t+|x−y|
 

for all x, y ∈ X and t > 0, where  a ∗ b = min{a, b} and a ⋄ b = max{a, b}. Then X is a complete 

triangular intuitionistic fuzzy metric space. 

 

3. Main results 

In this section, we establish that common fixed points for mapping satisfying nonlinear type 

contractions are proved in the frame of intuitionistic fuzzy metric spaces. 

Definition 3.1 (see [3]) There exists ϕ(t) that satisfy the condition ϕ′, if one lets ϕ: [0, +∞) →

[0, +∞) be non-decreasing and non-negative, then lim ϕn(t) = 0, for a given t > 0. 

Lemma 3.2 (see [3] If ϕ satisfy the condition ϕ′, then ϕ(t) < t, for a given t > 0. 

Lemma 2.3 (see [5]) Let  ℱ: ℝ+
3 → ℝ+ , and satisfy the conditionϕ′;  for all u, v ≥ 0,  if u ≤

ℱ(v, v, u) or u ≤ ℱ(v, u, v) or u ≤ ℱ(u, v, v), then u ≤ ϕ(v). 

The following common fixed point theorem is our first main result. 

Theorem 3.4 Let (X, M, N, ∗, ⋄) be a complete triangular intuitionistic fuzzy metric space and 

let S and T be self-mappings on X if   

1)  either S and T is continuous, 

2)  there exists ℱ satisfying the condition ϕ′ for all x, y ∈ X and t > 0, such that  

 (3.1)               
1

M(Sx,Ty,t)
− 1 ≤ ℱ (

1

M(x,y,t)
− 1,

1

M(x,Sx,t)
− 1,

1

M(y,Ty,t)
− 1).                    

Then S and T have a unique common fixed point. 

Proof: Let x0 ∈ X be arbitrary, T continuous in X, {xn} and {yn} the sequence of X, and 

(3.2)               xn = (ST)n(x0) = ST(xn−1), yn = T(ST)n−1(x0),   ∀ n ∈ ℕ.    

Obviously, 

(3.3)              yn = T(xn−1),    S(yn) = xn,    TS(yn) = T(xn) = yn+1, ∀ n ∈ ℕ.                  

From (3.1), we get 

(3.4)   
1

M(xn+1,yn+1,t)
− 1 =

1

M(ST(xn),T(xn),t)
− 1 
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                                      ≤ ℱ (
1

M(T(xn),xn,t)
− 1,

1

M(T(xn),ST(xn),t)
− 1,

1

M(xn,T(xn),t)
− 1)     

                                      = ℱ (
1

M(yn+1,xn,t)
− 1,

1

M(yn+1,xn+1,t)
− 1,

1

M(xn,yn+1,t)
− 1)               

Hence by Lemma 3.3, we have      

(3.5)                          
1

M(xn+1,yn+1,t)
− 1 ≤ ϕ (

1

M(xn,yn+1,t)
− 1)                                             

Also, 

(3.6)     
1

M(xn,yn+1,t)
− 1 =

1

M(xn,T(xn),t)
− 1 

                                      =
1

M(S(yn),T(xn),t)
− 1 

                                      ≤ ℱ (
1

M(yn,xn,t)
− 1,

1

M(yn,S(yn),t)
− 1,

1

M(xn,T(xn),t)
− 1)     

                                     = ℱ (
1

M(yn,S(yn),t)
− 1,

1

M(yn,S(yn),t)
− 1,

1

M(xn,T(xn),t)
− 1)                         

Therefore, 

                       
1

M(xn,yn+1,t)
− 1 =

1

M(xn,T(xn),t)
− 1 ≤ ϕ (

1

M(yn,S(yn),t)
− 1) 

That is, 

(3.7)                 
1

M(xn,yn+1,t)
− 1 ≤ ∅ (

1

M(yn,xn,t)
− 1) = ϕ (

1

M( xn,yn,t)
− 1)                         

From (3.5) and (3.7), we conclude that 

(3.8)             
1

M(xn+1,yn+1,t)
− 1 ≤ ϕ2 (

1

M( xn,yn,t)
− 1)                                             

Hence, by induction, for all n ∈ ℕ, we obtain that 

(3.9)            
1

M(xn+1,yn+1,t)
− 1 ≤ ϕ2n (

1

M( x1,y1,t)
− 1) = ϕ2n (

1

M( x1,T(x0),t)
− 1)                   

In similar one obtains that 

(3.10)        
1

M(yn+1,xn,t)
− 1 =

1

M( xn,yn+1,t)
− 1 ≤ ϕ2n−1 (

1

M( x1,y1,t)
− 1) 

                                                                      = ϕ2n−1 (
1

M( x1,T(x0),t)
− 1)                        

If n ≥ 2, we have 

 (3.11)            
1

M(xn+1,xn,t)
− 1 ≤

1

M(xn+1,yn+1,t)
− 1 +

1

M(yn+1,xn,t)
− 1 

                                               = ϕ2n (
1

M( x1,T(x0),t)
− 1) + ϕ2n−1 (

1

M( x1,T(x0),t)
− 1)           

                                               ≤ 2ϕ2n−1 (
1

M( x1,T(x0),t)
− 1)                                                   
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Note that the condition ∅′ we know, for n, m ∈ ℕ such that m > 𝑛, we have 

(3.12)       
1

M( xn,xn+m,t)
− 1 ≤

1

M( xn,xn+1,t)
− 1 +

1

M( xn+1,xn+2,t)
− 1 + 

                                                                  … … … . +
1

M( xn+m−1,xn+m,t)
− 1 

                                                      

                                          ≤ 2ϕ2n−1 (
1

M( x1,T(x0),t)
− 1) + 2ϕ2(n+1)−1 (

1

M( x1,T(x0),t)
− 1) 

                                                          + ⋯ … … + 2ϕ2(n+m−1)−1 (
1

M( x1,T(x0),t)
− 1) 

                                         ≤ ∑ ϕi2(n+m−1)−1
i=2n−1 (

1

M( x1,T(x0),t)
− 1) 

                                         ≤ ∑ ϕi∞
i=2n−1 (

1

M( x1,T(x0),t)
− 1) → 0.                                         

Hence, lim
m,n→∞

(
1

M( xn,xn+m,t)
− 1) = 0. Equivalently, lim

m,n→∞
M( xn, xn+m, t) = 1. This forces that  

{xn} is a Cauchy sequence in X. But X is complete triangular intuitionistic fuzzy metric space, 

there must exist x∗ ∈ X such that 

(3.13)                                          lim
n→∞

xn = x∗.                                                          

By continuity of T, we have 

(3.14)                    lim
n→∞

yn = lim
n→∞

T(xn−1) = T (lim
n→∞

xn−1) = Tx∗.                       

Now we want to show that  x∗ = Sx∗ = Tx∗ .First we show that  x∗ = Tx∗ . Suppose on the 

contrary that x∗ ≠ Tx∗, then from (3.1) we get  

(3.15)        
1

M(xn+1,yn+1,t)
− 1 ≤ ℱ (

1

M(yn+1,xn,t)
− 1,

1

M(yn+1,xn+1,t)
− 1,

1

M(xn,yn+1,t)
− 1)         

By taking limit n → +∞ in the above inequality and using (3.13) and (3.14), we obtain that 

(3.16)            
1

M(x∗,Tx∗,t)
− 1 ≤ ℱ (

1

M(Tx∗,x∗,t)
− 1,

1

M(Tx∗,x∗,t)
− 1,

1

M(x∗,Tx∗,t)
− 1)              

Therefore, 

(3.17)                       
1

M(x∗,Tx∗,t)
− 1 ≤ ϕ (

1

M(x∗,Tx∗,t)
− 1) <

1

M(x∗,Tx∗,t)
− 1.                     

which is contradiction. Hence x∗ = Tx∗and so x∗ is a fixed point of  T. Again from (3.1), we 

have 

 (3.18)                   
1

M(Sx∗,x∗,t)
− 1 =

1

M(Sx∗,Tx∗,t)
− 1 

                                                     ≤ ℱ (
1

M(x∗,x∗,t)
− 1,

1

M(x∗,Sx∗,t)
− 1,

1

M(x∗,Tx∗,t)
− 1)                                    
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                                                     = ℱ (0,
1

M(x∗,Sx∗,t)
− 1,0)                                                      

Hence, 

                                  
1

M(Sx∗,x∗,t)
− 1 ≤ ϕ(0) = 0 ⇒ M(Sx∗, x∗, t) = 1 ⇒ Sx∗ = x∗. 

So x∗ is a common fixed point of S and T. To prove uniqueness, suppose that x∗ ≠ x′, such that 

Sx∗ = Tx∗ = x∗ and Sx′ = Tx′ = x′. From (3.1), we get 

(3.19)        
1

M(x∗,x′,t)
− 1 =

1

M(Sx∗,Tx′,t)
− 1 

                                      ≤ ℱ (
1

M(x∗,x′,t)
− 1,

1

M(x∗,Sx∗,t)
− 1,

1

M(x′,Tx′,t)
− 1) 

                                      = ℱ (
1

M(x∗,x′,t)
− 1,

1

M(x∗,x∗,t)
− 1,

1

M(x′,x′,t)
− 1) 

                                      = ℱ (
1

M(x∗,x′,t)
− 1, 0,0)                                             

Hence, 

                                
1

M(x∗,x′,t)
− 1 ≤ ϕ(0) = 0 ⇒ M(x∗, x′, t) = 1 ⇒ x∗ = x,. 

So x∗ is a unique common fixed point of S and T. 

Next, we prove the following theorem. 

Theorem 3.5 Let (X, M, N, ∗, ⋄) be a complete triangular intuitionistic fuzzy metric space and 

let S and T be continuous mappings on X if  

1)  there exists ℱ satisfying the condition ϕ′ for all x, y ∈ X with  x ≠ y  and  t > 0, such 

that  

 (3.20)                     
1

M(Sx,Ty,t)
− 1 ≤ ℱ (

1

M(x,y,t)
− 1,

1

M(x,Sx,t)
− 1,

1

M(y,Ty,t)
− 1).                    

2)  there exists x0 ∈ X such that {(ST)n(x0)} have a condensation point. 

Then S and T have a unique common fixed point. 

Proof Let {xn} , {yn}  be the sequence of X, and for all n, xn ≠ yn, 

(3.21)             xn = (ST)n(x0) = ST(xn−1), yn = T(ST)n−1(x0),   ∀ n ∈ ℕ. 

Obviously, 

(3.22)         yn = T(xn−1),    S(yn) = xn,    TS(yn) = T(xn) = yn+1, ∀ n ∈ ℕ.                 

Suppose that x∗ is the condensation point of {xn}; there exists the subsequence {xni
} of {xn} such 

that  xni
→ x∗. Since T is continuous, lim T(xni

) = T(x∗) = y∗. 

Consider  
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(3.23)       
1

M(S(y∗),y∗,t)
− 1 =

1

M(S(y∗),T(x∗),t)
− 1 

                                          ≤ ℱ (
1

M(y∗,x∗,t)
− 1,

1

M(y∗,S(y∗),t)
− 1,

1

M(x∗,T(x∗),t)
− 1) 

                                          = ℱ (
1

M(y∗,x∗,t)
− 1,

1

M(y∗,S(y∗),t)
− 1,

1

M(x∗,y∗,t)
− 1)                           

Hence by Lemma 3.3, we have 

(3.24)                        
1

M(S(y∗),y∗,t)
− 1 ≤ ϕ (

1

M(x∗,y∗,t)
− 1) 

                      ⇒        
1

M(S(y∗),y∗,t)
− 1 ≤

1

M(x∗,y∗,t)
− 1.                                                            

Also consider 

(3.25)  
1

M(xn+1,yn+1,t)
− 1 =

1

M(ST(xn),T(xn),t)
− 1 

                                        ≤ ℱ (
1

M(T(xn),xn,t)
− 1,

1

M(T(xn),ST(xn),t)
− 1,

1

M(xn,T(xn),t)
− 1)     

                                        = ℱ (
1

M(yn+1,xn,t)
− 1,

1

M(yn+1,xn+1,t)
− 1,

1

M(xn,yn+1,t)
− 1)               

Hence by Lemma 3.3, we have      

(3.26)                       
1

M(xn+1,yn+1,t)
− 1 ≤ ϕ (

1

M(xn,yn+1,t)
− 1)                                                

Also, 

(3.27)          
1

M(xn,yn+1,t)
− 1 =

1

M(xn,T(xn),t)
− 1 

                                            =
1

M(S(yn),T(xn),t)
− 1 

                                            ≤ ℱ (
1

M(yn,xn,t)
− 1,

1

M(yn,S(yn),t)
− 1,

1

M(xn,T(xn),t)
− 1)     

                                            = ℱ (
1

M(yn,S(yn),t)
− 1,

1

M(yn,S(yn),t)
− 1,

1

M(xn,T(xn),t)
− 1)                        

Therefore, 

(3.28)                 
1

M(xn,yn+1,t)
− 1 =

1

M(xn,T(xn),t)
− 1 ≤ ϕ (

1

M(yn,S(yn),t)
− 1) 

That is, 

(3.29)                 
1

M(xn,yn+1,t)
− 1 ≤ ϕ (

1

M(yn,xn,t)
− 1) = ϕ (

1

M( xn,yn,t)
− 1)                       

From (3.26) and (3.27), we conclude that 

(3.30)               
1

M(xn+1,yn+1,t)
− 1 ≤ ϕ2 (

1

M( xn,yn,t)
− 1) <

1

M( xn,yn,t)
− 1                          

Hence, {(
1

M(xn+1,yn+1,t)
− 1)} is decreasing. Let ϵ = lim (

1

M(xn+1,yn+1,t)
− 1).  
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Now, 

(3.31)       lim (
1

M(yni+1,xni+1,t)
− 1) = lim (

1

M(T(xni
),xni+1,t)

− 1) 

                                                          =
1

M(y∗,x∗,t)
− 1 

                                                       ≤ lim (
1

M(yni
,xni

,t)
− 1) = ϵ.                                           

Since {xni
} is the subsequence of {xn}, we have 

(3.32)                      
1

M(S(y∗),y∗,t)
− 1 = lim (

1

M(S(yni+1),yni+1,t)
− 1) 

                                                         = lim (
1

M(xni
,yni

,t)
− 1) = ϵ.                                               

Hence, from (3.30) and (3.31) we conclude that 

(3.33)                            
1

M(y∗,x∗,t)
− 1 ≤

1

M(S(y∗),y∗,t)
− 1.                                                          

So x∗ = y∗, y∗ is the fixed point of T. Similarly, y∗ is a fixed point of S. To prove uniqueness, 

suppose that y∗ ≠ y′, such that Sy∗ = Ty∗ = y∗ and Sy′ = Ty′ = y′. From (3.1), we get 

(3.34)       
1

M(y∗,y′,t)
− 1 =

1

M(Sy∗,Ty′,t)
− 1 

                                      ≤ ℱ (
1

M(y∗y′,t)
− 1,

1

M(y∗,Sy∗,t)
− 1,

1

M(y′,Ty′,t)
− 1) 

                                      = ℱ (
1

M(y∗,y′,t)
− 1,

1

M(y∗,y∗,t)
− 1,

1

M(y′,y′,t)
− 1) 

                                      = ℱ (
1

M(y∗,y′,t)
− 1, 0,0)                                             

Hence, 

                    
1

M(y∗,y′,t)
− 1 ≤ ϕ(0) = 0 ⇒ M(y∗, y′, t) = 1 ⇒ y∗ = y′. 

So y∗ is a unique common fixed point of S and T. 
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