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1. Introduction

Fixed point theory is one of the most important research field in non-linear analysis and the

study of fixed point of mapping satisfying certain contractive conditions has been at the center

of strong research activity.

In 2007, Huang and Zhang [1] introduce the concept of cone metric space which is a gener-

alization of metric space. They have proved some fixed point theorem of contractive mapping
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in cone metric space. Rezapour and Hamlbarani [3] showed that there are no normal cones with

normal constant K < 1, and for each k > 1 there are cones with a normal constant K > k Further

some authors [3, 4, 6] generalized some definitions and results in cone metric spaces. Fore more

recent fixed point theorems in cone metric spaces we refer to [2, 5, 7, 8].

In the last decade, in [9] J. Gornicke, B.E. Rhoades used generalized contractive mapping to

obtain common fixed point. In this paper we proved a fixed point theorem. Example is also

provided to demonstrate the main result. Moreover from our main result we have introduced

some additional condition to find unique fixed point.

2. Preliminaries

First we introduce some notations and definitions (see [1]) that will be used subsequently.

Definition 2.1. Let E be the real Banach space with a given norm ‖ · ‖E and 0E is zero vector

of E. Then a non empty subset P of E is called a cone if and only if

(1) P is non-empty and P 6= {0E}.

(2) P is closed.

(3) ax+by ∈ P for all x,y ∈ P and a,b ∈ R with a,b≥ 0 that is, P is convex.

(4) P∩ (−P) = {0E}.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if and only if

y− x ∈ P.

We write x ≤ y to indicate x ≤ y but x 6= y and x� y will stand for y− x ∈ Int(P)(Int(P) ∼=

interior of P).

Definition 2.2. The cone P⊂ E is called normal if there is number K such that for all x,y ∈ E,

0≤ x≤ y implies ‖x‖ ≤ K‖y‖

where K is least positive number satisfying the above inequality and called normal constant

of P.

Definition 2.3. The cone P⊂ E is called regular if every increasing sequence which is bounded

above is convergent. That is if {xn} is sequence such that x1 ≤ x2 ≤ x3 ≤ . . .≤ y for some y∈ E,
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then there is x ∈ E such that ‖xn− x‖ → 0 as n→ ∞. Equivalently the cone P is regular if and

only if decreasing sequence which is bounded below is convergent.

Now for the following discussion assume that E is Banach space, P is a cone in E with

IntP 6= φ and ≤ is a partial ordering with respect to P.

Definition 2.4. Let X be non-empty set. Suppose the mapping d : X×X → E satisfies

A1. 0≤ d(x,y) for all x,y ∈ X and d(x,y) = 0 iff x = y.

A2. d(x,y) = d(y,x) for all x,y ∈ X .

A3. d(x,y)≤ d(x,z)+d(y,z) for all x,y,z ∈ X .

Then d is called a cone metric on X and (X ,d) is called a cone metric space.

Example 2.5. Let E = R2, P = {(x,y) ∈ E|x,y≥ 0} ⊂ R2, X = R and d : X×X → E such that

d(x,y) = (|x− y|,a|x− y|)

where a≥ 0 is constant. Then (X ,d) is a cone metric space.

Now refer to [7] for further details.

Definition 2.6. Let (X ,d) be a cone metric space. Let {xn} be a sequence in X and x ∈ X .

(1) then {xn} is said to be convergent to x if for every c ∈ E with 0� c there exist N such that

d(xn,x)� c for all n≥ N.

We denote this by limn→∞ xn = x or xn→ x (n→ ∞)

(2) If for every c ∈ E with 0� c, there is a positive integer N such that for all n,m > N,

d(xn,xm)� c. Then the sequence {xn} is called a cauchy sequence in X .

(3) If every Cauchy sequence in X is convergent then (X ,d) is called a complete cone metric

space.

Lemma 2.7. Let (X ,d) be a cone metric space and P be a normal cone with normal constant

K. Let {xn} be a sequence in X, then {xn} converges to x if and only if d(xn,x)→ 0 (n→ ∞).

Lemma 2.8. Let (X ,d) be a cone metric space and P be a normal cone with normal constant

K. Let {xn} be a sequence in X, then {xn} is a cauchy sequence if and only if d(xn,xm)→ ∞

(n,m→ ∞).
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Lemma 2.9. Let (X ,d) be a cone metric space and P be a normal cone with normal constant

K. Let {xn} be a sequence in X. Then limit of {xn} is unique. That is if {xn} converges to x and

{xn} converges to y, Then x = y.

Lemma 2.10. Let (X ,d) be a cone metric space and {xn} be a sequence in X. If {xn} converges

to x then {xn} is a Cauchy sequence in X.

Lemma 2.11. Let (X ,d) be a cone metric space and P be a normal cone with normal constant

K. Let {xn} and {yn} be two sequence in X with xn→ x and yn→ y as n→∞, then d(xn,yn)→

d(x,y) as n→ ∞.

Recently Samet et al. [2] introduced the notion of α-ψ contractive mappings and α-admissible

mappings in metric spaces as follows:

Definition 2.12. Let T : X→X and α : X×X→ [0,∞), we say that T is α-admissible if x,y∈X ,

α(x,y)≥ 1 implies α(T x,Ty)≥ 1.

Denote with Ψ the family of non-decreasing function ψ : [0,+∞)→ [0,+∞) such that ∑
∞
n=1 ψn <

+∞ for each t > 0, where ψn is nth iteration of ψ .

Lemma 2.13. For every function ψ : [0,+∞)→ [0,+∞) the following holds:

If ψ is non decreasing, then for each t > 0, limn→∞ ψn(t) = 0 implies ψ(t)< t and ψ(0) = 0.

Definition 2.14. Let (X ,d) be a metric space and T : X ×X be a mapping, then T is said to be

an α-ψ-contractive mapping if there exist two functions α : X ×X → [0,∞) and ψ ∈ Ψ such

that

α(x,y)d(T x,Ty)≤ ψ(d(x,y)) for all x,y ∈ X

Further Kang et al. [10] introduce the notion of this mapping in cone metric space as follows:

Definition 2.15. Let (X ,d) be a cone metric space and P be a normal cone with normal constant

K. Let T : X → X be a mapping. Then T is said to be an α-ψ contractive mapping if there exist

two functions

α : X×X → [0,∞) and ψ ∈Ψ such that

α(x,y)d(T x,Ty)≤ ψ(d(x,y)) for all x,y ∈ X
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Now we present new notion of generalized α-ψ-contractive mappings in cone metric spaces

and derive fixed point results for these mappings in cone metric space.

Definition 2.16. Let (X ,d) be a cone metric space and P be a normal cone with normal constant

K. Let T : X → X be a mapping. Then T is said to be generalized α-ψ contractive mapping if

there exist two functions

α : X×X → [0,∞) and ψ ∈Ψ such that

α(x,y)d(T x,Ty)≤ ψ(M(x,y)) for allx,y ∈ X(2.1)

where M(x,y) = max
{

d(x,y),
d(x,T x)+d(y,Ty)

2
,
d(x,Ty)+d(y,T x)

2

}
.

3. Main result

Samet [2] proved the following theorem.

Theorem 3.1. Let (X ,d) be a complete metric space and T : X → X be an α-ψ contractive

mapping satisfying the following conditions:

(3.1) T is α-admissible;

(3.2) There exists x0 ∈ X such that α(x0,T x0)≥ 1;

(3.3) T is continuous

If {xn} is a sequence in X such that α(xn,xn+1) ≥ 1 for all n and xn → x as n→ ∞, then

α(xn,x)≥ 1 for all n, then T has a fixed point.

Recently, Kang et al. [10] proved the following theorem in Cone metric space.

Theorem 3.2. Let (X ,d) be a complete cone metric space and P be a normal cone with normal

constant K. T : X → X be an α-ψ contractive mapping satisfying the following conditions:

(C1) T is α-admissible;

(C2) There exists x0 ∈ X such that α(x0,T x0)≥ 1;

(C3) T is continuous

If {xn} is a sequence in X such that α(xn,xn+1) ≥ 1 for all n and xn → x as n→ ∞, then

α(xn,x)≥ 1 for all n, then T has a fixed point.
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Now we prove Theorem 3.2 in setting of generalized α-ψ contractive mapping in cone metric

spaces as follows:

Theorem 3.3. Let (X ,d) be a complete cone metric space and P be a normal cone with normal

constant K and T : X→ X be any generalized α-ψ contractive mapping satisfying the following

conditions:

(3.1) T is α-admissible.

(3.2) There exists x0 ∈ X such that α(x0,T x0)≥ 1;

(3.3) T is continuous or if {xn} is a sequence in X such that α(xn,xn+1)≥ 1 for all n and xn→ x

as n→ ∞ then α(xn,x)≥ 1 for all n. Then T has a fixed point.

Proof. Let x0 ∈ X such that α(x0,T x0)≥ 1. Define a sequence {xn} in X such that

T xn = xn+1 for some n ∈ N.(3.4)

In particular if xn = xn+1 for some n ∈ N then xn is a fixed point for T . Assume that xn 6= xn+1

for all n ∈ N. Since T is α-admissible, we have

α(x0,x1) = α(x0,T x0)≥ 1 implies α(T x0,T x1) = α(x1,x2)≥ 1.

By induction, we get

α(xn,xn+1)≥ 1 for all n ∈ N.(3.5)

Now applying inequality (2.1) and (3.8), we obtain

d(xn,xn+1) = d(T xn−1,T xn)

≤ α(xn−1,xn)d(T xn−1,T xn)

≤ ψ(M(xn−1,xn)),(3.6)

where

M(xn−1,xn) = max
{

d(xn−1,T xn−1),
d(xn−1,T xn−1)+d(xn,T xn)

2
,
d(xn−1,T xn)+d(xn,T xn−1)

2

}
= max

{
d(xn−1,xn),

d(xn−1,xn)+d(xn,xn+1)

2
,
d(xn−1,xn+1)

2

}
≤max{d(xn−1,xn),d(xn,xn+1)}.
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Owing to monotonicity of the function ψ , and using the inequalities (3.4) and (3.6), we have

for all n≥ 1

d(xn,xn+1)≤ ψ max{d(xn−1,xn),d(xn,xn+1)}.(3.7)

If for some n≥ 1, we have d(xn−1,xn)< d(xn,xn+1). Then (3.7) becomes

d(xn,xn+1)≤ ψd(xn,xn+1),

which implies

‖d(xn,xn+1)‖ ≤ ‖ψd(xn,xn+1)‖< ‖d(xn,xn+1)‖.

This is a contradiction. Thus for all n≥ 1, we have

max{d(xn−1,xn),d(xn,xn+1)}= d(xn−1,xn).(3.8)

In view of (3.7) and (3.8), we get for all n≥ 1

d(xn,xn+1)≤ ψd(xn−1,xn).(3.9)

Continuing this process inductively, we obtain

d(xn,xn+1)≤ ψ
n(x0,x1) for all n ∈ N.(3.10)

Now for n > m, using (3.10) and triangular inequality , we obtain

d(xn,xm)≤ d(xn,xn−1)+d(xn−1,xn−2)+ . . .+d(xm+1,xm)

≤ ψ
n−1(d(x0,x1))+ψ

n−2(d(x0,x1))+ . . .ψm(d(x0,x1))

≤ (ψn−1 +ψ
n−2 + . . .+ψ

m)(d(x0,x1))

≤ ψm

1−ψ
(d(x0,x1)).

Since P is normal cone with normal constant K, we find that

‖d(xn,xm)‖ ≤ K
∥∥∥∥ ψm

1−ψ
(d(x0,x1))

∥∥∥∥ ,
which implies d(xn,xm)→ 0 as n,m→ ∞. Hence {xn} is a cauchy sequence in cone metric

space (X ,d). Since (X ,d) is complete. So there exist x∗ ∈ X such that xn→ x∗ as n→ ∞.

Case 1: If T is continuous, then we have xn+1 = T xn→ T x∗ as n→ ∞.
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By uniqueness of limit, T x∗ = x∗. Hence x∗ is a fixed point of T .

Case 2: If {xn} is a sequence in X such that α(xn,xn+1)≥ 1 for all n and xn→ x as n→∞, then

α(xn,x)≥ 1 for all n.

Now we show that ‖d(T x∗,x∗)‖ ≥ 0 as n→∞. On contrary, assume ‖d(T x∗,x∗)‖> 0. We have

d(T x∗,x∗)≤ d(T xn,T x∗)+d(T xn,x∗)

≤ α(xn,x∗)d(T xn,T x∗)+d(T xn,x∗)

≤ ψM(xn,x∗)+d(T xn,x∗).

Since P is normal cone with normal constant K, we have

‖d(T x∗,x∗)‖ ≤ K(‖ψ(M(xn,x∗))‖+‖d(xn+1,x∗)‖,(3.11)

where

M(xn,x∗) = max
{

d(xn,x∗),
d(xn,T xn)+d(x∗,T x∗)

2
,
d(xn,T x∗)+d(x∗,T xn)

2

}
.

Letting n→ ∞, we have

M(xn,x∗) =
d(x∗,T x∗)

2
.

Using in (3.11) and taking n→ ∞, We have

‖d(T x∗,x∗)‖ ≤ K
∥∥∥∥ψ

(
d(T x∗,x∗)

2

)∥∥∥∥
<

K
2
‖d(T x∗,x∗)‖,

which is not true for all K > 0. So we get a contradiction. Therefore ‖d(T x∗,x∗)‖ → 0 as

n→ ∞. It implies T x∗ = x∗ and hence x∗ is a fixed point of T . This completes the proof.

Example 3.4. Let us consider X = [0,∞) and E = R2, P = {(x,y) ∈ E|x,y > 0} ⊂ R2 and

d : X ×X → E such that d(x,y) = (|x− y|,a|x− y|) where a ≥ 0 is a constant. Then (X ,d) is

cone metric space.
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Define T : X → X by

T x =


2x− 13

7
if x > 1,

x
7

if 0≤ x≤ 1,

0 if x < 0.

We observe that here T is continuous and Banach contraction principle in setting of cone metric

space cannot be applied.

Now we define a mapping α : X×X → [0,∞) by

α(x,y) =


1 if x,y ∈ [0,1],

0 otherwise.

Clearly T is generalized α-ψ contractive mapping with ψ(t) =
3t
5

for all t ≥ 0. Infact for all

x,y ∈ X , we have

α(x,y)d(T x,Ty) = 1 · (|T x−Ty|,a|T x−Ty|)

=
(∣∣∣x

7
− y

7

∣∣∣ ,a ∣∣∣x
7
− y

7

∣∣∣)
=

(|x− y|,a|x− y|)
7

=
1
7

d(x,y)

≤ 3
5

d(x,y)≤ 3
5

M(x,y) = ψ(M(x,y)).

More over there exists x0 ∈ X , such that α(x0,T x0)≥ 1. For x0 = 1, we have

α(1,T1) = α

(
1,

1
7

)
= 1.

Now it remains to show that T is α-admissible. Let x,y ∈ X , such that α(x,y)≥ 1.

Therefore we have x,y ∈ [0,1]. By definition of T and α we have

T x =
x
7
∈ [0,1], Ty =

y
7
∈ [0,1] and α(T x,Ty) = 1.

So, T is α-admissible.
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Now all the hypothesis of Theorem 3.3 are satisfied. Consequently T has a fixed point. Note that

Theorem 3.3 guarantees only the existence of fixed point but not uniqueness. In this example,

0 and
13
7

are two fixed points of T .

Example 3.5. Let us consider X = [0,∞) and E = R2, P = {(x,y) ∈ E|x,y > 0} ⊂ R2 and

d : X ×X → E such that d(x,y) = (|x− y|,a|x− y|) where a ≥ 0 is a constant. Then (X ,d) is

cone metric space.

Define T : X → X by

T x =


5x− 7

2
if x > 2,

x
5

if 0≤ x≤ 2.

We observe that T is not continuous at 2. The Banach contraction principle in setting of cone

metric space cannot be applied in this case.

Now we define a mapping α : X×X → [0,∞) by

α(x,y) =


1 if x,y ∈ [0,1],

0 otherwise.

Clearly T is generalized α-ψ contractive mapping with ψ(t) =
t
4

for all t ≥ 0, infact for all

x,y ∈ X , we have

α(x,y)d(T x,Ty) = 1 · (|T x−Ty|,a|T x−Ty|)

=
(∣∣∣x

5
− y

5

∣∣∣ ,a ∣∣∣x
5
− y

5

∣∣∣)
=

1
5
(|x− y|,a|x− y|)

=
1
5

d(x,y)

≤ 1
4

d(x,y)≤ 1
4

M(x,y) = ψ(M(x,y)).

More over there exists x0 ∈ X , such that α(x0,T x0)≥ 1. For x0 = 1, we have

α(1,T 1) = α

(
1,

1
5

)
= 1.
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Now it remains to show that T is α-admissible. Let x,y ∈ X , such that α(x,y) ≥ 1. Therefore

we have x,y ∈ [0,1]. By definition of T and α , we have

T x =
x
5
∈ [0,1], Ty =

y
5
∈ [0,1] and α(T x,Ty) = 1.

So T is α-admissible.

Finally let {xn} be a sequence in X such that α(xn,xn+1) ≥ 1 for all n and xn → ∞. Since

α(xn,xn+1) ≥ 1 for all n, by definition of α , we have xn ∈ [0,1] for all n and x ∈ [0,1]. Then

α(xn,x) = 1.

Now all the hypothesis of Theorem 3.3 are satisfied. Consequently T has a fixed point. Note

that Theorem 3.3 guarantees and existence of a fixed point but not uniqueness. In this example,

0 and
7
8

are two fixed points of T .

To assure the uniqueness of fixed point we will consider the following hypothesis.

(∗) For all x,y ∈ X there exists z ∈ X such that α(x,z)≥ 1 and α(y,z)≥ 1.

Theorem 3.6. Theorem 3.3 yields a unique fixed point after adding hypothesis (∗) to it.

Proof. Suppose that x, y are two fixed points of T . From (∗), there exists z ∈ X such that

α(x,z)≥ 1 and α(y,z)≥ 1.(3.12)

Define a sequence {zn} in X by T zn = Zn+1 for all n ≥ 0 and z0 = z. Since T is α-admissible,

therefore from (11), we get

α(x,zn)≥ 1 and α(y,zn)≥ 1 for all n ∈ N.(3.13)

Using inequalities (2.1) and (3.13), we obtain

d(x,zn+1) = d(T x,T zn)

≤ α(x,zn)d(T x,T zn)

≤ ψM(x,zn).(3.14)

On the other hand, we have

M(x,zn) = max
{

d(x,zn),
d(x,T x)+d(zn,T zn)

2
,
d(x,T zn)+d(zn,T x)

2

}
≤max{d(x,zn),d(x,zn+1)}.(3.15)
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Now owing to the monotonicity of ψ and using inequality (3.14), we get

d(x,zn+1)≤ ψ max{d(x,zn),d(x,zn+1)} for all n.(3.16)

Without loss of generality, suppose that d(x,zn)> 0 for all n. If

max{d(x,zn),d(x,zn+1)}= d(x,zn+1),

then (3.19) becomes

d(x,zn+1)≤ ψd(x,zn+1),

‖d(x,zn+1)‖ ≤ ‖ψd(x,zn+1)‖< ‖d(x,zn+1)‖,

which is a contradiction. Thus we have

max{d(x,zn),d(x,zn+1)}= d(x,zn).(3.17)

In view of (3.16) and (3.17), we get for all n≥ 1

d(x,zn+1)≤ ψd(x,zn).

Continuing the process inductively, we get

d(x,zn)≤ ψ
nd(x,z0) for all n≥ 1.(3.18)

Since P be a normal cone with normal constant K, we have

‖d(x,zn)‖ ≤ K‖ψnd(x,z0)‖.

Letting n→ ∞, we get ‖d(x,zn)‖→ 0 as n→ ∞. This implies that

zn→ x as n→ ∞.(3.19)

Similarly we find that zn→ x as n→ ∞. Hence, we get the uniqueness in y.
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