FIXED POINT THEOREMS FOR SELF MAP UNDER SOME CONTRACTIVE CONDITIONS RELATED TO Φ -MAP

SAVITRI* AND NAWNEET HOODA

Department of Mathematics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, Haryana, India

Copyright © 2018 Savitri and Hooda. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we prove some fixed point theorems for uniqueness of fixed points for self-map $T : X \rightarrow X$ under different contractive conditions related to Φ -map.

Keywords: S -metric; Φ -map; S-Cauchy sequence; S-convergent sequence.

2010 AMS Subject Classification: 47H10, 54H25.

1. Introduction

Many authors tried to give generalization of metric spaces in several ways and obtained many results [1-12]. Gähler [6] and Dhage [1] introduced the concepts of 2-metric spaces and D-metric spaces respectively. Mustafa and Sims [8] introduced a new structure of generalized metric spaces which are called G-metric spaces. Sedghi et al. [4] introduced the concept of D^*-metric spaces which was modification of the definition of D-metric spaces. Recently, Sedghi et al. [5] have introduced the notion of S-metric spaces and have proved some fixed point theorems in S-metric spaces. In this paper, we consider ϕ as a Φ -map and prove some fixed point theorems for self-map $T : X \rightarrow X$ under different contractive conditions related to ϕ.

*Corresponding author
E-mail address: savitrimalik1234@gmail.com
Received January 30, 2016
2. Preliminaries

The following definitions and results will be used in the sequel:

Definition 2.1 [4]. Let \(X \) be a non-empty set. An \(S \)-metric on \(X \) is a function
\[S : X \times X \times X \rightarrow [0, \infty) \]
that satisfies the following conditions, for each \(x, y, z, a \in X \),

- \((S_1)\) \(S(x, y, z) \geq 0 \),
- \((S_2)\) \(S(x, y, z) = 0 \) iff \(x = y = z \),
- \((S_3)\) \(S(x, y, z) \leq S(x, x, a) + S(y, y, a) + S(z, z, a) \).

The pair \((X, S) \) is called an \(S \)-metric space.

Definition 2.2 [4]. Let \((X, S) \) be an \(S \)-metric space.

(i) A sequence \(\{x_n\} \) in \(X \) converges to \(x \in X \) if \(S(x_n, x_n, x) \to 0 \) as \(n \to \infty \). That is, for each \(\varepsilon > 0 \), there exists \(n_0 \in \mathbb{N} \) such that for all \(n \geq n_0 \), we have \(S(x_n, x_n, x) < \varepsilon \). We write it as \(\lim_{n \to \infty} x_n = x \).

(ii) A sequence \(\{x_n\} \) in \(X \) is a Cauchy sequence if \(S(x_n, x_n, x_m) \to 0 \) as \(n, m \to \infty \). That is, for each \(\varepsilon > 0 \), there exists \(n_0 \in \mathbb{N} \) such that for all \(n, m \geq n_0 \), we have \(S(x_n, x_n, x_m) < \varepsilon \).

(iii) The \(S \)-metric space \((X, S) \) is complete if every Cauchy sequence in \(X \) converges to a point of \(X \).

We use the following results to prove our main result:

Lemma 2.3 [4]. In an \(S \)-metric space, we have
\[S(x, x, y) = S(y, y, x) \], for all \(x, y \in X \).

Lemma 2.4 [4]. Let \((X, S) \) be an \(S \)-metric space. If \(x_n \to x \) and \(y_n \to y \), then
\[S(x_n, x_n, y_n) \to S(x, x, y) \).

Following to Matkowski [2], let \(\Phi \) be the set of all functions
\[\phi : [0, \infty) \to [0, \infty) \], \] where \(\phi \) is a non-decreasing function with
\[\lim_{n \to \infty} \phi^n(t) = 0 \], for all \(t \in (0, \infty) \). If \(\phi \in \Phi \), then \(\phi \) is called a \(\Phi \)-map.

If \(\phi \) is a \(\Phi \)-map, then

(i) \(\phi(t) < t \), for all \(t \in (0, \infty) \),
(ii) \(\phi(0) = 0 \).

In our further discussion \(\phi \) will be considered as a \(\Phi \)-map.

3. Main Results

Theorem 3.1. Let \(X \) be a complete \(S \)-metric space. Suppose that the mapping \(T : X \to X \) satisfies the condition:

\[
S(Tx, Ty, Tz) \leq \phi(S(x, y, z)),
\]

for all \(x, y, z \in X \). Then \(T \) has a unique fixed point.

Proof. For arbitrary point \(x_0 \in X \), construct a sequence \(x_n = Tx_{n-1}, \ n \in \mathbb{N} \). Assume \(x_n \neq x_{n-1} \), for each \(n \in \mathbb{N} \). We claim \(\{x_n\} \) is a Cauchy sequence in \(X \).

For \(n \in \mathbb{N} \), we have

\[
S(x_n, x_{n+1}) = S(Tx_{n-1}, Tx_{n-1}, Tx_n) \leq \phi(S(x_{n-1}, x_{n-1}, x_n)) \leq \phi^n(S(x_0, x_0, x_1)).
\]

Given \(\varepsilon > 0 \), since \(\lim_{n \to \infty} \phi^n(S(x_0, x_0, x_1)) = 0 \) and \(\phi(\varepsilon) < \varepsilon \), there is an integer \(n_0 \) such that

\[
\phi^n(S(x_0, x_0, x_1)) < \frac{\varepsilon}{2} - \frac{\phi(\varepsilon)}{2}, \text{ for all } n \geq n_0.
\]

This implies

\[
S(x_n, x_{n+1}) \leq \frac{\varepsilon}{2} - \frac{\phi(\varepsilon)}{2}, \text{ for all } n \geq n_0.
\]

For \(m, n \in \mathbb{N} \) with \(m > n \), we claim that

\[
S(x_n, x_m) < \varepsilon \text{ for all } m > n \geq n_0.
\]

We prove inequality (3.5) by induction on \(m \).

Inequality (3.5) holds for \(m = n+1 \) by using inequality (3.4) and the fact that \(\varepsilon - \phi(\varepsilon) < \varepsilon \).

Assume inequality (3.5) holds for \(m = k \).

For \(m = k + 1 \), we have

\[
S(x_n, x_{k+1}) \leq S(x_n, x_k, x_{k+1}) + S(x_k, x_{k+1}, x_{k+1}) + S(x_{k+1}, x_{k+1}, x_{n+1})
\]
Using condition (3.1), equation (3.4) and Lemma 2.3, we get
\[S(x_n, x_n, x_{k+1}) \leq \varepsilon - \phi(\varepsilon) + \phi(S(x_k, x_k, x_n)) \]
\[\leq \varepsilon - \phi(\varepsilon) + \phi(S(x_n, x_n, x_k)) \]
\[< \varepsilon - \phi(\varepsilon) + \phi(\varepsilon) \]
\[= \varepsilon. \]

By induction on \(m \), we conclude that inequality (3.5) holds for all \(m > n \geq n_0 \). So \(\{x_n\} \) is a Cauchy sequence in complete \(S \)-metric space and hence \(\{x_n\} \) converges to some \(w \in X \).

For \(n \in N \), we have
\[S(w, w, Tw) \leq S(w, w, x_{n+1}) + S(w, w, x_{n+1}) + S(Tw, Tw, x_{n+1}) \]
\[\leq S(w, w, x_{n+1}) + S(w, w, x_{n+1}) + \phi(S(w, w, x_n)) \]
Since \(\phi \) is a \(\Phi \)-map, we have
\[S(w, w, Tw) < S(w, w, x_{n+1}) + S(w, w, x_{n+1}) + S(w, w, x_n). \]

Letting \(n \to \infty \) and using the fact that \(S \) is continuous in its variables, we get that \(S(w, w, Tw) = 0 \). Hence \(T(w) = w \). So \(w \) is a fixed point of \(T \). Now, let \(v \) be another fixed point of \(T \) with \(v \neq w \). Since \(\phi \) is a \(\Phi \)-map, we have
\[S(w, w, v) = S(Tw, Tw, Tv) \]
\[\leq \phi(S(w, w, v)) \]
\[< S(w, w, v), \]
which is not possible. So \(v = w \) and hence \(T \) has a unique fixed point.

Corollary 3.2. Let \(X \) be a complete \(S \)-metric space. Suppose that the mapping \(T : X \to X \) satisfies the condition:
\[S(T^m x, T^m y, T^m z) \leq \phi(S(x, y, z)), \]
for all \(x, y, z \in X \) and \(m \in N \). Then \(T \) has a unique fixed point.

Proof. From Theorem 3.1, we obtain that \(T^m \) has a unique fixed point say \(w \).

Since \(T^m(Tw) = T^{m+1}w = T(T^m w) = Tw \), we get that \(Tw \) is also a fixed point of \(T^m \). But \(w \) is a unique fixed point of \(T^m \), so we have
Tw = w.

Hence w is a unique fixed point of T.

Corollary 3.3. Let X be a complete S-metric space. Suppose that the mapping \(T : X \rightarrow X \) satisfies the condition:

\[
S(Tx, Tx, Tz) \leq \phi(S(x, x, z)),
\]

for all \(x, z \in X \). Then T has a unique fixed point.

Proof. We obtain the result by taking \(y = x \) in Theorem 3.1.

Corollary 3.4. Let X be a complete S-metric space. Suppose there is \(k \in [0,1) \) such that the mapping \(T : X \rightarrow X \) satisfies the condition:

\[
(3.7) \quad S(Tx, Ty, Tz) \leq kS(x, y, z),
\]

for all \(x, y, z \in X \). Then T has a unique fixed point.

Proof. Define \(\phi : [0, \infty) \rightarrow [0, \infty) \) by \(\phi(t) = kt \). Then clearly \(\phi \) is a non-decreasing function with

\[
\lim_{n \to \infty} \phi^n(t) = 0, \text{ for all } t > 0.
\]

Using condition (3.7) and by virtue of \(\phi \), we have

\[
S(Tx, Ty, Tz) \leq \phi(S(x, y, z)), \text{ for all } x, y, z \in X.
\]

Now the result follows from Theorem 3.1.

Corollary 3.5. Let X be a complete S-metric space and suppose the mapping \(T : X \rightarrow X \) satisfies the condition:

\[
(3.8) \quad S(Tx, Ty, Tz) \leq \frac{S(x, y, z)}{1 + S(x, y, z)},
\]

for all \(x, y, z \in X \). Then T has a unique fixed point.

Proof. Define \(\phi : [0, \infty) \rightarrow [0, \infty) \) by \(\phi(w) = \frac{w}{1 + w} \).

Then clearly \(\phi \) is non-decreasing function with \(\lim_{n \to \infty} \phi^n(t) = 0 \), for all \(t > 0 \).

Using condition (3.8) and by virtue of \(\phi \), we have

\[
S(Tx, Ty, Tz) \leq \phi(S(x, y, z)), \text{ for all } x, y, z \in X.
\]

Now the result follows from Theorem 3.1.
Theorem 3.6. Let X be a complete S-metric space. Suppose that the mapping $T : X \to X$ satisfies the condition:
\[
S(Tx, Ty, Tz) \leq \phi(\max\{S(x, y, z), S(Tx, Tx, x), S(Ty, Ty, y), S(Tz, Tz, x)\}),
\]
for all $x, y, z \in X$. Then T has a unique fixed point.

Proof. For arbitrary point $x_0 \in X$, construct a sequence $x_n = Tx_{n-1}$, for all $n \in \mathbb{N}$.

Assume $x_n \neq x_{n-1}$, for each $n \in \mathbb{N}$. Thus for $n \in \mathbb{N}$, we have
\[
S(x_{n+1}, x_{n+1}, x_n) = S(Tx_n, Tx_n, Tx_{n-1}) \leq \phi(\max\{S(x_n, x_n, x_{n-1}), S(x_{n+1}, x_{n+1}, x_n), S(x_{n+1}, x_{n+1}, x_{n+1}), S(x_n, x_n, x_n)\}),
\]
\[
\leq \phi(\max\{S(x_n, x_n, x_{n-1}), S(x_{n+1}, x_{n+1}, x_n)\}).
\]
If $\max\{S(x_n, x_n, x_{n-1}), S(x_{n+1}, x_{n+1}, x_n)\} = S(x_{n+1}, x_{n+1}, x_n)$, then
\[
S(x_{n+1}, x_{n+1}, x_n) \leq \phi(\max\{S(x_n, x_n, x_{n-1}), S(x_{n+1}, x_{n+1}, x_n)\}) < S(x_{n+1}, x_{n+1}, x_n),
\]
which is impossible.

So $\max\{S(x_n, x_n, x_{n-1}), S(x_{n+1}, x_{n+1}, x_n)\} = S(x_n, x_n, x_{n-1})$.

Thus for $n \in \mathbb{N}$, we have
\[
S(x_{n+1}, x_{n+1}, x_n) \leq \phi(S(x_n, x_n, x_{n-1})) \leq \phi^2(S(x_{n-1}, x_{n-1}, x_{n-2})) \leq \cdots \leq \phi^n(S(x_1, x_1, x_0)).
\]
This implies
\[
S(x_{n+1}, x_{n+1}, x_n) \leq \phi^n(S(x_1, x_1, x_0)).
\]
Using Lemma 2.3, we get
\[
S(x_n, x_n, x_{n+1}) \leq \phi^n(S(x_0, x_0, x_1)).
\]
By similar arguments as in Theorem 3.1, we get \(\{x_n\} \) is a Cauchy sequence in complete \(S \)-metric space. So \(\{x_n\} \) converges to some \(w \in X \).

For \(n \in \mathbb{N} \), we have
\[
S(w,w,Tw) \leq S(w,w,x_{n+1}) + S(w,w,x_{n+1}) + S(Tw,Tw,x_{n+1})
\]
\[
= S(w,w,x_{n+1}) + S(w,w,x_{n+1}) + S(Tw,Tw,Tx_n)
\]
\[
\leq S(w,w,x_{n+1}) + S(w,w,x_{n+1}) + \phi(\max\{S(w,w,x_n),
S(Tw,Tw,w), S(Tw,Tw,w), S(x_{n+1},x_{n+1},w)\})
\]
\[
= S(w,w,x_{n+1}) + S(w,w,x_{n+1}) + \phi(\max\{S(w,w,x_n),
S(Tw,Tw,w), S(x_{n+1},x_{n+1},w)\}).
\]

Case I.

If \(\max \{S(w,w,x_n), S(Tw,Tw,w), S(x_{n+1},x_{n+1},w)\} \)
\[
= S(w,w,x_n),
\]
then
\[
S(w,w,Tw) \leq S(w,w,x_{n+1}) + S(w,w,x_{n+1}) + \phi(S(w,w,x_n))
\]
\[
< S(w,w,x_{n+1}) + S(w,w,x_{n+1}) + S(w,w,x_n).
\]

Letting \(n \to \infty \), we have \(Tw = w \).

Case II.

If \(\max \{S(w,w,x_n), S(Tw,Tw,w), S(x_{n+1},x_{n+1},w)\} \)
\[
= S(Tw,Tw,w),
\]
then
\[
S(w,w,Tw) \leq S(w,w,x_{n+1}) + S(w,w,x_{n+1}) + \phi(S(Tw,Tw,w))
\]
\[
< S(w,w,x_{n+1}) + S(w,w,x_{n+1}) + S(Tw,Tw,w).
\]

Using Lemma 2.3, we get
\[
S(w,w,Tw) < S(w,w,x_{n+1}) + S(w,w,x_{n+1}) + S(w,w,Tw).
\]

Letting \(n \to \infty \), we get \(T(w) = w \).

Case III.

If \(\max\{S(w,w,x_n), S(Tw,Tw,w), S(x_{n+1},x_{n+1},w)\} \)
FIXED POINT THEOREMS FOR SELF MAP

\[S(x_{n+1}, x_{n+1}, w) , \]

then

\[S(w, w, Tw) < S(w, w, x_{n+1}) + S(w, w, x_{n+1}) + S(x_{n+1}, x_{n+1}, w) . \]

Letting \(n \to \infty \), we get \(Tw = w \).

Hence, we can say that \(w \) is a fixed point of \(T \).

If \(v \) is another fixed point of \(T \), then

\[S(w, w, v) = S(Tw, Tw, Tv) \]

\[\leq \phi(\max\{S(w, w, v), S(Tw, Tw, w), S(Tw, Tw, w), S(Tv, Tv, w)\}) \]

\[\leq \phi(\max\{S(w, w, v), S(w, w, w), S(w, w, w), S(v, v, w)\}) \]

\[\leq \phi(\max\{S(w, w, v), S(v, v, w)\}) \]

\[= \phi(S(w, w, v)) \ (\because \text{by Lemma 2.3, } S(v, v, w) = S(w, w, v)) \]

\[< S(w, w, v), \ (\because \phi \text{ is } \Phi \text{-map}) \]

which is not possible and hence \(w \) is a unique fixed point of \(T \).

Corollary 3.7. Let \(X \) be a complete \(S \)-metric space. Suppose there is \(k \in [0,1) \) such that the mapping \(T : X \to X \) satisfies the condition:

(3.9) \[S(Tx, Ty, Tz) \leq k \max\{S(x, y, z), S(Tx, Tx, x), S(Ty, Ty, y), S(Tz, Tz, x)\} , \]

for all \(x, y, z \in X \). Then \(T \) has a unique fixed point.

Proof. Define \(\phi : [0, \infty) \to [0, \infty) \) by \(\phi(w) = kw \).

Then clearly \(\phi \) is non-decreasing function with

\[\lim_{n \to \infty} \phi^n(t) = 0 , \text{ for all } t > 0. \]

Using condition (3.9) and by virtue of \(\phi \), we get

\[S(Tx, Ty, Tz) \leq \phi(\max\{S(x, y, z), S(Tx, Tx, x), S(Ty, Ty, y), S(Tz, Tz, x)\}) , \]

for all \(x, y, z \in X \).

Now the result follows from Theorem 3.6.
Corollary 3.8. Let X be a complete S-metric space and suppose the mapping $T : X \to X$ satisfies the condition:

$$S(Tx, Tx, Tz) \leq \phi(\max\{S(x, x, z), S(Tx, Tx, x), S(Tz, Tz, x)\}),$$

for all $x, z \in X$. Then T has a unique fixed point.

Proof. We obtain the result by taking $y = x$ in Theorem 3.6.

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES