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Abstract. In this paper, we introduce the notion of coupled fixed point for a mapping in complex valued Gb metric

space and prove some coupled fixed point theorems in this space and provide an example in support of our main

theorem.
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1. Introduction

The concept of a metric space was introduced by Fréchet [16]. The first important result

on fixed-point for contractive-type mappings was the well-known Banach fixed point theorem,

published for the first time in 1922. After that many researchers proved the Banach fixed point

theorem in a number of generalized metric spaces. Bakhtin [7] presented b-metric spaces as

a generalization of metric spaces. In 2011, Azam et al. [4] introduced the notion of complex
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valued metric space which is a generalization of the classical metric space. Rao et al. [12]

introduced the concept of complex valued b-metric space.

Mustafa and Sims [9] presented the notion of g-metric spaces, many researchers [1, 2, 3, 10,

11] obtained common fixed point results for G-metric spaces. The concept of Gb-metric space

was given in [6].

E. Ozgur [15] presented the notion of complex valued Gb-metric space. In 2006, Bhaskar et

al. [5] introduced the notion of coupled fixed point and proved some fixed point results in this

context. Similarly, we introduced the notion of coupled fixed point for a mapping in complex

valued Gb-metric spaces.

2. Preliminaries

In this section will recall some properties of Gb-metric spaces.

Definition 2.1 ([6]). Let X be a nonempty set and s≥ 1 be a given real number. Suppose that a

mapping G : X×X×X → R+ satisfies:

(Gb1) G(x,y,z) = 0 if x = y = z;

(Gb2) 0 < G(x,x,y) for all x,y ∈ X with x 6= y;

(Gb3) G(x,x,y)≤ G(x,y,z) for all x,y,z ∈ X with y 6= z;

(Gb4) G(x,y,z) = G(ρ{x,y,z}), where ρ is a permutation of x,y,z;

(Gb5) G(x,y,z)≤ s(G(x,a,a)+G(a,y,z)) for all x,y,z,a ∈ X (rectangle inequality).

Then, G is called a generalized b-metric space and (X ,G) is called a generalized b-metric or a

Gb-metric space.

Note that each Gb-metric space is a G-metric space with s = 1.

Proposition 2.2 ([6]). Let X be a Gb-metric space. Then for each x,y,z,a ∈ X, it follows that:

(1) If G(x,y,z) = 0 then x = y = z;

(2) G(x,y,z)≤ s(G(x,x,y)+G(x,x,z)),

(3) G(x,y,y)≤ 2sG(y,x,x);

(4) G(x,y,z)≤ s(G(x,a,z)+G(a,y,z)).
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Let C be the set of complex numbers and z1,z2 ∈ C.

Define a partial order on C as follows:

z1 - z2 if and only if Re(z1)≤ Re(z2) and Im(z1)≤ Im(z2).

It follows that z1 - z2 if one of the following condition is satisfied.

(1) Re(z1) = Re(z2), Im(z1)< Im(z2),

(2) Re(z1)< Re(z2), Im(z1) = Im(z2),

(3) Re(z1)< Re(z2), Im(z1)< Im(z2),

(4) Re(z1) = Re(z2), Im(z1) = Im(z2).

In particular, we will write z1 � z2 If z1 6= z2 and one of (i), (ii) and (iii) is satisfied and we

will write z1 ≺ z2 iff (iii) is satisfied.

The followed statements hold:

(i) If a,b ∈ R with a≤ b, then az≺ bz, for all z ∈ C.

(ii) If 0- z1 � z2, then |z1|< |z2|.

(iii) If z1 - z2, z2 ≺ z3, them z1 ≺ z3.

Definition 2.3 ([15]). Let X be a nonempty set and s≥ 1 be a given real number. Suppose that

a mapping G : X×X×X → C satisfies:

(CGb1) G(x,y,z) = 0 if x = y = z;

(CGb2) 0≺ G(x,x,y) for all x,y ∈ X with x 6= y;

(CGb3) G(x,x,y)- G(x,y,z) for all x,y,z ∈ X with y 6= z;

(CGb4) G(x,y,z) = G(ρ(x,y,z)), where ρ is a permutation of x,y,z;

(CGb5) G(x,y,z)- s(G(x,a,a)+G(a,y,z)) for all x,y,z,a ∈ X (rectangle inequality).

Then, G is called a complex valued Gb-metric and (X ,G) is called a complex valued Gb-metric

space.

Proposition 2.4 ([15]). Let (X ,G) be a complex valued Gb-metric space. Then for any x,y,z ∈ X,

• G(x,y,z)- s(G(x,x,y)+G(x,x,z)),

• G(x,y,y)- 2sG(y,x,y).

Definition 2.5 ([15]). Let (X ,G) be a complex valued Gb-metric space, let {xn} be a sequence

in X.
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(i) {xn} is complex valued Gb-convergent to x if for every a∈C with 0≺ a, there exists N ∈N

such that G(x,xn,xm)≺ a for all n,m≥ N.

(ii) A sequence {xn} is called complex valued Gb-Cauchy if for every a ∈ C with 0≺ a, there

exists N ∈ N such that G(xn,xm,x`)≺ a for all n,m, `≥ N.

(iii) If every complex valued Gb-Cauchy sequence is complex valued Gb-convergent in (X ,G),

then (X ,G) is said to be complex valued Gb-complete.

3. Main Results

Theorem 3.1. Let (X ,G) be a complete complex valued Gb-metric space with coefficient s > 1

and F : X×X → X be a mapping satisfying:

G(F(x,y),F(u,v),F(z,w))- λG(x,u,z)+µG(y,v,w) (3.1)

for all x,y,u,v,z,w ∈ X, where λ and µ are non-negative constants with sλ +µ < 1. Then F

has a unique coupled fixed point.

Proof. Choose x0,y0 ∈ X and set

x1 = F(x0,y0), y1 = F(y0,x0)

...

xn+1 = F(xn,yn), yn+1 = F(yn,xn)

From (3.1), we have

G(xn,xn+1,xn+1) = G(F(xn−1,yn−1),F(xn,yn),F(xn,yn))

- λG(xn−1,xn,xn)+µG(yn−1,yn,yn)

and similarly

G(yn,yn+1,yn+1) = G(F(yn−1,xn−1),F(yn,xn),F(yn,xn))

- λG(yn−1,yn,yn)+µG(xn−1,xn,xn)
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Therefore, by letting Gn = G(xn,xn+1,xn+1)+G(yn,yn+1,yn+1), we have

Gn = G(xn,xn+1,xn+1)+G(yn,yn+1,yn+1)

- λG(xn−1,xn,xn)+µG(yn−1,yn,yn)+λG(yn−1,yn,yn)+µG(xn−1,xn,xn)

= (λ +µ)[G(xn−1,xn,xn)+G(yn−1,yn,yn)]

= (λ +µ)Gn−1 .

That is Gn - PGn−1, where P = λ +µ < 1.

In general, we have for n = 0,1,2, . . .

Gn - PGn−1 - P2Gn−2 - · · ·- PnG0.

Now, for all m > n

G(xn,xm,xm)- s[G(xn,xn+1,xn+1)+G(xn+1,xm,xm)]

- sG(xn,xn+1,xn+1)+ s2[G(xn+1,xn+2,xn+2)+G(xn+2,xm,xm)]

- sG(xn,xn+1,xn+1)+ s2G(xn+1,xn+2,xn+2)+ · · ·+ sm−nG(xm−1,xm,xm)

and

G(yn,ym,ym)- sG(yn,yn+1,yn+1)+ s2G(yn+1,yn+2,yn+2)+ · · ·+ sm−nG(ym−1,ym,ym)

Therefore, have

G(xn,xm,xm)+G(yn,ym,ym)- sGn + s2Gn+1 + · · ·+ sm−nGm−1

- sPnG0 + s2Pn+1G0 + · · ·+ sm−nPm−1G0

= sPn[1+ sP+(sP)2 + · · ·+(sP)m−n−1]G0

≺ sPn

1− sP
G0 .

Thus, we obtain

|G(xn,xm,xm)+G(yn,ym,ym)| ≤
sPn

1− sP
|G0| .

Since P < 1, taking limit as n→ ∞, then

sPn

1− sP
|G0| → 0 .
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This means that |G(xn,xm,xm))| → 0 and (G(yn,ym,ym))→ 0.

By Proposition 2.4, we get

G(xn,xm,x`)+G(yn,ym,y`)

- G(xn,xm,xm)+G(x`,xm,xm)+G(yn,ym,ym)+G(y`,ym,ym) for `,m,n ∈ N.

Thus

|G(xn,xm,x`)+G(yn,ym,y`)|

≤ |G(xn,xm,xm)+G(yn,ym,ym)|+ |(G(x`,xm,xm)+G(y`,ym,ym)| .

If we take limit as n,m, `→ ∞, we obtain

|G(xn,xm,x`)| → 0 and |G(yn,ym,y`)| → 0.

which implies that {xn} and {yn} are complex valued Gb-Cauchy sequences in X . By X is

complete, there exists x′,y′ ∈ X such that

lim
n→∞

xn = x′ and lim
n→∞

yn = y′ .

Let c ∈ C with 0≺ c. For every m ∈ N, there exits N ∈ N such that

G(xn,xm,x`)≺ c and G(yn,ym,y`)≺ c ∀ n,m, ` > N .

Thus, we have

G(xn+1,F(x′,y′),F(x′,y′)) = G(F(xn,yn),F(x′,y′),F(x′,y′))

- λG(xn,x′,x′)+µG(yn,y′,y′)

This implies that

|(G(xn+1,F(x′,y′),F(x′,y′))| ≤ λ |(G(xn,x′,x′)|+µ|G(yn,y′,y′)|

Taking limit as n→ ∞, we get

|G(x′,F(x′,y′),F(x′,y′)| → 0

that is G(x′,F(x′,y′),F(x′,y′)) = 0 and hence F(x′,y′) = x′.

Similarly, we have F(y′,x′) = y′.
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Hence (x′,y′) is a coupled fixed point of F .

Now, if (x′′,y′′) is another coupled fixed point of F , then

G(x′,x′′,x′′) = G(F(x′,y′),F(x′′,y′′),F(x′′,y′′))

- λG(x′,x′′,x′′)+µG(y′,y′′,y′′)

and

G(y′,y′′,y′′) = G(F(y′,x′),F(y′′,x′′),F(y′′,x′′)

- λG((y′,y′′,y′′)+µG(x′,x′′,x′′)

Thus we have

G(x′,x′′,x′′)+G(y′,y′′,y′′)- (λ +µ)[G(x′,x′′,x′′)+F(y′,y′′,y′′)]

which implies that

|G(x′,x′′,x′′)+G(y′,y′′,y′′)|- (λ +µ)|G(x′,x′′,x′′)+G(y′,y′′,y′′)|

Since sλ +µ < 1, we have |G(x′,x′′,x′′)+G(y′,y′′,y′′)|= 0.

That is G(x′,x′′,x′′)+G(y′,y′′,y′′) = 0.

Thus we have (x′,y′) = (x′′,y′′).

Therefore F has a unique coupled fixed point. �

From Theorem 3.1 with µ = λ , we have the following corollary:

Corollary 3.2. Let (X ,G) be a complete complex valued Gb-metric space with coefficient s≥ 1

and F : X×X → X be mapping satisfying:

G(F(x,y),F(u,v),F(z,w))- λ [G(x,u,z)+G(y,v,w)] (3.2)

for all x,y,z,u,v,w ∈ X, where λ is a non-negative constant with λ < 1
2 then F has a unique

coupled fixed point.

Example 3.3. Let X = [−1,1] and G : X×X×X → C be defined as follows:

G(x,y,z) = |x− y|+ |y− z|+ |z− x| (3.3)
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for all x,y,z ∈ X . (X ,G) is complex valued G-metric space. Define

G∗(x,y,z) = G(x,y,z)2 .

G∗ is a complex valued Gb-metric with s = 2 (see [6]).

If we define F : X ×X → X with F(x,y) = x+y
3 i. Then F satisfied the contractive condition

(3.2) for 1
9 ≤ λ < 1

2 that is

G(F(x,y),F(u,v),F(z,w)≤ λ [G(x,u,z)+G(y,v,w)] .

Here (0,0) is the unique coupled fixed point of F .

Theorem 3.4. Let (X ,G) be a complete complex valued Gbmetric space. Suppose that the map-

ping F : X×X → X satisfies

G(F(x,y),F(u,v),F(u,v)-λ [G(x,F(x,y),F(x,y)+G(u,F(u,v),F(u,v)]. (3.4)

where λ ∈
[
0, 1

2

)
. Then F has a unique coupled fixed point.

Proof. Choose x0,y0 ∈ X and set

x1 = F(x0,y0), y1 = F(y0,x0)

...

xn+1 = F(xn,yn), yn+1 = F(yn,xn)

From (3.4), we have

G(xn,xn+1,xn+1) = G(F(xn−1,yn−1),F(xn,yn),F(xn,yn))

- λ [G(xn−1,F(xn−1,yn−1),F(xn−1,yn−1)+G(xn,F(xn,yn),F(xn,yn))]

- λ [G(xn−1,xn,xn)+G(xn,xn+1,xn+1)]

which implies

G(xn,xn+1,xn+1)-
λ

1−λ
G(xn−1,xn,xn)

and similarly

G(yn,yn+1,yn+1) = G(F(yn−1,xn−1),F(yn,xn),F(yn,xn)]
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- λ [G(yn−1,F(yn−1,xn−1),F(yn−1,xn−1))+G(yn,F(yn,xn),F(yn,xn))

which implies that

G(yn,yn+1,yn+1)-
λ

1−λ
G(yn−1,yn,yn)

Now, by setting Gn = G(xn,xn+1,xn+1)+G(yn,yn+1,yn+1), we have

Gn = G(xn,xn+1,xn+1)+G(yn,yn+1,yn+1)

-
λ

1−λ
[G(xn−1,xn,xn)+G(yn−1,yn,yn)]

that is

Gn - PGn−1 where P =
λ

1−λ
< 1 .

In general, we have for n = 0,1,2, · · ·

Gn - PGn−1 - P2Gn−2 - · · ·- PnG0 .

This implies that {xn} and {yn} are Cauchy sequence in (X ,G). and therefore, by completeness

of X , there exists x′,y′ ∈ X such that lim
n→∞

xn = x′ and lim
n→∞

yn = y′.

Let c ∈ C with 0≺ c. For every m ∈ N, there exists N ∈ N such that

G(xn,xm,x`)≺ c and G(yn,ym,y`)≺ c ∀ m,n, ` > N.

Thus, we have

G(xn+1,F(x′,y′),F(x′,y′)) = G(F(xn,yn),F(x′,y′),F(x′,y′)]

- λ [G(xn,F(xn,yn),F(xn,yn)+G(x′,F(x′,y′),F(x′,y′)]

which implies that

|G(xn+1,F(x′,y′),F(x′,y′)| ≤ λ |G(xn,xn+1,xn+1)+G(x′,F(x′,y′),F(x′,y′)| .

Taking limit as n→ ∞, we get

|G(x′,F(x′,y′),F(x′,y′)| ≤ λ |G(x′,F(x′,y′),F(x′,y′))| .

This implies that |G(x′,F(x′,y′),F(x′,y′)|→ 0 and therefore F(x′,y′)= x′, similarly F(y′,x′)=y′.

Hence (x′,y′) is a coupled fixed point of G.
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Now if (x′′,y′′) is another coupled fixed point of F , then

G(x′,x′′,x′′) = G(F((x′,y′),F(x′′,y′′),(F(x′′,y′′))

- λ [G(x′,F(x′,y′),F(x′,y′)+G(x′′,F(x′′,y′′),F(x′′,y′′)]

Thus we have x′ = x′′ similarly, we get y′ = y′′.

Therefore F has a unique coupled fixed point.
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