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Abstract. In this paper, we prove some quadruple coincidence and quadruple common fixed point theorems for

F : X4 → X and g : X → X satisfying weak contractions in partially ordered G-metric spaces. We illustrate our

results based on an example on the main theorems. We also give an application of obtained results of this paper.
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1. Introduction

In 1992, B.C. Dhage introduced a new class of generalized metric space called D-metric spaces

(see [7]). In a subsequent series of papers, Dhage attempted to develop topological structures

in such spaces (see [8],[9],[10]). In [11], Mustafa and Sims demonstrate the claims concerning

the fundamental topological structure of D-metric space are incorrect, also introduce a valid
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generalized metric space structure, which we call G-metric spaces. Some other papers dealing

with G-metric spaces are those in ([2, 3, 4, 5, 6],[14] - [25]). Recently, there has been growing

interest in establishing fixed point theorems in partially ordered complete G-metric spaces with

a contractive condition which holds for all points that are related by partial ordering ([26],[29]

and [46]).

The aim of this paper is to prove some quadruple coincidence and quadruple common fixed

point theorems for F : X4→ X and g : X → X satisfying weak contractions in partially ordered

G-metric spaces. We illustrate our results based on an example on the main theorems. We also

give an application of obtained results of this paper.

Definition 1.1. ([12]) Let X be a nonempty set, and let G : X ×X ×X → R+, be a function

satisfying the following properties:

(G1) G(x,y,z) = 0 if x = y = z;

(G2) 0 < G(x,x,y) ; for all x,y ∈ X , with x 6= y;

(G3) G(x,x,y)≤ G(x,y,z), for all x,y,z ∈ X , with z 6= y;

(G4) G(x,y,z) = G(x,z,y) = G(y,z,x) = . . ., (symmetry in all three variables); and

(G5) G(x,y,z)≤ G(x,a,a)+G(a,y,z), for all x,y,z,a ∈ X, (rectangle inequality ).

Then the function G is called a generalized metric, or, more specifically a G-metric on X, and

the pair (X ,G) is called a G-metric space.

Example 1.1. ([12]) Let (X ,d) be a usual metric space, and define Gs and Gm on X×X×X to

R+ by

Gs(x,y,z) = d(x,y)+d(y,z)+d(x,z),and

Gm(x,y,z) = max{d(x,y),d(y,z),d(x,z)}

for all x,y,z ∈ X. Then (X ,Gs) and (X ,Gm) are G-metric spaces.

Definition 1.2. ([12]) Let (X ,G) be a G-metric space, and let (xn) be a sequence of points of

X. A point x ∈ X is said to be the limit of the sequence (xn) if limn,m→∞ G(x,xn,xm) = 0, and

one say that the sequence (xn) is G-convergent to x.
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Thus, that if xn −→ 0 in a G-metric space (X ,G), then for any ε > 0, there exists N ∈ N

such that G(x,xn,xm)< ε , for all n,m≥ N, (we mean by N the Natural numbers).

Proposition 1.1. ([12]) Let (X ,G) be G-metric space. Then the following are equivalent.

(1) (xn) is G-convergent to x.

(3) G(xn,xn,x)→ 0, as n→ ∞.

(4) G(xn,x,x)→ 0, as n→ ∞.

(5) G(xm,xn,x)→ 0, as m,n→ ∞.

Definition 1.3. ([12]) Let (X ,G) be a G-metric space, a sequence (xn) is called G-Cauchy if

given ε > 0, there is N ∈N such that G(xn,xm,xl)< ε, for all n,m, l≥N. That is G(xn,xm,xl)−→

0 as n,m, l −→ ∞.

Proposition 1.2. ([12]) In a G-metric space, (X ,G), the following are equivalent.

(1) The sequence (xn) is G-Cauchy.

(2) For every ε > 0, there exists N ∈ N such that G(xn,xm,xm)< ε, for all n,m≥ N.

Proposition 1.3. ([12]) Let (X ,G), and (X
′
,G
′
) be two G-metric spaces. Then a function f :

X −→ X
′

is G-continuous at a point x ∈ X if and only if it is G-sequentially continuous at x;

that is, whenever (xn) is G-convergent to x we have ( f (xn)) is G-convergent to f (x).

Definition 1.4. ([12]) A G-metric space (X ,G) is called symmetric G-metric space if G(x,y,y)=

G(y,x,x) for all x,y ∈ X.

It is clear that, any G-metric space where G derives from an underlying metric via Gs or Gm

in Example 1.1 is symmetric.

Proposition 1.4. ([12]) Let (X ,G) be a G-metric space, then the function G(x,y,z) is jointly

continuous in all three of its variables.

Proposition 1.5. ([12]) Every G-metric space (X ,G) induces a metric space (X ,dG) defined by

dG(x,y) = G(x,y,y)+G(y,x,x),∀x,y ∈ X .
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Note that if (X ,G) is symmetric, then

(1.1) dG(x,y) = 2G(x,y,y),∀x,y ∈ X .

However, if (X ,G) is not symmetric then it holds by the G-metric properties that

(1.2)
3
2

G(x,y,y)≤ dG(x,y)≤ 3G(x,y,y),∀x,y ∈ X .

Definition 1.5. ([12]) A G-metric space (X ,G) is said to be G-complete ( or complete G-metric

) if every G-Cauchy sequence in (X ,G) is G-convergent in (X ,G).

Definition 1.6. Let (X ,G) be a G-metric Space. A mapping F : X ×X ×X ×X → X is said to

be continuous if for any G-convergent sequences {xn}, {yn}, {zn} and {wn} converging to x,y,z

and w respectively {F(xn,yn,zn,wn)} is G-convergent to F(x,y,z,w)

Proposition 1.6. ([12])A G-metric space (X ,G) is G-complete if and only if (X ,dG) is a com-

plete metric space.

Following Erdal [52] we introduced the following definitions.

Definition 1.7. [52] Let X be a nonempty set and F : X ×X ×X ×X → X be a given mapping.

An element (x,y,z,w) ∈ X×X×X×X is called a quadruple fixed point of F if

F(x,y,z,w) = x, F(y,z,w,x) = y, F(z,w,x,y) = z and F(w,x,y,z) = w.

Definition 1.8. [52] Let (X ,≤) be a partially ordered set and F : X ×X ×X ×X → X be a

mapping. We say that F has the mixed monotone property if F(x,y,z,w) is monotone non-

decreasing in x and z and is monotone non-increasing in y and w; that is, for any x,y,z,w ∈ X,

x1,x2 ∈ X , x1 ≤ x2 implies F(x1,y,z,w)≤ F(x2,y,z,w),

y1,y2 ∈ X , y1 ≤ y2 implies F(x,y2,z,w)≤ F(x,y1,z,w),

z1,z2 ∈ X , z1 ≤ z2 implies F(x,y,z1,w)≤ F(x,y,z2,w),

and

w1,w2 ∈ X , w1 ≤ w2 implies F(x,y,z,w2)≤ F(x,y,z,w1).



416 ANIMESH GUPTA, HARPREET KAUR, KAMAL GUPTA, SAURABH MANRO

Definition 1.9. [52] Let X be a non-empty set. Then we say that the mappings F : X4→ X and

g : X → X are commutative if for all x,y,z,w ∈ X

g(F(x,y,z,w)) = F(gx,gy,gz,gw).

Definition 1.10. [57] Let (X ,≤) be a partially ordered set. Let F : X4→ X and g : X → X. The

mapping F is said to has the mixed g-monotone property if for any x,y,z,w ∈ X

x1, x2 ∈ X , gx1 ≤ gx2 =⇒ F(x1,y,z,w)≤ F(x2,y,z,w),

y1, y2 ∈ X , gy1 ≤ gy2 =⇒ F(x,y1,z,w)≥ F(x,y2,z,w),

z1, z2 ∈ X , gz1 ≤ gz2 =⇒ F(x,y,z1,w)≤ F(x,y,z2,w) and

w1, w2 ∈ X , gw1 ≤ gw2 =⇒ F(x,y,z,w1)≥ F(x,y,z,w2).

Definition 1.11. [57] Let F : X4→X and g : X→X. An element (x,y,z,w) is called a quadruple

coincidence point of F and g if

F(x,y,z,w) = gx, F(y,z,w,x) = gy, F(z,w,x,y) = gz and F(w,x,y,z) = gw.

(gx,gy,gz,gw) is said a quadruple point of coincidence of F and g.

Definition 1.12. [57] Let F : X4→X and g : X→X. An element (x,y,z,w) is called a quadruple

common fixed point of F and g if

F(x,y,z,w) = gx = x, F(y,z,w,x) = gy = y,

F(z,w,x,y) = gz = z and F(w,x,y,z) = gw = w.

2. Main result

Denote Φ be the set of functions φ such that φ : [0,∞)→ [0,∞) satisfying the following condi-

tions,

(i) φ is continuous and non decreasing,

(ii) φ(t) = 0 if and only if t = 0,

(iii) φ(αt)≤ αφ(t) for α ∈ (0,∞)

(iv) φ(t + s)≤ φ(t)+φ(s) for all s, t ∈ [0,∞).
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Also, Ψ be the set of all functions ψ such that ψ : [0,∞)× [0,∞)× [0,∞)× [0,∞)→ [0,∞)

satisfying condition lim(t1,t2,t3,t4)→(r1,r2,r3,r4)ψ(t1, t2, t3, t4) > 0 for all (r1,r2,r3,r4) ∈ [0,∞)×

[0,∞)× [0,∞)× [0,∞) with r1 + r2 + r3 + r4 > 0. For example

(a) ψ(t1, t2, t3, t4) = k max{t1, t2, t3, t4} for some k ∈ [0,1),

(b) ψ(t1, t2, t3, t4) = α1t p1
1 +α2t p2

2 +α3t p3
3 +α4t p4

4 for α1,α2,α3,α4, p1, p2, p3, p4 > 0

(c) ψ(t1, t2, t3, t4) = 1−k
2 (t1 + t2 + t3 + t4) for some k ∈ [0,1).

Theorem 2.1. Let (X ,≤) be a partially ordered set and (X ,G) be a G-metric space. Let F :

X ×X ×X ×X → X and g : X → X such that F has the mixed g-monotone property. Assume

that there exists a φ ∈Φ and ψ ∈Ψ such that

M(x,y,z,w,u,v,s, t,a,b,c,d) = α1G(F(x,y,z,w),F(u,v,s, t),F(a,b,c,d))

+α2G(F(y,z,w,x),F(v,s, t,u),F(b,c,d,a))

+α3G(F(z,w,x,y),F(s, t,u,v),F(c,d,a,b))

+α4G(F(w,x,y,z),F(t,u,v,s),F(d,a,b,c))

M(x,y,z,w,u,v,s, t,a,b,c,d) ≤ φ

(
G(gx,gu,ga)+G(gy,gv,gb)+G(gz,gs,gc)+G(gw,gt,gd)

4

)
−ψ(G(gx,gu,ga),G(gy,gv,gb),G(gz,gs,gc),G(gw,gt,gd)).

(2.1)

for all α1,α2,α3,α4 ∈ (0,∞), x,y,z,w,u,v,s, t,a,b,c,d ∈ X with gx≥ gu≥ ga, gy≤ gv≤ gb,

gz ≥ gs ≥ gc, and gw ≤ gt ≤ gd. Suppose F(X4) ⊆ g(X), g is continuous and commutes with

F. If there exist x0,y0,z0,w0 ∈ X such that

gx0 ≤ F(x0,y0,z0,w0), gy0 ≥ F(y0,z0,w0,x0),

gz0 ≤ F(z0,w0,x0,y0) and gw0 ≥ F(w0,x0,y0,z0),

Suppose either

(a) (X ,G) is a complete G-metric space and F is continuous or,

(b) (g(X),G) is complete and (X ,G,≤) has the following property:
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(i) if non-decreasing sequence xn→ a, then xn ≤ x for all n,

(ii) if non-increasing sequence yn→ y, then y≤ yn for all n.

then there exist x,y,z,w ∈ X such that

F(x,y,z,w) = gx, F(y,z,w,x) = gy, F(z,w,x,y) = gz and F(w,x,y,z) = gw

that is, F and g have a quadruple coincidence point.

Proof. Let x0,y0,z0,w0 ∈ X such that

gx0 ≤ F(x0,y0,z0,w0), gy0 ≥ F(y0,z0,w0,x0),

gz0 ≤ F(z0,w0,x0,y0) and gw0 ≥ F(w0,x0,y0,z0).

Since F(X4)⊂ g(X), then we can choose x1,y1,z1,w1 ∈ X such that

(2.2)
gx1 = F(x0,y0,z0,w0), gy1 = F(y0,z0,w0,x0),

gz1 = F(z0,w0,x0,y0) and gw1 = F(w0,x0,y0,z0).

Taking into account F(X4) ⊂ g(X), by continuing this process, we can construct sequences

{xn},{yn}, {zn} and {wn} in X such that

(2.3)
gxn+1 = F(xn,yn,zn,wn), gyn+1 = F(yn,zn,wn,xn),

gzn+1 = F(zn,wn,xn,yn) and gwn+1 = F(wn,xn,yn,zn).

We shall show that

(2.4) gxn ≤ gxn+1, gyn+1 ≤ gyn, gzn ≤ gzn+1 and gwn+1 ≤ gwn for n = 0,1,2, ...

For this purpose, we use the mathematical induction. Since, gx0 ≤ F(x0,y0,z0,w0),

gy0 ≥ F(y0,z0,w0,x0), gz0 ≤ F(z0,w0,x0,y0) and gw0 ≥ F(w0,x0,y0,z0), then by (2.2), we get

gx0 ≤ gx1, gy1 ≤ gy0, gz0 ≤ gz1 and gw1 ≤ gw0

that is, (2.4) holds for n = 0.

We presume that (2.4) holds for some n > 0. As F has the mixed g-monotone property and
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gxn ≤ gxn+1, gyn+1 ≤ gyn, gzn ≤ gzn+1 and gwn+1 ≤ gwn, we obtain

gxn+1 = F(xn,yn,zn,wn)≤ F(xn+1,yn,zn,wn)

≤ F(xn+1,yn,zn+1,wn)≤ F(xn+1,yn+1,zn+1,wn)

≤ F(xn+1,yn+1,zn+1,wn+1) = gxn+2,

gyn+2 = F(yn+1,zn+1,wn+1,xn+1)≤ F(yn+1,zn,wn+1,xn+1)

≤ F(yn,zn,wn+1,xn+1)≤ F(yn,zn,wn,xn+1)

≤ F(yn,zn,wn,xn) = gyn+1,

gzn+1 = F(zn,wn,xn,yn)≤ F(zn+1,wn,xn,yn)

≤ F(zn+1,wn+1,xn,yn)≤ F(zn+1,wn+1,xn+1,yn)

≤ F(zn+1,wn+1,xn+1,yn+1) = gzn+2

and

gwn+2 = F(wn+1,xn+1,yn+1,zn+1)≤ F(wn+1,xn,yn+1,zn+1)

≤ F(wn,xn,yn+1,zn+1)≤ F(wn,xn,yn,zn+1)

≤ F(wn,xn,yn,zn) = gwn+1.

Thus, (2.4) holds for any n ∈ N. Assume for some n ∈ N,

gxn = gxn+1, gyn = gyn+1, gzn = gzn+1 and gwn = gwn+1

then, by (2.3), we have gxn = F(xn,yn,zn,wn),gyn = F(yn,zn,wn,xn),

gzn = F(zn,wn,xn,yn) and gwn = F(wn,xn,yn,zn)⇒ (xn,yn,zn,wn) is a quadruple coincidence

point of F and g. From now on, assume for any n ∈ N that at least

(2.5) gxn 6= gxn+1 or gyn 6= gyn+1 or gzn 6= gzn+1 or gwn 6= gwn+1.

Since gxn ≤ gxn+1, gyn+1 ≤ gyn, gzn ≤ gzn+1, and gwn+1 ≤ gwn then from 2.1 and 2.3 we

have
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M(xn,yn,zn,wn,xn,yn,zn,wn,xn−1,yn−1,zn−1,wn−1)

= α1G(F(xn,yn,zn,wn),F(xn,yn,zn,wn),F(xn−1,yn−1,zn−1,wn−1))

+α2G(F(yn,zn,wn,xn),F(yn,zn,wn,xn),F(yn−1,zn−1,wn−1,xn−1))

+α3G(F(zn,wn,xn,yn),F(zn,wn,xn,yn),F(zn−1,wn−1,xn−1,yn−1))

+α4G(F(wn,xn,yn,zn),F(wn,xn,yn,zn),F(wn−1,xn−1,yn−1,zn−1))

= α1G(gxn+1,gxn+1,gxn)+α2G(gyn+1,gyn+1,gyn)

+α3G(gzn+1,gzn+1,gzn)+α4G(gwn+1,gwn+1,gwn)(2.6)

M(xn,yn,zn,wn,xn,yn,zn,wn,xn−1,yn−1,zn−1,wn−1)

≤ φ

(
G(gxn,gxn,gxn−1)+G(gyn,gyn,gyn−1)+G(gzn,gzn,gzn−1)+G(gwn,gwn,gwn−1)

4

)
−ψ(G(gxn,gxn,gxn−1),G(gyn,gyn,gyn−1),G(gzn,gzn,gzn−1),G(gwn,gwn,gwn−1)).(2.7)

Similarly we have,

M(yn,zn,wn,xn,yn,zn,wn,xn,yn−1,zn−1,wn−1,xn−1)

= α1G(F(yn,zn,wn,xn),F(yn,zn,wn,xn),F(yn−1,zn−1,wn−1,xn−1))

+α2G(F(zn,wn,xn,yn),F(zn,wn,xn,yn),F(zn−1,wn−1,xn−1,yn−1))

+α3G(F(wn,xn,yn,zn),F(wn,xn,yn,zn),F(wn−1,xn−1,yn−1,zn−1))

+α4G(F(xn,yn,zn,wn),F(xn,yn,zn,wn),F(xn−1,yn−1,zn−1,wn−1))

= α1G(gyn+1,gyn+1,gyn)+α2G(gzn+1,gzn+1,gzn)

+α3G(gwn+1,gwn+1,gwn)+α4G(gxn+1,gxn+1,gxn)(2.8)
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M(yn,zn,wn,xn,yn,zn,wn,xn,yn−1,zn−1,wn−1,xn−1)

≤ φ

(
G(gyn,gyn,gyn−1)+G(gzn,gzn,gzn−1)+G(gwn,gwn,gwn−1)+G(gxn,gxn,gxn−1)

4

)
−ψ(G(gyn,gyn,gyn−1),G(gzn,gzn,gzn−1),G(gwn,gwn,gwn−1),G(gxn,gxn,gxn−1)).(2.9)

M(zn,wn,xn,yn,zn,wn,xn,yn,zn−1,wn−1,xn−1,yn−1)

= α1G(F(zn,wn,xn,yn),F(zn,wn,xn,yn),F(zn−1,wn−1,xn−1,yn−1))

+α2G(F(wn,xn,yn,zn),F(wn,xn,yn,zn),F(wn−1,xn−1,yn−1,zn−1))

+α3G(F(xn,yn,zn,wn),F(xn,yn,zn,wn),F(xn−1,yn−1,zn−1,wn−1))

(2.10)

+α4G(F(yn,zn,wn,xn),F(yn,zn,wn,xn),F(yn−1,zn−1,wn−1,xn−1))

= α1G(gzn+1,gzn+1,gzn)+α2G(gwn+1,gwn+1,gwn)

+α3G(gxn+1,gxn+1,gxn)+α4G(gyn+1,gyn+1,gyn)

M(zn,wn,xn,yn,zn,wn,xn,yn,zn−1,wn−1,xn−1,yn−1)

≤ φ

(
G(gzn,gzn,gzn−1)+G(gwn,gwn,gwn−1)+G(gxn,gxn,gxn−1)+G(gyn,gyn,gyn−1)

4

)
−ψ(G(gzn,gzn,gzn−1),G(gwn,gwn,gwn−1),G(gxn,gxn,gxn−1),G(gyn,gyn,gyn−1)).(2.11)

M(wn,xn,yn,zn,wn,xn,yn,zn,wn−1,xn−1,yn−1,zn−1)

= α1G(F(wn,xn,yn,zn),F(wn,xn,yn,zn),F(wn−1,xn−1,yn−1,zn−1))

+α2G(F(xn,yn,zn,wn),F(xn,yn,zn,wn),F(xn−1,yn−1,zn−1,wn−1))

+α3G(F(yn,zn,wn,xn),F(yn,zn,wn,xn),F(yn−1,zn−1,wn−1,xn−1))

(2.12)
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+α4G(F(zn,wn,xn,yn),F(zn,wn,xn,yn),F(zn−1,wn−1,xn−1,yn−1))

= α1G(gwn+1,gwn+1,gwn)+α2G(gxn+1,gxn+1,gxn)

+α3G(gyn+1,gyn+1,gyn)+α4G(gzn+1,gzn+1,gzn)

M(wn,xn,yn,zn,wn,xn,yn,zn,wn−1,xn−1,yn−1,zn−1)

≤ φ

(
G(gwn,gwn,gwn−1)+G(gxn,gxn,gxn−1)+G(gyn,gyn,gyn−1)+G(gzn,gzn,gzn−1)

4

)
−ψ(G(gwn,gwn,gwn−1),G(gxn,gxn,gxn−1),G(gyn,gyn,gyn−1),G(gzn,gzn,gzn−1)).(2.13)

We suppose that

Ω
x
n+1 = G(gxn+1,gxn+1,gxn), Ω

y
n+1 = G(gyn+1,gyn+1,gyn)

Ω
z
n+1 = G(gzn+1,gzn+1,gzn), Ω

w
n+1 = G(gwn+1,gwn+1,gwn).(2.14)

From 2.6, 2.8,2.10, 2.12,2.7, 2.9,2.11, 2.13 and 2.14 we have

(α1 +α2 +α3 +α4)(Ω
x
n+1 +Ω

y
n+1 +Ω

z
n+1 +Ω

w
n+1) ≤ φ(Ωx

n +Ω
y
n +Ω

z
n +Ω

w
n )

−4ψ



Ω
x
n+1 +Ω

y
n+1 +Ω

z
n+1 +Ω

w
n+1,

Ω
x
n+1 +Ω

y
n+1 +Ω

z
n+1 +Ω

w
n+1,

Ω
x
n+1 +Ω

y
n+1 +Ω

z
n+1 +Ω

w
n+1,

Ω
x
n+1 +Ω

y
n+1 +Ω

z
n+1 +Ω

w
n+1


.

(2.15)

As ψ(t1, t2, t3, t4)> 0 for all (t1, t2, t3, t4)∈ [0,∞)4 and from the property of φ(kt)≤ kt for any k>

0 (it should be noted that (α1 +α2 +α3 +α4)> 0) we have

(α1 +α2 +α3 +α4)(Ω
x
n+1 +Ω

y
n+1 +Ω

z
n+1 +Ω

w
n+1) ≤ (α1 +α2 +α3 +α4)(Ω

x
n +Ω

y
n +Ω

z
n +Ω

w
n )
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(Ωx
n+1 +Ω

y
n+1 +Ω

z
n+1 +Ω

w
n+1) < (Ωx

n +Ω
y
n +Ω

z
n +Ω

w
n )

for all n≥ 0.

Then the sequence {Ωx
n+1 +Ω

y
n+1 +Ω

z
n+1 +Ωw

n+1} is decreasing. Therefore, there exists

η ≥ 0 such that

lim
n→∞

(α1 +α2 +α3 +α4)(Ω
x
n+1 +Ω

y
n+1 +Ω

z
n+1 +Ω

w
n+1) = (α1 +α2 +α3 +α4)η .(2.16)

Now, we show that η = 0. Suppose that η > 0. From 2.16, the sequences {G(gxn+1,gxn+1,gxn)},

{G(gyn+1,gyn+1,gyn)}, {G(gzn+1,gzn+1,gzn)} and {G(gwn+1,gwn+1,gwn)} have convergent

subsequences {G(gxn( j)+1,gxn( j)+1,gxn( j))},{G(gyn( j)+1,gyn( j)+1,gyn( j))},{G(gzn( j)+1,gzn( j)+1,gzn( j))}

and {G(gwn( j)+1,gwn( j)+1,gwn( j))}, respectively. Assume that

lim
j→∞

(α1 +α2 +α3 +α4)Ω
x
n( j) = (α1 +α2 +α3 +α4) lim

j→∞
(G(gxn( j),gxn( j),gxn( j)−1))

= (α1 +α2 +α3 +α4)Ω
x
0

lim
j→∞

(α1 +α2 +α3 +α4)Ω
y
n( j) = (α1 +α2 +α3 +α4) lim

j→∞
(G(gyn( j),gyn( j),gyn( j)−1))

= (α1 +α2 +α3 +α4)Ω
y
0

lim
j→∞

(α1 +α2 +α3 +α4)Ω
z
n( j) = (α1 +α2 +α3 +α4) lim

j→∞
(G(gzn( j),gzn( j),gzn( j)−1))

= (α1 +α2 +α3 +α4)Ω
z
0

and

lim
j→∞

(α1 +α2 +α3 +α4)Ω
w
n( j) = (α1 +α2 +α3 +α4) lim

j→∞
(G(gwn( j),gwn( j),gwn( j)−1))

= (α1 +α2 +α3 +α4)Ω
w
0
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which gives that

(α1 +α2 +α3 +α4) lim
j→∞

[Ωx
n( j)+Ω

y
n( j)+Ω

z
n( j)+Ω

w
n( j)] = (α1 +α2 +α3 +α4)η .

From 2.15, we have

(α1 +α2 +α3 +α4)(Ω
x
n( j)+1 +Ω

y
n( j)+1 +Ω

z
n( j)+1 +Ω

w
n( j)+1) ≤ φ

(
Ω

x
n( j)+Ω

y
n( j)+Ω

z
n( j)+Ω

w
n( j)

)

−4ψ



Ω
x
n( j)+Ω

y
n( j)+Ω

z
n( j)+Ω

w
n( j),

Ω
x
n( j)+Ω

y
n( j)+Ω

z
n( j)+Ω

w
n( j),

Ω
x
n( j)+Ω

y
n( j)+Ω

z
n( j)+Ω

w
n( j),

Ω
x
n( j)+Ω

y
n( j)+Ω

z
n( j)+Ω

w
n( j)


.

(2.17)

Then taking the limit as j→ ∞ in the above inequality, we obtain

(α1 +α2 +α3 +α4)(Ω
x
0 +Ω

y
0 +Ω

z
0 +Ω

w
0 ) = (α1 +α2 +α3 +α4)η

≤ φ (η)−4ψ(η ,η ,η ,η)

< (α1 +α2 +α3 +α4)η

which is contradiction. Thus η = 0, that is

lim
n→∞

(α1 +α2 +α3 +α4)(Ω
x
n+1 +Ω

y
n+1 +Ω

z
n+1 +Ω

w
n+1) = 0(2.18)

Next, we show that {g(xn)}, {g(yn)}, {g(zn)} and {g(wn)} are G−cauchy sequences. On

the contrary, assume that at least one of {g(xn)} or {g(yn)} is not G−cauchy sequence. By

Proposition 1.2 there is an ε > 0 for which we can find subsequencs {g(xn(k))}, {g(xm(k))} of

{g(xn)}, {g(yn(k))}, {g(ym(k))} of {g(yn)}, {g(zn(k))}, {g(zm(k))} of {g(zn)} and {g(wn(k))},

{g(wm(k))} of {g(wn)} with n(k)> m(k)≥ k such that
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G(g(xn(k)),g(xn(k)),g(xm(k)))+G(g(yn(k)),g(yn(k)),g(ym(k)))

G(g(zn(k)),g(zn(k)),g(zm(k)))+G(g(wn(k)),g(wn(k)),g(wm(k)))

≥ ε.

(2.19)

Further corresponding to m(k) we can choose n(k) in such a way that it is the smallest integer

with n(k)> m(k)≥ k and satisfies 2.19. Then

G(g(xn(k)−1),g(xn(k)−1),g(xm(k)))+G(g(yn(k)−1),g(yn(k)−1),g(ym(k)))

G(g(zn(k)−1),g(zn(k)−1),g(zm(k)))+G(g(wn(k)−1),g(wn(k)−1),g(wm(k)))

< ε.

(2.20)

By Lemma 1.2, we have

G(g(xn(k)),g(xn(k)),g(xm(k))) ≤ G(g(xn(k)),g(xn(k)),g(xn(k)−1))

+G(g(xn(k)−1),g(xn(k)−1),g(xm(k)))

G(g(yn(k)),g(yn(k)),g(ym(k))) ≤ G(g(yn(k)),g(yn(k)),g(yn(k)−1))

+G(g(yn(k)−1),g(yn(k)−1),g(ym(k)))

G(g(zn(k)),g(zn(k)),g(zm(k))) ≤ G(g(zn(k)),g(zn(k)),g(zn(k)−1))

+G(g(zn(k)−1),g(zn(k)−1),g(zm(k)))

G(g(wn(k)),g(wn(k)),g(wm(k))) ≤ G(g(wn(k)),g(wn(k)),g(wn(k)−1))

+G(g(wn(k)−1),g(wn(k)−1),g(wm(k))).(2.21)

Form 2.19, 2.20 and 2.21 we have
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ε ≤ G(g(xn(k)),g(xn(k)),g(xm(k)))+G(g(yn(k)),g(yn(k)),g(ym(k)))

+G(g(zn(k)),g(zn(k)),g(zm(k)))+G(g(wn(k)),g(wn(k)),g(wm(k)))

≤ G(g(xn(k)),g(xn(k)),g(xn(k)−1))+G(g(xn(k)−1),g(xn(k)−1),g(xm(k)))

+G(g(yn(k)),g(yn(k)),g(ym(k)))+G(g(yn(k)),g(yn(k)),g(yn(k)−1))

+G(g(zn(k)),g(zn(k)),g(zn(k)−1))+G(g(zn(k)−1),g(zn(k)−1),g(zm(k)))

+G(g(wn(k)),g(wn(k)),g(wn(k)−1))+G(g(wn(k)−1),g(wn(k)−1),g(wm(k)))

< G(g(xn(k)),g(xn(k)),g(xn(k)−1))+G(g(yn(k)),g(yn(k)),g(yn(k)−1))

G(g(zn(k)),g(zn(k)),g(zn(k)−1))+G(g(wn(k)),g(wn(k)),g(wn(k)−1))+ ε.

Then letting k→ ∞ in the above inequality and using 2.18, we have

lim
k→∞

G(g(xn(k)),g(xn(k)),g(xm(k)))+G(g(yn(k)),g(yn(k)),g(ym(k)))

+G(g(zn(k)),g(zn(k)),g(zm(k)))+G(g(wn(k)),g(wn(k)),g(wm(k)))

= ε.(2.22)

Again by rectangle inequality and using the fact that G(x,y,y)≤ 2G(y,x,x), we have

ε ≤ G(gxn(k),gxn(k),gxm(k))+G(gyn(k),gyn(k),gym(k))

+G(gzn(k),gzn(k),gzm(k))+G(gwn(k),gwn(k),wm(k))

≤ G(gxn(k),gxn(k),gxn(k)+1)+G(gxn(k)+1,gxn(k)+1,gxm(k)+1)

+G(gxm(k)+1,gxm(k)+1,gxm(k))+G(gyn(k),gyn(k),gyn(k)+1)

+G(gyn(k)+1,gyn(k)+1,gym(k)+1)+G(gym(k)+1,gym(k)+1,gym(k))

+G(gzn(k),gzn(k),gzn(k)+1)+G(gzn(k)+1,gzn(k)+1,gzm(k)+1)

+G(gzm(k)+1,gzm(k)+1,gzm(k))+G(gwn(k),gwn(k),gwn(k)+1)
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+G(gwn(k)+1,gwn(k)+1,gwm(k)+1)+G(gwm(k)+1,gwm(k)+1,gwm(k))

≤ 2[(α1 +α2 +α3 +α4)(Ω
x
n+1 +Ω

y
n+1 +Ω

z
n+1 +Ω

w
n+1)]

+[(α1 +α2 +α3 +α4)(Ω
x
m+1 +Ω

y
m+1 +Ω

z
m+1 +Ω

w
m+1)]

+G(gxn(k)+1,gxn(k)+1,gxm(k)+1)+G(gyn(k)+1,gyn(k)+1,gym(k)+1)

+G(gzn(k)+1,gzn(k)+1,gzm(k)+1)+G(gwn(k)+1,gwn(k)+1,gwm(k)+1)

Since n(k)> m(k) then

gxn(k) ≥ gxm(k), gyn(k) ≤ gym(k)

gzn(k) ≥ gzm(k), gwn(k) ≤ gwm(k).

Then from 2.1, we have

M(xn(k),yn(k),zn(k),wn(k),xn(k),yn(k),zn(k),wn(k),xm(k),ym(k),zm(k),wm(k))

= α1G(F(xn(k),yn(k),zn(k),wn(k)),F(xn(k),yn(k),zn(k),wn(k)),F(xm(k),ym(k),zm(k),wm(k))

+α2G(F(yn(k),zn(k),wn(k),xn(k)),F(yn(k),zn(k),wn(k),xn(k)),F(ym(k),zm(k),wm(k),xm(k))

+α3G(F(zn(k),wn(k),xn(k),yn(k)),F(zn(k),wn(k),xn(k),yn(k)),F(zm(k),wm(k),xm(k),ym(k))

+α4G(F(wn(k),xn(k),yn(k),zn(k)),F(wn(k),xn(k),yn(k),zn(k)),F(wm(k),xm(k),ym(k),zm(k))

= α1G(gxn(k)+1,gxn(k)+1,gxm(k)+1))+α2G(gyn(k)+1,gyn(k)+1,gym(k)+1))

+α3G(gzn(k)+1,gzn(k)+1,gzm(k)+1))+α4G(gwn(k)+1,gwn(k)+1,gwm(k)+1)).

Hence,

M(xn(k),yn(k),zn(k),wn(k),xn(k),yn(k),zn(k),wn(k),xm(k),ym(k),zm(k),wm(k))

≤ φ



G(gxn(k),gxn(k),gxm(k))+G(gyn(k),gyn(k),gym(k))

+G(gzn(k),gzn(k),gzm(k))+G(gwn(k),gwn(k),gwm(k))

4


(2.23)
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−ψ

 G(gxn(k),gxn(k),gxm(k)),G(gyn(k),gyn(k),gym(k)),

G(gzn(k),gzn(k),gzm(k)),G(gwn(k),gwn(k),gwm(k))



Similarly we can prove that

M(yn(k),zn(k),wn(k),xn(k),yn(k),zn(k),wn(k),xn(k),ym(k),zm(k),wm(k),xm(k))

= α1G(gyn(k)+1,gyn(k)+1,gym(k)+1))+α2G(gzn(k)+1,gzn(k)+1,gzm(k)+1))

+α3G(gwn(k)+1,gwn(k)+1,gwm(k)+1))+α4G(gxn(k)+1,gxn(k)+1,gxm(k)+1)).

then,

M(yn(k),zn(k),wn(k),xn(k),yn(k),zn(k),wn(k),xn(k),ym(k),zm(k),wm(k),xm(k))

≤ φ



G(gyn(k),gyn(k),gym(k))+G(gzn(k),gzn(k),gzm(k))

+G(gwn(k),gwn(k),gwm(k))+G(gxn(k),gxn(k),gxm(k))

4


−ψ

 G(gyn(k),gyn(k),gym(k)),G(gzn(k),gzn(k),gzm(k)),

G(gwn(k),gwn(k),gwm(k)),G(gxn(k),gxn(k),gxm(k))

 ,

(2.24)

Also,

M(zn(k),wn(k),xn(k),yn(k),zn(k),wn(k),xn(k),yn(k),zm(k),wm(k),xm(k),ym(k))

= α1G(gzn(k)+1,gzn(k)+1,gzm(k)+1)+α2G(gwn(k)+1,gwn(k)+1,gwm(k)+1)

+α3G(gxn(k)+1,gxn(k)+1,gxm(k)+1)+α4G(gyn(k)+1,gyn(k)+1,gym(k)+1).
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hence,

M(zn(k),wn(k),xn(k),yn(k),zn(k),wn(k),xn(k),yn(k),zm(k),wm(k),xm(k),ym(k))

≤ φ



G(gzn(k),gzn(k),gzm(k))+G(gwn(k),gwn(k),gwm(k))

+G(gxn(k),gxn(k),gxm(k))+G(gyn(k),gyn(k),gym(k))

4


−ψ

 G(gzn(k),gzn(k),gzm(k)),G(gwn(k),gwn(k),gwm(k)),

G(gxn(k),gxn(k),gxm(k)),G(gyn(k),gyn(k),gym(k))


(2.25)

and,

M(wn(k),xn(k),yn(k),zn(k),wn(k),xn(k),yn(k),zn(k),wm(k),xm(k),ym(k),zm(k))

= α1G(gwn(k)+1,gwn(k)+1,gwm(k)+1)+α2G(gxn(k)+1,gxn(k)+1,gxm(k)+1)

+α3G(gyn(k)+1,gyn(k)+1,gym(k)+1)+α4G(gzn(k)+1,gzn(k)+1,gzm(k)+1).

Thus,

M(wn(k),xn(k),yn(k),zn(k),wn(k),xn(k),yn(k),zn(k),wm(k),xm(k),ym(k),zm(k))

≤ φ



G(gwn(k),gwn(k),gwm(k))+G(gxn(k),gxn(k),gxm(k))

+G(gyn(k),gyn(k),gym(k))+G(gzn(k),gzn(k),gzm(k))

4


−ψ

 G(gwn(k),gwn(k),gwm(k)),G(gxn(k),gxn(k),gxm(k)),

G(gyn(k),gyn(k),gym(k)),G(gzn(k),gzn(k),gzm(k))

 .

(2.26)

From 2.23, 2.24, 2.25 and 2.26 we have
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(α1 +α2 +α3 +α4)

 G(gxn(k),gxn(k),gxm(k))+G(gyn(k),gyn(k),gym(k))

+G(gzn(k),gzn(k),gzm(k))+G(gwn(k),gwn(k),gwm(k))


≤ φ

 G(gxn(k),gxn(k),gxm(k))+G(gyn(k),gyn(k),gym(k))

+G(gzn(k),gzn(k),gzm(k))+G(gwn(k),gwn(k),gwm(k))


−4ψ

 G(gxn(k),gxn(k),gxm(k)),G(gyn(k),gyn(k),gym(k)),

G(gzn(k),gzn(k),gzm(k)),G(gwn(k),gwn(k),gwm(k))


(2.27)

Letting, k→ ∞ in above and using 2.18, then

(α1 +α2 +α3 +α4)[Ω
x
0 +Ω

y
0 +Ω

z
0 +Ω

w
0 ] ≤ φ(Ωx

0 +Ω
y
0 +Ω

z
0 +Ω

w
0 )−4ψ(Ωx

0,Ω
y
0,Ω

z
0,Ω

w
0 )

< (α1 +α2 +α3 +α4)(Ω
x
0 +Ω

y
0 +Ω

z
0 +Ω

w
0 )(2.28)

A contradiction, this implies that (gxn),(gyn),(gzn) and (gwn) are G-cauchy sequences in

(X ,G).

Now suppose that assumption (a) holds.

Since X is G-complete metric space, there exists x,y,z,w ∈ X such that

lim
n→∞

g(xn) = x, lim
n→∞

g(yn) = y

lim
n→∞

g(zn) = z, lim
n→∞

g(wn) = w
(2.29)

From 2.29 and continuity of g we have

lim
n→∞

g(g(xn)) = gx, lim
n→∞

g(g(yn)) = gy

lim
n→∞

g(g(zn)) = gz, and lim
n→∞

g(g(wn)) = gw.

From the commutativity of F and g we have,
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(2.30) g(gxn+1) = g(F(xn,yn,zn,wn)) = F(gxn,gyn,gzn,gwn),

(2.31) g(gyn+1) = g(F(yn,zn,wn,zn)) = F(gyn,gzn,gwn,gxn),

(2.32) g(gzn+1) = g(F(zn,wn,xn,yn)) = F(gzn,gwn,gxn,gyn),

and

(2.33) g(gwn+1) = g(F(wn,xn,yn,zn)) = F(gwn,gxn,gyn,gzn).

We shall show that gx=F(x,y,z,w), gy=F(y,z,w,x), gz=F(z,w,x,y) and gw=F(w,x,y,z).

By Letting n→ ∞ in (2.30)→ (2.33) and using the continuity of F we obtain

gx = lim
n→∞

g(gxn+1) = lim
n→∞

F(gxn,gyn,gzn,gwn) =

F( lim
n→∞

gxn, lim
n→∞

gyn, lim
n→∞

gzn, lim
n→∞

gwn) = F(x,y,z,w).

Similarly, gy = F(y,z,w,x), gz = F(z,w,x,y) and gw = F(w,x,y,z).

Hence, (x,y,z,w) is coincidence point of F and g.

Now suppose that the assumption (b) holds.

Since {gxn}, {gyn}, {gzn} and {gwn} are G-Cauchy sequences in the complete G-metric

space (g(X),G). Then, there exist x,y,z,w ∈ X such that

(2.34) gxn→ gx, gyn→ gy, gzn→ gz and gwn→ gw.

Since {gxn}, {gzn} are non-decreasing and {gyn}, {gwn} are non-increasing and since (X ,G,≤)

satisfy conditions (i) and (ii), we have

gxn ≤ gx, gyn ≥ gy, gzn ≤ gz, gwn ≥ gw for all n.

If gxn = gx, gyn = gy, gzn = gz and gwn = gw for some n≥ 0, then gx = gxn ≤ gxn+1 ≤ gx =

gxn, gy≤ gyn+1 ≤ gyn = gy, gz = gzn ≤ gzn+1 ≤ gz = gzn and gw≤ gwn+1 ≤ gwn = gw, which
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implies that

gxn = gxn+1 = F(xn,yn,zn,wn), gyn = gyn+1 = F(yn,zn,wn,xn),

and

gzn = gzn+1 = F(zn,wn,xn,yn), gwn = gwn+1 = F(wn,wn,yn,zn),

that is, (xn,yn,zn,wn) is a quadruple coincidence point of F and g. Then, we suppose that

(gxn,gyn,gzn,gwn) 6= (gx,gy,gz,gw) for all n≥ 0. By (2.1), consider now

 G(gx,F(x,y,z,w),F(x,y,z,w))+G(gy,F(y,z,w,x),F(y,z,w,x))

+G(gz,F(z,w,x,y),F(z,w,x,y))+G(gw,F(w,x,y,z),F(w,x,y,z))



≤



G(gx,gxn+1,gxn+1)+G(gxn+1,F(x,y,z,w),F(x,y,z,w))

G(gy,gyn+1,gyn+1)+G(gyn+1,F(y,z,w,x),F(y,z,w,x))

G(gz,gzn+1,gzn+1)+G(gzn+1,F(z,w,x,y),F(z,w,x,y))

G(gw,gwn+1,gwn+1)+G(gwn+1,F(w,x,y,z),F(w,x,y,z))



=



G(gx,gxn+1,gxn+1)+G(F(xn,yn,zn,wn),F(x,y,z,w),F(x,y,z,w))

G(gy,gyn+1,gyn+1)+G(F(yn,zn,wn,xn),F(y,z,w,x),F(y,z,w,x))

G(gz,gzn+1,gzn+1)+G(F(zn,wn,xn,yn),F(z,w,x,y),F(z,w,x,y))

G(gw,gwn+1,gwn+1)+G(F(wn,xn,yn,zn),F(w,x,y,z),F(w,x,y,z))


.

Taking the limit as n→∞ in above equation and using property of φ ,ψ and fact that α1,α2,α3,α4 ∈

(0,∞) we get that

G(gx,F(x,y,z,w),F(x,y,z,w)) = 0. Thus, gx = F(x,y,z,w). Analogously, one finds

F(y,z,w,x) = gy, F(z,w,x,y) = gz and F(w,x,y,z) = gw.

Thus, we proved that F and g have a quadruple coincidence point. This completes the proof of

Theorem 2.1.

�
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Corollary 2.1. Let (X ,≤) be a partially ordered set and (X ,G) be a G-metric space. Let

F : X×X×X×X → X such that F has the mixed monotone property. Assume that there exists

a φ ∈Φ and ψ ∈Ψ such that

M(x,y,z,w,u,v,s, t,a,b,c,d) = α1G(F(x,y,z,w),F(u,v,s, t),F(a,b,c,d))

+α2G(F(y,z,w,x),F(v,s, t,u),F(b,c,d,a))

+α3G(F(z,w,x,y),F(s, t,u,v),F(c,d,a,b))

+α4G(F(w,x,y,z),F(t,u,v,s),F(d,a,b,c))

M(x,y,z,w,u,v,s, t,a,b,c,d) ≤ φ

(
G(x,u,a)+G(y,v,b)+G(z,s,c),G(w, t,d)

4

)
−ψ(G(x,u,a),G(y,v,b),G(z,s,c),G(w, t,d)).

(2.35)

for all α1,α2,α3,α4 ∈ (0,∞), x,y,z,w,u,v,s, t,a,b,c,d ∈X with x≥ u≥ a, y≤ v≤ b, z≥ s≥ c

and w ≤ t ≤ d. Suppose F(X4) ⊆ g(X), g is continuous and commutes with F. If there exist

x0,y0,z0,w0 ∈ X such that

x0 ≤ F(x0,y0,z0,w0), g0 ≥ F(y0,z0,w0,x0),

z0 ≤ F(z0,w0,x0,y0) and g0 ≥ F(w0,x0,y0,z0),

Suppose either

(a) (X ,G) is a complete G-metric space and F is continuous or,

(b) F has the following property:

(i) if non-decreasing sequence xn→ a, then xn ≤ x for all n,

(ii) if non-increasing sequence yn→ y, then y≤ yn for all n.

then there exist x,y,z,w ∈ X such that

F(x,y,z,w) = x, F(y,z,w,x) = y, F(z,w,x,y) = z and F(w,x,y,z) = w

that is, F have a quadruple fixed point.
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Proof. Setting g(x) = Ix(Identity mapping) in Theorem 2.1, then the result follows. �

Corollary 2.2. Let (X ,≤) be a partially ordered set and (X ,G) be a G-metric space. Let

F : X×X×X×X→ X and g : X→ X such that F has the mixed g-monotone property. Assume

that there exists a ψ ∈Ψ such that

M(x,y,z,w,u,v,s, t,a,b,c,d) = α1G(F(x,y,z,w),F(u,v,s, t),F(a,b,c,d))

+α2G(F(y,z,w,x),F(v,s, t,u),F(b,c,d,a))

+α3G(F(z,w,x,y),F(s, t,u,v),F(c,d,a,b))

+α4G(F(w,x,y,z),F(t,u,v,s),F(d,a,b,c))

M(x,y,z,w,u,v,s, t,a,b,c,d) ≤
(

G(gx,gu,ga)+G(gy,gv,gb)+G(gz,gs,gc),G(gw,gt,gd)
4

)
−ψ(G(gx,gu,ga),G(gy,gv,gb),G(gz,gs,gc),G(gw,gt,gd)).

(2.36)

for all α1,α2,α3,α4 ∈ (0,∞), x,y,z,w,u,v,s, t,a,b,c,d ∈ X with gx≥ gu≥ ga, gy≤ gv≤ gb,

gz ≥ gs ≥ gc, and gw ≤ gt ≤ gd. Suppose F(X4) ⊆ g(X), g is continuous and commutes with

F. If there exist x0,y0,z0,w0 ∈ X such that

gx0 ≤ F(x0,y0,z0,w0), gy0 ≥ F(y0,z0,w0,x0),

gz0 ≤ F(z0,w0,x0,y0) and gw0 ≥ F(w0,x0,y0,z0),

Suppose either

(a) (X ,G) is a complete G-metric space and F is continuous or,

(b) (g(X),G) is complete and (X ,G,≤) has the following property:

(i) if non-decreasing sequence xn→ a, then xn ≤ x for all n,

(ii) if non-increasing sequence yn→ y, then y≤ yn for all n.

then there exist x,y,z,w ∈ X such that

F(x,y,z,w) = gx, F(y,z,w,x) = gy, F(z,w,x,y) = gz and F(w,x,y,z) = gw



QUADRUPLED FIXED POINT IN G-METRIC SPACE WITH AN APPLICATION 435

that is, F and g have a quadruple coincidence point.

Proof. It is sufficient if we take φ(t) = t in Theorem 2.1 then the result follows. �

Corollary 2.3. Let (X ,≤) be a partially ordered set and (X ,G) be a G-metric space. Let

F : X×X×X×X→ X and g : X→ X such that F has the mixed g-monotone property. Assume

that there exists a φ ∈Φ and ψ ∈Ψ such that

M(x,y,z,w,u,v,s, t,a,b,c,d) = α1G(F(x,y,z,w),F(u,v,s, t),F(a,b,c,d))

+α2G(F(y,z,w,x),F(v,s, t,u),F(b,c,d,a))

+α3G(F(z,w,x,y),F(s, t,u,v),F(c,d,a,b))

+α4G(F(w,x,y,z),F(t,u,v,s),F(d,a,b,c))

M(x,y,z,w,u,v,s, t,a,b,c,d) ≤ φ

(
G(gx,gu,ga)+G(gy,gv,gb)+G(gz,gs,gc)+G(gw,gt,gd)

4

)
−max{G(gx,gu,ga),G(gy,gv,gb),G(gz,gs,gc),G(gw,gt,gd)}.

(2.37)

for all α1,α2,α3,α4 ∈ (0,∞), x,y,z,w,u,v,s, t,a,b,c,d ∈ X with gx≥ gu≥ ga, gy≤ gv≤ gb,

gz ≥ gs ≥ gc, and gw ≤ gt ≤ gd. Suppose F(X4) ⊆ g(X), g is continuous and commutes with

F. If there exist x0,y0,z0,w0 ∈ X such that

gx0 ≤ F(x0,y0,z0,w0), gy0 ≥ F(y0,z0,w0,x0),

gz0 ≤ F(z0,w0,x0,y0) and gw0 ≥ F(w0,x0,y0,z0),

Suppose either

(a) (X ,G) is a complete G-metric space and F is continuous or,

(b) (g(X),G) is complete and (X ,G,≤) has the following property:

(i) if non-decreasing sequence xn→ a, then xn ≤ x for all n,

(ii) if non-increasing sequence yn→ y, then y≤ yn for all n.
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then there exist x,y,z,w ∈ X such that

F(x,y,z,w) = gx, F(y,z,w,x) = gy, F(z,w,x,y) = gz and F(w,x,y,z) = gw

that is, F and g have a quadruple coincidence point.

Proof. It is sufficient if we take ψ(t1, t2, t3, t4) = max{t1, t2, t3, t4} in Theorem 2.1, we get the

above result. �

Corollary 2.4. Let (X ,≤) be a partially ordered set and (X ,G) be a G-metric space. Let

F : X×X×X×X→ X and g : X→ X such that F has the mixed g-monotone property. Assume

that there exists a φ ∈Φ and ψ ∈Ψ such that

M(x,y,z,w,u,v,s, t,a,b,c,d) = α1G(F(x,y,z,w),F(u,v,s, t),F(a,b,c,d))

+α2G(F(y,z,w,x),F(v,s, t,u),F(b,c,d,a))

+α3G(F(z,w,x,y),F(s, t,u,v),F(c,d,a,b))

+α4G(F(w,x,y,z),F(t,u,v,s),F(d,a,b,c))

M(x,y,z,w,u,v,s, t,a,b,c,d) ≤
(

G(gx,gu,ga)+G(gy,gv,gb)+G(gz,gs,gc)+G(gw,gt,gd)
4

)
−φ

(
G(gx,gu,ga)+G(gy,gv,gb)+G(gz,gs,gc)+G(gw,gt,gd)

4

)
.

(2.38)

for all α1,α2,α3,α4 ∈ (0,∞), x,y,z,w,u,v,s, t,a,b,c,d ∈ X with gx≥ gu≥ ga, gy≤ gv≤ gb,

gz ≥ gs ≥ gc, and gw ≤ gt ≤ gd. Suppose F(X4) ⊆ g(X), g is continuous and commutes with

F. If there exist x0,y0,z0,w0 ∈ X such that

gx0 ≤ F(x0,y0,z0,w0), gy0 ≥ F(y0,z0,w0,x0),

gz0 ≤ F(z0,w0,x0,y0) and gw0 ≥ F(w0,x0,y0,z0),

Suppose either

(a) (X ,G) is a complete G-metric space and F is continuous or,

(b) (g(X),G) is complete and (X ,G,≤) has the following property:
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(i) if non-decreasing sequence xn→ a, then xn ≤ x for all n,

(ii) if non-increasing sequence yn→ y, then y≤ yn for all n.

then there exist x,y,z,w ∈ X such that

F(x,y,z,w) = gx, F(y,z,w,x) = gy, F(z,w,x,y) = gz and F(w,x,y,z) = gw

that is, F and g have a quadruple coincidence point.

Proof. It is sufficient if we take φ(t) = t, ψ(t1, t2, t3, t4) = φ
( t1+t2+t3+t4

4

)
in Theorem 2.1, we

get the above result. �

Corollary 2.5. Let (X ,≤) be a partially ordered set and (X ,G) be a G-metric space. Let

F : X×X×X×X→ X and g : X→ X such that F has the mixed g-monotone property. Assume

that there exists a φ ∈Φ and ψ ∈Ψ such that

M(x,y,z,w,u,v,s, t,a,b,c,d) = α1G(F(x,y,z,w),F(u,v,s, t),F(a,b,c,d))

+α2G(F(y,z,w,x),F(v,s, t,u),F(b,c,d,a))

+α3G(F(z,w,x,y),F(s, t,u,v),F(c,d,a,b))

+α4G(F(w,x,y,z),F(t,u,v,s),F(d,a,b,c))

M(x,y,z,w,u,v,s, t,a,b,c,d) ≤ k
(

G(gx,gu,ga)+G(gy,gv,gb)+G(gz,gs,gc)+G(gw,gt,gd)
4

)
for all α1,α2,α3,α4 ∈ (0,∞), k ∈ (0,1), x,y,z,w,u,v,s, t,a,b,c,d ∈ X with gx ≥ gu ≥ ga,

gy ≤ gv ≤ gb, gz ≥ gs ≥ gc, and gw ≤ gt ≤ gd. Suppose F(X4) ⊆ g(X), g is continuous and

commutes with F. If there exist x0,y0,z0,w0 ∈ X such that

gx0 ≤ F(x0,y0,z0,w0), gy0 ≥ F(y0,z0,w0,x0),

gz0 ≤ F(z0,w0,x0,y0) and gw0 ≥ F(w0,x0,y0,z0),

Suppose either

(a) (X ,G) is a complete G-metric space and F is continuous or,

(b) (g(X),G) is complete and (X ,G,≤) has the following property:



438 ANIMESH GUPTA, HARPREET KAUR, KAMAL GUPTA, SAURABH MANRO

(i) if non-decreasing sequence xn→ a, then xn ≤ x for all n,

(ii) if non-increasing sequence yn→ y, then y≤ yn for all n.

then there exist x,y,z,w ∈ X such that

F(x,y,z,w) = gx, F(y,z,w,x) = gy, F(z,w,x,y) = gz and F(w,x,y,z) = gw

that is, F and g have a quadruple coincidence point.

Proof. It is sufficient if we take φ(t) = kt and ψ(t1, t2, t3, t4) =
(1−k

4

)
(t1 + t2 + t3 + t4) in Theo-

rem 2.1, we get the above result. �

Corollary 2.6. Let (X ,≤) be a partially ordered set and (X ,G) be a G-metric space. Let

F : X×X×X×X→ X and g : X→ X such that F has the mixed g-monotone property. Assume

that there exists a φ ∈Φ and ψ ∈Ψ such that

M(x,y,z,w,u,v,s, t,a,b,c,d) = G(F(x,y,z,w),F(u,v,s, t),F(a,b,c,d))

+G(F(y,z,w,x),F(v,s, t,u),F(b,c,d,a))

+G(F(z,w,x,y),F(s, t,u,v),F(c,d,a,b))

+G(F(w,x,y,z),F(t,u,v,s),F(d,a,b,c))

M(x,y,z,w,u,v,s, t,a,b,c,d) ≤ φ

(
G(gx,gu,ga)+G(gy,gv,gb)+G(gz,gs,gc)+G(gw,gt,gd)

4

)
−ψ(G(gx,gu,ga),G(gy,gv,gb),G(gz,gs,gc),G(gw,gt,gd)).

(2.39)

for all x,y,z,w,u,v,s, t,a,b,c,d ∈ X with gx ≥ gu ≥ ga, gy ≤ gv ≤ gb, gz ≥ gs ≥ gc, and

gw ≤ gt ≤ gd. Suppose F(X4) ⊆ g(X), g is continuous and commutes with F. If there exist

x0,y0,z0,w0 ∈ X such that

gx0 ≤ F(x0,y0,z0,w0), gy0 ≥ F(y0,z0,w0,x0),

gz0 ≤ F(z0,w0,x0,y0) and gw0 ≥ F(w0,x0,y0,z0),

Suppose either

(a) (X ,G) is a complete G-metric space and F is continuous or,
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(b) (g(X),G) is complete and (X ,G,≤) has the following property:

(i) if non-decreasing sequence xn→ a, then xn ≤ x for all n,

(ii) if non-increasing sequence yn→ y, then y≤ yn for all n.

then there exist x,y,z,w ∈ X such that

F(x,y,z,w) = gx, F(y,z,w,x) = gy, F(z,w,x,y) = gz and F(w,x,y,z) = gw

that is, F and g have a quadruple coincidence point.

Proof. If we take α1 = α2 = α3 = α4 = 1 in Theorem 2.1, we get the above result. �

Corollary 2.7. Let (X ,≤) be a partially ordered set and (X ,G) be a G-metric space. Let

F : X×X×X×X→ X and g : X→ X such that F has the mixed g-monotone property. Assume

that there exists a φ ∈Φ and ψ ∈Ψ such that

G(F(x,y,z,w),F(u,v,s, t),F(a,b,c,d))

≤ φ

(
G(gx,gu,ga)+G(gy,gv,gb)+G(gz,gs,gc)+G(gw,gt,gd)

4

)
−ψ(G(gx,gu,ga),G(gy,gv,gb),G(gz,gs,gc),G(gw,gt,gd)).

(2.40)

for all x,y,z,w,u,v,s, t,a,b,c,d ∈ X with gx ≥ gu ≥ ga, gy ≤ gv ≤ gb, gz ≥ gs ≥ gc, and

gw ≤ gt ≤ gd. Suppose F(X4) ⊆ g(X), g is continuous and commutes with F. If there exist

x0,y0,z0,w0 ∈ X such that

gx0 ≤ F(x0,y0,z0,w0), gy0 ≥ F(y0,z0,w0,x0),

gz0 ≤ F(z0,w0,x0,y0) and gw0 ≥ F(w0,x0,y0,z0),

Suppose either

(a) (X ,G) is a complete G-metric space and F is continuous or,

(b) (g(X),G) is complete and (X ,G,≤) has the following property:

(i) if non-decreasing sequence xn→ a, then xn ≤ x for all n,



440 ANIMESH GUPTA, HARPREET KAUR, KAMAL GUPTA, SAURABH MANRO

(ii) if non-increasing sequence yn→ y, then y≤ yn for all n.

then there exist x,y,z,w ∈ X such that

F(x,y,z,w) = gx, F(y,z,w,x) = gy, F(z,w,x,y) = gz and F(w,x,y,z) = gw

that is, F and g have a quadruple coincidence point.

Proof. If we take α1 = 1 and α2 = α3 = α4 = 0 in Theorem 2.1, we get the above result. �

Corollary 2.8. Let (X ,≤) be a partially ordered set and (X ,G) be a G-metric space. Let

F : X×X×X×X→ X and g : X→ X such that F has the mixed g-monotone property. Assume

that there exists a φ ∈Φ such that

G(F(x,y,z,w),F(u,v,s, t),F(a,b,c,d))

≤ φ

(
G(gx,gu,ga)+G(gy,gv,gb)+G(gz,gs,gc)+G(gw,gt,gd)

4

)
(2.41)

for all x,y,z,w,u,v,s, t,a,b,c,d ∈ X with gx ≥ gu ≥ ga, gy ≤ gv ≤ gb, gz ≥ gs ≥ gc, and

gw ≤ gt ≤ gd. Suppose F(X4) ⊆ g(X), g is continuous and commutes with F. If there exist

x0,y0,z0,w0 ∈ X such that

gx0 ≤ F(x0,y0,z0,w0), gy0 ≥ F(y0,z0,w0,x0),

gz0 ≤ F(z0,w0,x0,y0) and gw0 ≥ F(w0,x0,y0,z0),

Suppose either

(a) (X ,G) is a complete G-metric space and F is continuous or,

(b) (g(X),G) is complete and (X ,G,≤) has the following property:

(i) if non-decreasing sequence xn→ a, then xn ≤ x for all n,

(ii) if non-increasing sequence yn→ y, then y≤ yn for all n.

then there exist x,y,z,w ∈ X such that

F(x,y,z,w) = gx, F(y,z,w,x) = gy, F(z,w,x,y) = gz and F(w,x,y,z) = gw
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that is, F and g have a quadruple coincidence point.

Proof. If we take α1 = 1 and α2 = α3 = α4 = 0 also ψ(t1, t2, t3, t4) = 0 in Theorem 2.1, we get

the above result. �

Corollary 2.9. Let (X ,≤) be a partially ordered set and (X ,G) be a G-metric space. Let

F : X×X×X×X→ X and g : X→ X such that F has the mixed g-monotone property. Assume

that there exists a φ ∈Φ such that

M(x,y,z,w,u,v,s, t,a,b,c,d) = G(F(x,y,z,w),F(u,v,s, t),F(a,b,c,d))

+G(F(y,z,w,x),F(v,s, t,u),F(b,c,d,a))

+G(F(z,w,x,y),F(s, t,u,v),F(c,d,a,b))

+G(F(w,x,y,z),F(t,u,v,s),F(d,a,b,c))

M(x,y,z,w,u,v,s, t,a,b,c,d)

≤ φ

(
G(gx,gu,ga)+G(gy,gv,gb)+G(gz,gs,gc)+G(gw,gt,gd)

4

)
(2.42)

for all α1,α2,α3,α4 ∈ (0,∞), x,y,z,w,u,v,s, t,a,b,c,d ∈ X with gx≥ gu≥ ga, gy≤ gv≤ gb,

gz ≥ gs ≥ gc, and gw ≤ gt ≤ gd. Suppose F(X4) ⊆ g(X), g is continuous and commutes with

F. If there exist x0,y0,z0,w0 ∈ X such that

gx0 ≤ F(x0,y0,z0,w0), gy0 ≥ F(y0,z0,w0,x0),

gz0 ≤ F(z0,w0,x0,y0) and gw0 ≥ F(w0,x0,y0,z0),

Suppose either

(a) (X ,G) is a complete G-metric space and F is continuous or,

(b) (g(X),G) is complete and (X ,G,≤) has the following property:

(i) if non-decreasing sequence xn→ a, then xn ≤ x for all n,

(ii) if non-increasing sequence yn→ y, then y≤ yn for all n.



442 ANIMESH GUPTA, HARPREET KAUR, KAMAL GUPTA, SAURABH MANRO

then there exist x,y,z,w ∈ X such that

F(x,y,z,w) = gx, F(y,z,w,x) = gy, F(z,w,x,y) = gz and F(w,x,y,z) = gw

that is, F and g have a quadruple coincidence point.

Proof. If we take α1 = α2 = α3 = α4 = 1 also ψ(t1, t2, t3, t4) = 0 in Theorem 2.1, we get the

above result. �

Corollary 2.10. Let (X ,≤) be a partially ordered set and (X ,G) be a G-metric space. Let

F : X×X×X×X→ X and g : X→ X such that F has the mixed g-monotone property. Assume

that there exists a φ ∈Φ and ψ ∈Ψ such that

M(x,y,z,w,u,v,s, t,a,b,c,d) = α



G(F(x,y,z,w),F(u,v,s, t),F(a,b,c,d))

+G(F(y,z,w,x),F(v,s, t,u),F(b,c,d,a))

+G(F(z,w,x,y),F(s, t,u,v),F(c,d,a,b))

+G(F(w,x,y,z),F(t,u,v,s),F(d,a,b,c))


.

M(x,y,z,w,u,v,s, t,a,b,c,d) ≤ φ

(
G(gx,gu,ga)+G(gy,gv,gb)+G(gz,gs,gc)+G(gw,gt,gd)

4

)
−ψ(G(gx,gu,ga),G(gy,gv,gb),G(gz,gs,gc),G(gw,gt,gd)).

(2.43)

for all α ∈ (0,∞), x,y,z,w,u,v,s, t,a,b,c,d ∈ X with gx≥ gu≥ ga, gy≤ gv≤ gb, gz≥ gs≥

gc, and gw ≤ gt ≤ gd. Suppose F(X4)⊆ g(X), g is continuous and commutes with F. If there

exist x0,y0,z0,w0 ∈ X such that

gx0 ≤ F(x0,y0,z0,w0), gy0 ≥ F(y0,z0,w0,x0),

gz0 ≤ F(z0,w0,x0,y0) and gw0 ≥ F(w0,x0,y0,z0),

Suppose either

(a) (X ,G) is a complete G-metric space and F is continuous or,

(b) (g(X),G) is complete and (X ,G,≤) has the following property:

(i) if non-decreasing sequence xn→ a, then xn ≤ x for all n,
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(ii) if non-increasing sequence yn→ y, then y≤ yn for all n.

then there exist x,y,z,w ∈ X such that

F(x,y,z,w) = gx, F(y,z,w,x) = gy, F(z,w,x,y) = gz and F(w,x,y,z) = gw

that is, F and g have a quadruple coincidence point.

Proof. If we take α1 = α2 = α3 = α4 = α in Theorem 2.1, we get the above result. �

Example 2.1. Let X = R. Define G : X×X×X → [0,∞) by

G(x,y,z) =| x− y |+ | y− z |+ | z− x |

F(x,y,z,w) = 2x−3y+2z−3w, g(x) = x

also α1 = α2 = α3 = α4 =
1
2 , φ(t) = 22t and ψ(t1, t2, t3, t4) =

t1+t2+t3+t4
4 . Then we have from

2.1 we have a fixed point (0,0,0,0).

3. An Application

Theorem 3.1. Let (X ,≤) be a partially ordered set and (X ,G) be a G-metric space. Let F :

X ×X ×X ×X → X such that F has the mixed monotone property. Assume that there exists a

φ ∈Φ such that

G(F(x,y,z,w),F(u,v,s, t),F(a,b,c,d)) ≤ φ

(
G(x,u,s)+G(y,v,b)+G(z,s,c)+G(w, t,d)

4

)
(3.1)

for all x,y,z,w,u,v,s, t,a,b,c,d ∈ X with x ≥ u ≥ a, y ≤ v ≤ b, z ≥ s ≥ c, and w ≤ t ≤ d. If

there exist x0,y0,z0,w0 ∈ X such that

x0 ≤ F(x0,y0,z0,w0), y0 ≥ F(y0,z0,w0,x0),

z0 ≤ F(z0,w0,x0,y0) and w0 ≥ F(w0,x0,y0,z0),

Suppose either

(a) (X ,G) is a complete G-metric space and F is continuous or,
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(b) (X ,G,≤) has the following property:

(i) if non-decreasing sequence xn→ a, then xn ≤ x for all n,

(ii) if non-increasing sequence yn→ y, then y≤ yn for all n.

then there exist x,y,z,w ∈ X such that

F(x,y,z,w) = x, F(y,z,w,x) = y, F(z,w,x,y) = z and F(w,x,y,z) = w

that is, F has a quadruple coincidence point.

Proof. If we take α1 = 1 and α2 = α3 = α4 = 0, ψ(t1, t2, t3, t4) = 0 also g(X) = IX in Theorem

2.1, we get the above result. �

Finally by using the above results, we show the existence of solutions for the following

integral equation:

(x(t),y(t),z(t),w(t)) =



∫ T

0
G(t,s)[ f (s,x(s)+λx(s)− ( f (s,y(s))+λy(s))]ds,∫ T

0
G(t,s)[ f (s,y(s)+λy(s)− ( f (s,z(s))+λ z(s))]ds,∫ T

0
G(t,s)[ f (s,z(s)+λ z(s)− ( f (s,w(s))+λw(s))]ds,∫ T

0
G(t,s)[ f (s,w(s)+λw(s)− ( f (s,x(s))+λx(s))]ds


(3.2)

where x,y,z,w∈C(I,R) where C(I,R) is the set of continuous functions from I into R, T > 0,

f : I×R→ R is continuous function and

G(t,s) =

 eλ (T+s−t)

eλT−1 i f 0≤ s≤ t ≤ T
eλ (s−t)

eλT−1 i f 0≤ t < s≤ T
(3.3)

Definition 3.1. A lower solution for the integral type equation 3.2 is an element (α,β ,γ,η) ∈(
C1(I,R)

)4 such that
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α
′(t)+λβ (t)+λγ(t)+λη(t) ≤ f (t,α(t))− f (t,β (t))− f (t,γ(t))− f (t,η(t)), α(0)≤ α(T ),

β
′(t)+λγ(t)+λη(t)+λα(t) ≤ f (t,β (t))− f (t,γ(t))− f (t,η(t))− f (t,α(t)), β (0)≥ β (T ),

γ
′(t)+λη(t)+λα(t)+λβ (t) ≤ f (t,γ(t))− f (t,η(t))− f (t,α(t)− f (t,β (t)), γ(0)≤ γ(T ),

η
′(t)+λα(t)+λβ (t)+λγ(t) ≤ f (t,η(t))− f (t,α(t))− f (t,β (t))− f (t,γ(t)), β (0)≥ β (T ),

(3.4)

where C1(I,R) denotes the set of differentiable functions from I to R.

Next we prove the existence of solution for the integral equation 3.2.

Theorem 3.2. Let Φ be the class of the functions φ : [0,∞)→ [0,∞) satisfying the following

conditions:

(a) φ is nondecreasing,

(b) for any x≥ 0, there exists k ∈ [0,1) such that φ(x)≤ (k/4)x.

In the integral equation 3.2 suppose that there exists λ � 0 such that for all x,y ∈ R with y≥ x

(3.5) [ f (t,y)+λy]− [ f (t,x)+λx]≤ λψ(y− x),

where φ ∈Φ. If a lower solution of the integral equation 3.2 exists then the solution of integral

equation 3.2 exists.

Proof. Define a mapping F : (C(I,R))4→C(I,R) by

F(x(t),y(t),z(t),w(t)) =
∫ T

0
G(t,s)[ f (s,x(s)+λx(s))− ( f (s,y(s))+λy(s))

−( f (s,z(s))+λ z(s))− ( f (s,w(s))+λw(s))]ds,(3.6)

Note that, if (x(t),y(t),z(t),w(t))∈ (C(I,R))4 is quadrupled fixed point of F , then (x(t),y(t),z(t),w(t))

is the solution of integral equation 3.2.

Now, we check the hypothesis in Theorem 3.1 as follows:
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(1) X4 = (C(I,R))4 is a partially ordered set if we define the order relation in X4 as follows;

(u(t),v(t), p(t),q(t))≤ (x(t),y(t),z(t),w(t))(3.7)

iff

u(t)≤ x(t), v(t)≥ y(t), p(t)≤ z(t), q(t)≥ w(t),

for all

(u(t),v(t), p(t),q(t)),(x(t),y(t),z(t),w(t)) ∈ X4

and t ∈ I.

(2) (X ,G) is a complete G-metric space if we define a metric G as follows;

(3.8) G(a(t),b(t),c(t)) = sup
t∈I
{| a(t)−b(t) |, | b(t)−c(t) |, | c(t)−a(t) |: a(t),b(t),c(t) ∈ X}.

(3) The mapping F has the mixed monotone property. In fact by hypothesis, if x2 ≥ x1, then

we have

(3.9) f (t,x2)+λx2 ≥ f (t,x1)+λx1

which implies that for any t ∈ I,

F(x2(t),y(t),z(t),w(t)) =
∫ T

0
G(t,s)[ f (s,x2(s))+λx2(s)− ( f (s,y(s))+λy(s)

)− ( f (s,z(s))+λ z(s))− ( f (s,w(s))+λw(s))]ds

and

F(x1(t),y(t),z(t),w(t)) =
∫ T

0
G(t,s)[ f (s,x1(s))+λx1(s)− ( f (s,y(s))+λy(s))

−( f (s,z(s))+λ z(s))− ( f (s,w(s))+λw(s))]ds,

that is,

(3.10) F(x2(t),y(t),z(t),w(t))≥ F(x1(t),y(t),z(t),w(t)).

Similarly if y1 ≥ y2, then we have

(3.11) f (t,y2)+λy2 ≥ f (t,y1)+λy1
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which implies that for any t ∈ I,

F(x(t),y2(t),z(t),w(t)) =
∫ T

0
G(t,s)[ f (s,x(s))+λx(s)− ( f (s,y2(s))+λy2(s))

−( f (s,z(s))+λ z(s))− ( f (s,w(s))+λw(s))]ds

and

F(x(t),y1(t),z(t),w(t)) =
∫ T

0
G(t,s)[ f (s,x(s))+λx(s)− ( f (s,y1(s))+λy1(s))

−( f (s,z(s))+λ z(s))− ( f (s,w(s))+λw(s))]ds.

that is

(3.12) F(x(t),y2(t),z(t),w(t))≤ F(x(t),y1(t),z(t),w(t))

for any t ∈ I.

Also if z1 ≤ z2, then we have

(3.13) f (t,z2)+λ z2 ≥ f (t,z1)+λ z1

F(x(t),y(t),z2(t),w(t)) =
∫ T

0
G(t,s)[ f (s,x(s))+λx(s)− ( f (s,y(s))+λy(s))

−( f (s,z2(s))+λ z2(s))− ( f (s,w(s))+λw(s))]ds

and

F(x(t),y(t),z1(t),w(t)) =
∫ T

0
G(t,s)[ f (s,x(s))+λx(s)− ( f (s,y(s))+λy(s))

−( f (s,z1(s))+λ z1(s))( f (s,w(s))+λw(s))]ds

that is

(3.14) F(x(t),y(t),z2(t),w(t))≥ F(x(t),y(t),z1(t),w(t))
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F(x(t),y(t),z(t),w2(t)) =
∫ T

0
G(t,s)[ f (s,x(s))+λx(s)− ( f (s,y(s))+λy(s))

−( f (s,z(s))+λ z(s))− ( f (s,w2(s))+λw2(s))]ds

and

F(x(t),y(t),z(t),w1(t)) =
∫ T

0
G(t,s)[ f (s,x(s))+λx(s)− ( f (s,y(s))+λy(s))

−( f (s,z(s))+λ z(s))( f (s,w1(s))+λw1(s))]ds

that is

(3.15) F(x(t),y(t),z(t),w2(t))≤ F(x(t),y(t),z(t),w1(t)).

In fact, let (x,y,z,w)≤ (u,v, p,q) and t ∈ I then we have

G(F(x(t),y(t),z(t),w(t)),F(u(t),v(t), p(t),q(t)),F(a(t),b(t),c(t),d(t)))

= sup


| F(x(t),y(t),z(t),w(t))−F(u(t),v(t), p(t),q(t) |,

| F(u(t),v(t), p(t),q(t)−F(a(t),b(t),c(t),d(t)) |,

| F(a(t),b(t),c(t),d(t))−F(x(t),y(t),z(t),w(t)) |

(t ∈ I)
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= sup
t∈I



|
∫ T

0
G(t,s)[ f (s,x(s))+λx(s)− ( f (s,y(s))+λy(s))

−( f (s,z(s))+λ z(s))− ( f (s,w(s))+λw(s))]ds

−
∫ T

0
G(t,s)[ f (s,u(s))+λu(s)− ( f (s,v(s))+λv(s))

−( f (s, p(s))+λ p(s))( f (s,q(s))+λq(s))]ds |,

|
∫ T

0
G(t,s)[ f (s,u(s))+λu(s)− ( f (s,v(s))+λv(s))

−( f (s, p(s))+λ p(s))− ( f (s,q(s))+λq(s))]ds |

−
∫ T

0
G(t,s)[ f (s,a(s))+λa(s)− ( f (s,b(s))+λb(s))

−( f (s,c(s))+λc(s))− ( f (s,d(s))+λd(s))]ds |,∫ T

0
G(t,s)[ f (s,a(s))+λa(s)− ( f (s,b(s))+λb(s))

−( f (s,c(s))+λc(s))− ( f (s,d(s))+λd(s))]ds |,

−
∫ T

0
G(t,s)[ f (s,x(s))+λx(s)− ( f (s,y(s))+λy(s))

−( f (s,z(s))+λ z(s))− ( f (s,w(s))+λw(s))]ds



≤ sup
t∈I



|
∫ T

0
G(t,s)[( f (s,x(s))+λx(s))− ( f (s,u(s))+λu(s))− [( f (s,y(s))+λy(s))− ( f (s,v(s))+λv(s))]

−[( f (s,z(s))+λ z(s))+( f (s, p(s))+λ p(s))]− [( f (s,w(s))+λw(s))− ( f (s,q(s))+λq(s))]] | ds,

|
∫ T

0
G(t,s)[[( f (s,u(s))+λu(s))− ( f (s,a(s))+λa(s))]− [( f (s,v(s))+λv(s))− ( f (s,b(s))+λb(s))]

−[( f (s, p(s))+λ p(s))− ( f (s,c(s))+λc(s))]− [( f (s,q(s))+λq(s))− ( f (s,d(s))+λd(s))]]ds |,∫ T

0
G(t,s)[[( f (s,a(s))+λa(s))− ( f (s,x(s))+λx(s))]− [( f (s,b(s))+λb(s))− ( f (s,y(s))+λy(s))]

−[( f (s,c(s))+λc(s))− f (s,z(s))+λ z(s))]− [( f (s,d(s))+λd(s))− (( f (s,w(s))+λw(s))]]ds |



Since the function φ(x) is nondecreasing and (x,y,z,w)≤ (u,v, p,q), we have
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φ(max{|x(s)−u(s)|, |u(s)−a(s)|, |a(s)− x(s)|}) ≤ φ(G(x(s),u(s),a(s))

φ(max{|y(s)− v(s)|, |v(s)−b(s)|, |b(s)− y(s)|}) ≤ φ(G(y(s),v(s),b(s))

φ(max{|z(s)− p(s)|, |p(s)− c(s)|, |c(s)− z(s)|}) ≤ φ(G(z(s), p(s),c(s))

φ(max{|w(s)−q(s)|, |q(s)−d(s)|, |d(s)−w(s)|}) ≤ φ(G(w(s),q(s),d(s)).(3.16)

By using property of φ , 3.2, 3.3, 3.16,3.16,3.16 we get (α(t),β (t),γ(t),η(t)) ∈ (C1(I,R))4

be a lower solution for the integral equation 3.2 then we show that

α ≤ F(α,β ,γ,η), β ≥ F(β ,γ,η ,α), γ ≤ F(γ,η ,α,β ), η ≥ F(η ,α,β ,γ).(3.17)

Indeed, we have

α
′(t)+λβ (t)+λγ(t)+λη(t)≤ f (t,α(t))− f (t,β (t))− f (t,γ(t))− f (t,η(t))

for any t ∈ I and so

(3.18)

α
′(t)+λα(t)≤ f (t,α(t))− f (t,β (t))− f (t,γ(t)))− f (t,η(t))+λα(t)−λβ (t)−λγ(t)−λη(t)

for any t ∈ I.

Multiplying 3.18 by eλ t , we get the following:

(
(α(t)eλ t

)′
≤ [( f (t,α(t))+λα(t))− ( f (t,β (t))−λβ (t))

−( f (t,γ(t))−λγ(t))− ( f (t,η(t))−λη(t))]eλ t(3.19)

for any t ∈ I, which implies that

α(t)eλ t � α(0)+
∫ t

0
[( f (s,α(s))+λα(s))− ( f (s,β (s))−λβ (s))

−( f (s,γ(s))−λγ(s))− ( f (s,η(s))−λη(s))]eλ sds(3.20)
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for any t ∈ I, this implies that

α(0)eλ t ≺ α(T )eλT

� α(0)+
∫ T

0
[( f (s,α(s))+λα(s))− ( f (s,β (s))−λβ (s))

−( f (s,γ(s))−λγ(s))− ( f (s,η(s))−λη(s))]eλ sds(3.21)

and so

α(0) ≺
∫ T

0

eλ s

eλT −1
[( f (s,α(s))+λα(s))

−( f (s,β (s))−λβ (s))− ( f (s,γ(s))−λγ(s))− ( f (s,η(s))−λη(s))]ds(3.22)

Thus it follows from 3.20 and 3.22 that

α(t)eλ t ≺
∫ T

t

eλ s

eλT −1
[( f (s,α(s))+λα(s))

−( f (s,β (s))−λβ (s))− ( f (s,γ(s))−λγ(s))− ( f (s,η(s))−λη(s))]ds

+
∫ t

0

eλ (T−s)

eλT −1
[( f (s,α(s))+λα(s))

−( f (s,β (s))−λβ (s))− ( f (s,γ(s))−λγ(s))− ( f (s,η(s))−λη(s))]ds(3.23)

and so

α(t) ≤
∫ T

t

eλ (s−t)

eλT −1
[( f (s,α(s))+λα(s))

−( f (s,β (s))−λβ (s))− ( f (s,γ(s))−λγ(s))]ds

+
∫ t

0

eλ (T+s−t)

eλT −1
[( f (s,α(s))+λα(s))

−( f (s,β (s))−λβ (s))− ( f (s,γ(s))−λγ(s))− ( f (s,η(s))−λη(s))]ds(3.24)

then,

α(t) ≤
∫ T

0
G(t,s)[ f (s,α(s)+λα(s)

−( f (s,β (s))+λβ (s))− ( f (s,γ(s))+λγ(s))− ( f (s,η(s))+λη(s))]ds

= F(α(t),β (t),γ(t),η(t))(3.25)
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for any t ∈ I.

Similarly, we have

β (t)≥ F(β (t),γ(t),η(t),α(t)),

γ(t)≤ F(γ(t),η(t),α(t),β (t))

and

η(t)≥ F(η(t),α(t),β (t),γ(t)).

Therefore by Theorem 3.1, F has a quadrupled fixed point. �
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