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1. Introduction

It is well known that Brouwer’s fixed point theorem can not be constructively proved1.
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1[6] provided a constructive proof of Brouwer’s fixed point theorem. But it is not constructive from

the view point of constructive mathematics à la Bishop. It is sufficient to say that one dimensional case

of Brouwer’s fixed point theorem, that is, the intermediate value theorem is non-constructive (See [4] or

[8]).
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Thus, Kakutani’s fixed point theorem for multi-functions (multi-valued functions or

correspondences) also can not be constructively proved. On the other hand, Sperner’s

lemma which is used to prove Brouwer’s theorem, however, can be constructively proved.

Some authors have presented a constructive (or an approximate) version of Brouwer’s

theorem using Sperner’s lemma (See [8] and [9]). Also Dalen in [8] states a conjecture

that a uniformly continuous function f from a simplex to itself, with property that each

open set contains a point x such that x is not equal to f(x) (x ̸= f(x)) and on the

boundaries of the simplex x ̸= f(x), has an exact fixed point. Recently Berger and

Ishihara[2] showed that the following theorem is equivalent to Brouwer’s fan theorem.

Each uniformly continuous function from a compact metric space into itself

with at most one fixed point has a fixed point.

By reference to the notion of sequentially at most one maximum in Berger, Bridges and

Schuster[1] we require a stronger condition that a function has sequentially at most one

fixed point, and in [7] we have shown the following result.

Each uniformly continuous function from a compact metric space into itself

with sequentially at most one fixed point has a fixed point,

without the fan theorem. It is a partial answer to Dalen’s conjecture. The property of

sequentially at most one fixed point is stronger than the condition that a function has at

most one fixed point in [2].

In this paper we extend the property of sequentially at most one fixed point to multi-

functions, and will prove Kakutani’s fixed point theorem for compact and convex valued

multi-functions with sequentially at most one fixed point and uniformly closed graph in

an n-dimensional simplex. The uniformly closed graph property of multi-functions is a

stronger version of the closed graph property. And we apply this result to prove the

minimax theorem for two-person zero-sum games with finite strategies.

In the next section we prove Kakutani’s fixed point theorem for compact and convex

valued multi-functions with sequentially at most one fixed point and uniformly closed
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graph. In Section 4 we prove the minimax theorem for zero-sum games with finite s-

trategies. We follow the Bishop style constructive mathematics according to [3], [4] and

[5].

2. Kakutani’s fixed point theorem for multi-functions with se-

quentially at most one fixed point and uniformly closed graph

In constructive mathematics a nonempty set is called an inhabited set. A set S is

inhabited if there exists an element of S.

Note that in order to show that S is inhabited, we cannot just prove that

it is impossible for S to be empty: we must actually construct an element

of S (see page 12 of [5]).

Also in constructive mathematics compactness of a set means total boundedness with

completeness. First define finite enumerability of a set and an ε-approximation to a set.

A set S is finitely enumerable if there exist a natural number N and a mapping of the set

{1, 2, . . . , N} onto S. An ε-approximation to S is a subset of S such that for each x ∈ S

there exists y in that ε-approximation with |x − y| < ε(|x − y| is the distance between

x and y). S is totally bounded if for each ε > 0 there exists a finitely enumerable ε-

approximation to S. Completeness of a set, of course, means that every Cauchy sequence

in the set converges.

Let x be a point in a compact metric space X, and f be a uniformly continuous function

f from X into itself. According to [8] and [9] f has an approximate fixed point. It means

For each ε > 0 there exists x ∈ X such that |x− f(x)| < ε.

Since ε > 0 is arbitrary,

inf
x∈X

|x− f(x)| = 0.

The notion that f has at most one fixed point in [2] is defined as follows:

Definition 2.1. (at most one fixed point) For all x, y ∈ X, if x ̸= y, then f(x) ̸= x

or f(y) ̸= y.
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Next by reference to the notion of sequentially at most one maximum in [1], we define

the notion that f has sequentially at most one fixed point as follows;

Definition 2.2. (sequentially at most one fixed point) All sequences (xn)n≥1,

(yn)n≥1 in X such that |f(xn)− xn| −→ 0 and |f(yn)− yn| −→ 0 are eventually close in

the sense that |xn − yn| −→ 0.

We extend this definition to a case of multi-functions. Consider an n-dimensional

simplex ∆ as a compact metric space. Let F be a compact and convex valued multi-

function from ∆ to the set of its inhabited subsets. Denote the distance between F (x)

and x ∈ ∆ by |F (x)− x|, that is,

|F (x)− x| = inf
y∈F (x)

|y − x|.

It can be defined since F (x) is a compact subset of a compact metric space, and so it is

located (see [5]). An inhabited subset S of a metric space X is called located if for each

x ∈ X the distance

|x− S| = inf
t∈S

|x− t|

exists.

The definition of the property that a multi-function has sequentially at most one fixed

point is as follows;

Definition 2.3. (sequentially at most one fixed point for multi-function) All

sequences (xn)n≥1, (yn)n≥1 in ∆ such that |F (xn)− xn| −→ 0 and |F (yn)− yn| −→ 0 are

eventually close in the sense that |xn − yn| −→ 0.

A graph of a multi-function F from ∆ to the set of its inhabited subsets is

G(F ) = ∪x∈∆{x} × F (x).

If G(F ) is a closed set, we say that F has a closed graph. It implies the following fact.

If sequences (xn)n≥1 and (yn)n≥1 are such that for each n yn ∈ F (xn), and

if xn −→ x, then yn −→ y for some y ∈ F (x).

According to [5] this means
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For each ε > 0 if there exists n0 such that |xn − x| < ε when n ≥ n0, then

there exists n′
0 such that |yn − F (x)| < ε, that is, |yn − y| < ε for some

y ∈ F (x) when n ≥ n′
0.

n0 and n′
0 depend on x and ε. Further we require a uniform version of this property

for multi-functions, and call such a multi-function a multi-function with uniformly closed

graph, or say that a multi-function has a uniformly closed graph. It means that n0 and n′
0

depend on only ε not on x. Now we show the following lemma, which is based on Lemma

2 of [1].

Lemma 2.1. Let F be a compact and convex valued multi-function with sequentially at

most one fixed point and uniformly closed graph from ∆ to the set of its inhabited subsets.

Assume infx∈∆ |F (x)− x| = 0. If the following property holds,

For each δ > 0 there exists ε > 0 such that if x, y ∈ ∆, |F (x)− x| < ε and

|F (y)− y| < ε, then |x− y| ≤ δ,

then, there exists a point z ∈ ∆ such that z ∈ F (z), that is , F has a fixed point.

Proof.

Choose a sequence (xn)n≥1 in ∆ such that |F (xn) − xn| −→ 0. Compute N such that

|F (xn)− xn| < ε for all n ≥ N . Then, for m,n ≥ N we have |xm − xn| ≤ δ. Since δ > 0

is arbitrary, (xn)n≥1 is a Cauchy sequence in ∆, and converges to a limit z ∈ ∆. The

uniformly closed graph property of F yields z ∈ F (z).

This completes the proof.

A fixed point of a multi-function is defined as follows;

Definition 2.1. x is a fixed point of a multi-function F if x ∈ F (x).

We define an approximate fixed point of a multi-function F as follows;

Definition 2.1. For each ε > 0 x is an approximate fixed point of a multi-function F if

|x− F (x)| < ε.

We constructively show that if the value of a multi-function F from ∆ to the set of

inhabited subsets of ∆ with sequentially at most one fixed point and uniformly closed

graph is compact and convex, it has a fixed point. If a set X is homeomorphic to ∆ (so
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Figure 1. Subdivision of 2-dimensional simplex

X is also compact), we can show the same result for a multi-function from X to the set

of inhabited subsets of X.

Our Kakutani’s fixed point theorem is as follows;

Theorem 2.1. If F is a compact and convex valued multi-function with sequentially at

most one fixed point and uniformly closed graph from an n-dimensional simplex ∆ to the

set of its inhabited subsets, then it has a fixed point.

Proof.

(1) Let ∆ be an n-dimensional simplex, and consider m-th subdivision of ∆. Subdivi-

sion in a case of 2-dimensional simplex is illustrated in Figure 1. In a 2-dimensional

case we divide each side of ∆ in m equal segments, and draw the lines parallel to

the sides of ∆. Then, the 2-dimensional simplex is partitioned into m2 triangles.

We consider subdivision of ∆ inductively for cases of higher dimension. In a 3 di-

mensional case each face of ∆ is a 2-dimensional simplex, and so it is partitioned

into m2 triangles in the way above mentioned, and draw the planes parallel to

the faces of ∆. Then, the 3-dimensional simplex is partitioned into m3 trigonal

pyramids. And similarly for cases of higher dimension.
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Consider sufficiently fine partition of ∆, and define a uniformly continuous func-

tion fm : ∆ −→ ∆ as follows. If x is a vertex of a simplex constructed by m-th

subdivision of ∆, fm(x) = y for some y ∈ F (x). For other x ∈ ∆ we define fm by

a convex combination of the values of F at vertices of a simplex xm
0 , x

m
1 , . . . , x

m
n .

Let
∑n

i=0 λi = 1, λi = 0,

fm(x) =
n∑

i=0

λif
m(xm

i ) with x =
n∑

i=0

λix
m
i .

Since fm is clearly uniformly continuous, it has an approximate fixed point ac-

cording to [8] and [9]. Let x∗ be an approximate fixed point of fm, then for each

ε
2
> 0 there exists x∗ ∈ ∆ which satisfies

|x∗ − fm(x∗)| < ε

2
.

If the partition of ∆ is sufficiently fine, the distance between vertices of a simplex,

|xm
i − xm

j |, i ̸= j, is sufficiently small. Since F has a uniformly closed graph, for

each yi ∈ F (xm
i ) and some yj ∈ F (xm

j ) we have |yi − yj| < ε
2
, and for each

yj ∈ F (xm
j ) and some yi ∈ F (xm

i ) we have |yi − yj| < ε
2
. Since x∗ is expressed as

x∗ =
∑n

i=0 λix
m
i , if |xm

i −xm
j | is sufficiently small for each i and j, |x∗−xm

i | is also

sufficiently small for each i. Therefore, for each yi ∈ F (xm
i ) and some y∗i ∈ F (x∗)

we have |yi − y∗i | < ε
2
. y∗i ’s for different x

m
i ’s may be different. But, since F (x∗) is

convex, we have

y∗ =
n∑

i=0

λiy
∗
i ∈ F (x∗).

Since, for each i |yi − y∗i | < ε
2
and fm(x∗) =

∑n
i=0 λif

m(xm
i ) =

∑n
i=0 λiyi,we have

|fm(x∗)− y∗| < ε

2
.

Since |x∗ − fm(x∗)| < ε
2
, we obtain

|x∗ − y∗| < ε.

This means

|x∗ − F (x∗)| < ε.
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Since ε is arbitrary,

inf
x∗∈∆

|x∗ − F (x∗)| = 0.

(2) Choose a sequence (zn)n≥1 in ∆ such that |zn − F (zn)| −→ 0. In view of Lemma

2.1 it is enough to prove that the following condition holds.

For each δ > 0 there exists ε > 0 such that if x, y ∈ ∆, |F (x) − x| < ε

and |F (y)− y| < ε, then |x− y| ≤ δ.

Assume that the set

K = {(x, y) ∈ ∆×∆ : |x− y| ≥ δ}

is inhabited and compact2. Since the mapping (x, y) −→ max(|F (x)− x|, |F (y)−

y|) is uniformly continuous, we can construct an increasing binary sequence (λn)n≥1

such that

λn = 0 ⇒ inf
(x,y)∈K

max(|F (x)− x|, |F (y)− y|) < 2−n,

λn = 1 ⇒ inf
(x,y)∈K

max(|F (x)− x|, |F (y)− y|) > 2−n−1.

It suffices to find n such that λn = 1. In that case, if |F (x) − x| < 2−n−1,

|F (y) − y| < 2−n−1, we have (x, y) /∈ K and |x − y| ≤ δ. Assume λ1 = 0. If

λn = 0, choose (xn, yn) ∈ K such that max(|F (xn)− xn|, |F (yn)− yn|) < 2−n, and

if λn = 1, set xn = yn = zn. Then, |F (xn)− xn| −→ 0 and |F (yn)− yn| −→ 0, so

|xn − yn| −→ 0. Computing N such that |xN − yN | < δ, we must have λN = 1.

This completes the proof.

3. Minimax Theorem

In this section we derive the minimax theorem of zero-sum games by our Kakutani’s

fixed point theorem in the previous section. The minimax theorem can also be proved

by Brouwer’s fixed point theorem3. But the proof by Kakutani’s fixed point theorem is

more smart. consider a two person zero-sum game. There are two players A and B.

2See Theorem 2.2.13 of [5].

3See [7].
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Player A has m alternative pure strategies, and the set of his pure strategies is denoted

by SA = {a1, a2, . . . , am}. Player B has n alternative pure strategies, and the set of his

pure strategies is denoted by SB = {b1, b2, . . . , bn}. m and n are finite natural numbers.

The payoff of player A when a combination of players’ strategies is (ai, bj) is denoted

by M(ai, bj). Since we consider a zero-sum game, the payoff of player B is equal to

−M(ai, bj). Let pi be a probability that A chooses his strategy ai, and qj be a probability

that B chooses his strategy bj. A mixed strategy of A is represented by a probability

distribution over SA, and is denoted by x = (p1, p2, . . . , pm) with
∑m

i=1 pi = 1. Similarly,

a mixed strategy of B is denoted by y = (q1, q2, . . . , qn) with
∑n

j=1 qj = 1. A combination

of mixed strategies (x, y) is called a profile. The expected payoff of player A at a profile

(x, y) is written as follows,

M(x, y) =
m∑
i=1

n∑
j=1

piM(ai, bj)qj.

We assume that M(ai, bj) is finite. Then, since M(x, y) is linear with respect to proba-

bility distributions over the sets of pure strategies of players, it is a uniformly continuous

function. The expected payoff of A when he chooses a pure strategy ai and B chooses a

mixed strategy y is M(ai, y) =
∑n

j=1M(ai, bj)qj, and his expected payoff when he chooses

a mixed strategy x and B chooses a pure strategy bj is M(x, bj) =
∑m

i=1 piM(ai, bj). The

set of all mixed strategies of A is denoted by P , and that of B is denoted by Q. P is an

m− 1-dimensional simplex, and Q is an n− 1-dimensional simplex.

We call vA(x) = infy∈QM(x, y) the guaranteed payoff of A at x. And we define v∗A as

follows,

v∗A = sup
x∈P

inf
y∈Q

M(x.y)

This is a constructive version of the maximin payoff. Similarly, we call vB(y) = supx∈P M(x, y)

the guaranteed payoff of player B at y, and define v∗B as follows,

v∗B = inf
y∈Q

sup
x∈P

M(x, y).
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This is a constructive version of the minimax payoff. For a fixed x we have infy∈QM(x, y) ≤

M(x, y) for all y, and so

sup
x∈P

inf
y∈Q

M(x, y) ≤ sup
x∈P

M(x, y) for all y

holds. Then, we obtain supx∈P infy∈QM(x, y) ≤ infy∈Q supx∈P M(x, y). This is rewritten

as

(1) v∗A ≤ v∗B.

Now, consider the following set for player A given y;

{ai ∈ SA|M(ai, y) ≥ M(a′i, y) for all a
′
i ∈ SA}.

Since SA is finite, we can find ai which realizes maxai∈SA
M(ai, y). Linearity of the ex-

pected payoff function implies that if there are multiple pure strategies which satisfy this

condition, convex combinations of those pure strategies also satisfy it. Denote the set of

such mixed strategies by

ΓA(y) = {x ∈ P |M(x, y) ≥ M(x′, y) for all x′ ∈ P},

Similarly for player B consider the following set given x;

{bj ∈ SB|M(x, bj) ≤ M(x, b′j) for all b
′
j ∈ SB}.

If there are multiple pure strategies which satisfy this condition, convex combinations of

those pure strategies also satisfy it. Denote the set of such mixed strategies by

ΓB(x) = {y ∈ Q|M(x, y) ≤ M(x, y′) for all y′ ∈ Q}.

Define a multi-function from P ×Q to the set of inhabited subsets of P ×Q by

Θ(x, y) = (ΓA(y),ΓB(x)).

Since P ×Q is the product of two simplices, it is convex. And since there are m+ n− 2

independent vectors in P × Q, P × Q is homeomorphic to an m + n − 2-dimensional

simplex.

We assume the following conditions about payoff functions.
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I J

Figure 2. Homeomorphism between simplex and combination of strategies

Assumption 3.1. All sequences ((xn, yn))n≥1, ((x
′
n, y

′
n))n≥1 in P×Q such that max(M(ai, yn)−

M(xn, yn), 0) −→ 0, max(M(xn, yn)−M(xn, bj), 0) −→ 0, max(M(ai, y
′
n)−M(x′

n, y
′
n), 0) −→

0 and max(M(x′
n, y

′
n)−M(x′

n, bj), 0) −→ 0 for all i and j are eventually close in the sense

that |(xn, yn)− (x′
n, y

′
n)| −→ 0.

We call this condition sequential non-constancy of payoff functions.

Let us consider a homeomorphism between an m+ n− 2-dimensional simplex and the

space of players’ mixed strategies, which is denoted by P. Figure 2 depicts an example

of a case of two players with two pure strategies for each player. P is represented by

a rectangle DEFG. Vertices D, E, F and G represent states where two players choose

pure strategies, and points on edges DE, EF , FG and GD represent states where one

player chooses a pure strategy. In this homeomorphism, vertices of the simplex do not

correspond to any vertex of P. Vertices of the simplex and points on faces (simplices

whose dimension is lower than m+n−2) of the simplex correspond to the points on faces

of P. For example, in Figure 2 A, B and C correspond, respectively, to I, J and H. On

the other hand, each vertex of P, D, E, F and G corresponds, respectively, to itself on a

face of the simplex which contains them.

Let us check that Θ(x, y) satisfies the conditions for our Kakutani’s fixed point theorem.
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(1) P ×Q is clearly a compact and convex set.

(2) Θ(x, y) is a multi-function from P ×Q to the set of inhabited subsets of P ×Q.

(3) We show convexity of Θ(x, y). It is sufficient to show convexity of ΓA(y). Suppose

that x1 ∈ ΓA(y) and x2 ∈ ΓA(y). Then,

M(x1, y) ≥ M(ai, y) for all ai ∈ SA

and

M(x2, y) ≥ M(ai, y) for all ai ∈ SA

hold. Since M(x, y) is linear with respect to probability distributions over the sets

of pure strategies of players, for 0 ≤ λ ≤ 1 we have

λM(x1, y) + (1− λ)M(x2, y) = M(λx1 + (1− λ)x2, y) ≥ M(ai, y) for all ai ∈ SA.

Thus, we obtain λx1+(1−λ)x2 ∈ ΓA(y), and ΓA(y) is convex. Convexity of ΓB(x)

is similarly proved.

(4) We show that Θ(x, y) has a uniformly closed graph. Let x′′ be a mixed strategy of

player A, y′′ be a mixed strategy of player B and x ∈ ΓA(y). Uniform continuity

of M(x, y) implies that, for a positive number ε
2
, we can select δ > 0 and δ′ > 0 so

that when |(x′′, y′′)− (x, y)| < δ and |(x′, y′′)− (x′, y)| < δ′, we have |M(x′′, y′′)−

M(x, y)| < ε
2
and |M(x′, y′′) − M(x′, y)| < ε

2
. Since M(x, y) ≥ M(x′, y) for all

x′ ∈ P , we have

M(x′′, y′′) > M(x, y)− ε

2
≥ M(x′, y)− ε

2
> M(x′, y′′)− ε for all x′.

Thus, x′′ ∈ V (ΓA(y
′′), ε). About ΓB(x) we can show a similar result, that is,

y′′ ∈ V (ΓB(x
′′), ε). V (ΓA(y

′′), ε) and V (ΓA(y
′′), ε) are ε neighborhoods of ΓA(y

′′)

and ΓB(x
′′). This completes the proof that Θ(x, y) has a uniformly closed graph.

(5) Consider sequences (xn, yn) and (x′
n, y

′
n). If |Θ(xn, yn) − (xn, yn)| −→ 0 and

|Θ(x′
n, y

′
n)−(x′

n, y
′
n)| −→ 0, then max(M(ai, yn)−M(xn, yn)) −→ 0, max(M(xn, bj)−

M(xn, yn)) −→ 0, max(M(ai, yn)−M(xn, yn)) −→ 0 and max(M(x′
n, bj)−M(x′

n, y
′
n)) −→

0 for all i and j. Assumption 3.1 implies |(xn, yn)− (x′
n, y

′
n)| −→ 0. Thus, Θ has

sequentially at most one fixed point.
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Therefore, the conditions of our Kakutani’s fixed point theorem are satisfied by Θ(x, y),

and it has a fixed point. Let denote the fixed point by (x∗, y∗). Then,

M(x′, y∗) ≤ M(x∗, y∗) ≤ M(x∗, y′) for all (x′, y′)

holds. This means

(2) sup
x

M(x, y∗) ≤ M(x∗, y∗) ≤ inf
y
M(x∗, y).

Since

sup
x

M(x, y∗) ≥ inf
y
sup
x

M(x, y) = v∗B, inf
y
M(x∗, y) ≤ sup

x
inf
y
M(x, y) = v∗A,

(2) implies

(3) v∗B ≤ M(x∗, y∗) ≤ v∗A.

With (1) and (3) we obtain

v∗A = v∗B.

This v∗A or v∗B is the value of the game. Summarizing the results,

Theorem 3.1. The value of a two person zero-sum game with sequentially non-constant

payoff functions is determined by M(x∗, y∗). Since we can constructively find a fixed point

of a multi-function which satisfies the conditions of our Kakutani’s fixed point theorem,

we can constructively get the value of the game.

Player 2

X Y

Player X 2, -2 -1, 1

1 Y -1, 1 1, -1

Table 1. Example of game

Consider an example. See a game in Table 1. It is a modified version of the so-called

Matching-Pennies Game. Pure strategies of Player 1 and 2 are X and Y . The left side

number in each cell represents the payoff of Player 1 and the right side number represents

the payoff of Player 2. Let pX and 1− pX denote the probabilities that Player 1 chooses,
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respectively, X and Y , and qX and 1 − qX denote the probabilities for Player 2. Denote

the expected payoff of Player 1 by M(pX , qX). Since we consider a zero-sum game, the

expected payoff of Player 2 is −M(pX , qX). We have

M(pX , qX) = 2pXqX − (1− pX)qX − pX(1− qX) + (1− pX)(1− qX)

= pX(5qX − 2) + 1− 2qX

Denote the payoff of Player 1 when he chooses X by M(X, qX), and that when he chooses

Y by M(Y, qX). Similarly for Player B. Then,

M(X, qX) = 3qX−1, M(Y, qX) = 1−2qX , −M(pX , X) = 1−3pX , −M(pX , Y ) = 2pX−1,

M(X, qX)−M(pX , qX) = (1− pX)(5qX − 2), M(Y, qX)−M(pX , qX) = −pX(5qX − 2),

−M(pX , X) +M(pX , qX) = (qX − 1)(5pX − 2), −M(pX , Y ) +M(pX , qX) = qX(5pX − 2).

And we have

When qX >
2

5
, M(X, qX) > M(Y, qX) and M(X, qX) > M(pX , qX) for pX < 1,

When qX <
2

5
, M(Y, qX) > M(X, qX) and M(Y, qX) > M(pX , qX) for pX > 0,

When pX >
2

5
, −M(pX , Y ) > −M(pX , X) and −M(pX , Y ) > −M(pX , qX) for qX > 0,

When pX <
2

5
, −M(pX , X) > −M(pX , Y ) and −M(pX , X) > −M(pX , qX) for qX < 1.

Consider sequences (pX(n))n≥1 and (qX(n))n≥1, and let 0 < ε < 2
5
, 0 < δ < ε. There

are the following cases.

(1) (a) If pX(n) >
2
5
+ δ and qX(n) >

2
5
+ δ, or

(b) pX(n) >
2
5
+ δ and qX(n) <

2
5
− δ, or

(c) pX(n) <
2
5
− δ and qX(n) <

2
5
− δ, or

(d) pX(n) <
2
5
− δ and qX(n) >

2
5
+ δ, or

(e) pX(n) >
2
5
+ δ and 2

5
− ε < qX(n) <

2
5
+ ε, or

(f) pX(n) <
2
5
− δ and 2

5
− ε < qX(n) <

2
5
+ ε, or

(g) 2
5
− ε < pX(n) <

2
5
+ ε, and qX(n) >

2
5
+ δ or
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(h) 2
5
− ε < pX(n) <

2
5
+ ε, and qX(n) <

2
5
− δ,

then there exists no pair of (pX(n), qX(n)) such that

M(X, qX(n))−M(pX(n), qX(n)) −→ 0, M(Y, qX(n))−M(pX(n), qX(n)) −→ 0,

−[M(pX(n), X)−M(pX(n), qX(n))] −→ 0 and

−[M(pX(n), Y )−M(pX(n), qX(n))] −→ 0.

(2) If 2
5
− ε < pX(n) <

2
5
+ ε and 2

5
− ε < qX(n) <

2
5
+ ε with 0 < ε < 2

5
,

M(X, qX(n)) − M(pX(n), qX(n)) −→ 0, M(Y, qX(n)) − M(pX(n), qX(n)) −→ 0,

−[M(pX(n), X)−M(pX(n), qX(n))] −→ 0 and

−[M(pX(n), Y )−M(pX(n), qX(n))] −→ 0, then

(pX(n), qX(n)) −→ (2
5
, 2
5
) for any sequence (pX(n), qX(n)).

Therefore, the payoff functions satisfy Assumption 3.1.
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