RESULTS ON CYCLIC ϕ-WEAK CONTRACTIONS IN FUZZY METRIC SPACES

M. T. SHIRUDE*, C. T. AAGE

Department of Mathematics, North Maharashtra University, Jalgaon 425001, India

Abstract. We develop the fixed point theorems for ϕ-weak contractions in fuzzy metric spaces. We also define ψ-weak contractive condition and establish the fixed point in G-complete fuzzy metric spaces.

Keywords: cyclic ϕ-weak contraction, fixed point, G-Cauchy, G-complete fuzzy metric space.

2010 AMS Subject Classification: 47H10.

1. Introduction

Grabiec [5] established the Banach contraction theorem and Edelstein fixed point theorem in fuzzy metric spaces. Vasuki [16] generalised Grabiec’s fuzzy Banach contraction. In Vasuki [16] defined a generalization of Grabiecs fuzzy Banach contraction theorem and proved a common fixed point theorem for a sequence of mappings in a fuzzy metric space. Cho [4] defined the concept of compatible mappings and proved common fixed point theorems in fuzzy metric spaces. Pacurar and Rusin [12] introduced the concept of ϕ-contraction. They developed some fixed point theorems using cyclic ϕ- contraction in complete metric space. Based on these ideas Shen et.al [14] came up with notion of cyclic ϕ- contraction in fuzzy metric spaces. In addition,

*Corresponding author

Received September 4, 2016
several problems in connection with the fixed point are investigated. In this paper, we generalize
the fixed point theorems of Shen et. al in G-fuzzy metric spaces.

2. Preliminaries

Definition 2.1. [18] A binary operation $T : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is called a continuous triangular
norm (in short, continuous t-norm) if it satisfies the following conditions:

(i) T is commutative and associative;
(ii) T is continuous;
(iii) $T(a, 1) = a, \forall a \in [0, 1]$;
(iv) $T(a, b) \leq T(c, d)$ whenever $a \leq b$ and $c \leq d. a, b, c, d \in [0, 1]$.

Generally t-norm T can be expressed (by associativity) in a unique way to an n-ary operator
taking for $(x_1, x_2, \cdots, x_n) \in [0, 1]^n, n \in N$, the value $T(x_1, x_2, \cdots, x_n)$ is defined, in [11], by

$$T_{i=1}^{0} = T_{i=1}^{n} x_i = T(T_{i=1}^{n-1} x_i, x_n) = T(x_1, x_2, \cdots, x_n).$$

Definition 2.2.[12] Let X be a nonempty set, m a positive integer and $f : X \rightarrow X$ an operator.
$X = \bigcup_{i=1}^{m} X_i$ is a cyclic representation of X with respect to f if

(1) $X_i, i = 1, 2, \cdots, m$ are nonempty sets;
(2) $f(X_1) \subset X_2, \cdots, f(X_{m-1}) \subset X_m, f(X_m) \subset X_1$.

Definition 2.3. [3] A fuzzy metric space is an ordered triple (X, M, T) such that X is a nonempty
set, T is a continuous t-norm and M is a fuzzy set on $X \times X \times (0, \infty)$ satisfying the following
conditions, for all $x, y, z \in X, s, t > 0$:

(i) $M(x, y, t) > 0$;
(ii) $M(x, y, t) = 1$ if and only if $x = y$;
(iii) $M(x, y, t) = M(y, x, t)$;
(iv) $T \left(M(x, y, t), M(y, z, s) \right) \leq M(x, z, t + s)$;
(v) $M(x, y, \cdot) : (0, \infty) \rightarrow (0, 1]$ is continuous.

Definition 2.4. [5] Let (X, M, T) be a fuzzy metric space. Then
(i) A sequence \(\{x_n\} \) in \(X \) is said to converge to \(x \in X \), denoted by \(x_n \to x \), if and only if
\[
\lim_{n \to \infty} M(x_n, x, t) = 1 \quad \text{for all } t > 0,
\]
i.e. for each \(r \in (0, 1) \) and \(t > 0 \), there exists \(n_0 \in \mathbb{N} \) such that
\[
M(x_n, x, t) > 1 - r \quad \text{for all } n \geq n_0.
\]
(ii) A sequence \(\{x_n\} \) is a \(G \)-Cauchy sequence if and only if
\[
\lim_{n \to \infty} M(x_n + p, x_n, t) = 1 \quad \text{for any } p > 0 \text{ and } t > 0.
\]
(iii) The fuzzy metric space \((X, M, T) \) is called \(G \)-complete if every \(G \)-Cauchy sequence is convergent.

Definition 2.5. [14] A function \(\phi : [0, 1] \to [0, 1] \) is called a comparison function if it satisfies

1. \(\phi \) is nondecreasing and left continuous;
2. \(\phi(t) > t \) for all \(t \in (0, 1) \).

Lemma 2.1. [14] If \(\phi \) be a comparison function, then

(i) \(\phi(1) = 1 \)
(ii) \(\lim_{n \to +\infty} \phi^n(t) = 1 \) for all \(t \in (0, 1) \), where \(\phi^n(t) \) denotes the composition of \(\phi(t) \) with itself \(n \) times.

With the inspiration from cyclic \(\phi \)-contraction in [14] we present a contraction in fuzzy metric space, with \(P_{cl} \), the collection of closed subsets of \(X \).

Definition 2.6. Let \((X, M, T) \) be a fuzzy metric space, \(m \) a positive integer, \(A_1, A_2, \ldots, A_m \in P_{cl}(X), Y = \bigcup_{i=1}^{m} A_i \) and \(f : Y \to Y \) an operator. If

(i) \(\bigcup_{i=1}^{m} A_i \) is cyclic representation of \(Y \) with respect to \(f \);
(ii) there exists a comparison function \(\phi : [0, 1] \to [0, 1] \) such that

\[
M(fx, fy, t) \geq \phi(\min\{M(x, y, t), M(x, fx, t), M(y, fy, t)\})
\]

for any \(x \in A_i, y \in A_{i+1} \) and \(t > 0 \), where \(A_{m+1} = A_1 \), then \(f \) is called cyclic \(\phi \)-weak contraction in the fuzzy metric space \((X, M, T) \).

Definition 2.7. [14] Let \((X, M, T) \) be a fuzzy metric space and let \(\{f_n\} \) be a sequence of self-mappings on \(X \). \(f_0 : X \to X \) is a given mapping. The sequence \(\{f_n\} \) is said to converge uniformly to \(f_0 \) if for each \(\varepsilon \in (0, 1) \) and \(t > 0 \), there exists \(n_0 \in \mathbb{N} \) such that

\[
M(f_n(x), f_0(x), t) > 1 - \varepsilon
\]
for all \(n \geq n_0 \) and \(x \in X \).

3. Main results

Theorem 3.1. Let \((X, M, T)\) be a \(G\)-complete fuzzy metric space, \(m \) a positive integer, \(A_1, A_2, \ldots, A_m \in P_c l(X) \), \(Y = \bigcup_{i=1}^{m} A_i \), \(\phi : [0, 1] \rightarrow [0, 1] \) a comparison function and \(f : Y \rightarrow Y \) an operator. Assume that

(i) \(\bigcup_{i=1}^{m} A_i \) is cyclic representation of \(Y \) with respect to \(f \);

(ii) \(f \) is a cyclic \(\phi \)-weak contraction.

Then \(f \) has a unique fixed point \(x' \in \bigcap_{i=1}^{m} A_i \) and the iterative sequence \(\{x_n\}_{n \geq 0}, (x_n = f(x_{n-1}) n \in N) \) converges to \(x' \) for any starting point \(x_0 \in Y \).

Proof. Let \(x_0 \in Y = \bigcap_{i=1}^{m} A_i \) be starting point, since \(x_n = f(x_1)(n \geq 1) \), we have

\[M(x_n, x_{n+1}, t) = M(f(x_{n-1}), f(x_n), t) \text{ for any } t > 0. \]

For any \(n \geq 0 \), there exists \(i_n \in 1, 2, \ldots, m \) such that \(x_n \in A_{i_n} \) and \(x_{n+1} \in A_{i_{n+1}} \). Therefore, we can get

\[M(x_n, x_{n+1}, t) = M(f(x_{n-1}), f(x_n), t) \]

\[\geq \phi\left(\min\left\{ (M(x_{n-1}, x_n, t), M(x_{n-1}, f(x_{n-1}, t), M(x_n, f(x_n, t)) \right) \right) \]

\[= \phi\left(\min\left\{ M(x_{n-1}, x_n, t), M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t) \right) \right) \]

\[= \phi\left(\min\left\{ M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t) \right) \right). \]

If \(\min\{M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t)\} = M(x_n, x_{n+1}, t) \) it leads a contradiction that \(M(x_n, x_{n+1}, t) > M(x_n, x_{n+1}, t) \). Hence \(\min\{M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t)\} = M(x_{n-1}, x_n, t) \). Thus we get

\[M(x_n, x_{n+1}, t) \geq \phi(M(x_{n-1}, x_n, t)). \]

Using the definition of \(\phi \), we get by induction that

\[M(x_n, x_{n+1}, t) \geq \phi^n(M(x_0, x_1, t)). \]
RESULTS ON CYCLIC ϕ-WEAK CONTRACTIONS IN FUZZY METRIC SPACES

Therefore, for any $p > 0$, we have

$$M(x_n, x_{n+p}, t) \geq T(M(x_n, x_{n+1}, t/p), M(x_{n+1}, x_{n+2}, t/p), \cdots, M(x_{n+p-1}, x_{n+p}, t/p))$$

$$\geq T(\phi^n(M(x_0, x_1, t/p)), \phi^{n+1}(M(x_0, x_1, t/p)), \cdots, \phi^{n+p-1}(M(x_0, x_1, t/p)))$$

$$= T_{i=0}^{p-1} \phi^{n+i}(M(x_0, x_1, t/p)).$$

According to Lemma [2.1], for every $i \in 0, 1, \cdots, p - 1$, we obtain that $\lim_{n \to \infty} \phi^{n+i}(M(x_0, x_1, t/p)) = 1$. As T is continuous t-norm, $M(x_n, x_{n+p}, t) \to 1$ as $n \to \infty$. It shows that $\{x_n\}_{n \geq 0}$ is a G-Cauchy sequence in the G-complete subspace Y. Hence there is $x' \in Y$ such that $\lim_{n \to \infty} x_n = x'$.

Using the condition (i) in this theorem, it follows that the iterative sequence $\{x_n\}_{n \geq 0}$ has an infinite number of terms in each $A_i, i = 1, 2, \cdots, m$. Since Y is G-complete, from each $A_i, i = 1, 2, \cdots, m$, we can extract a subsequence of $\{x_n\}_{n \geq 0}$ which converges to x' as well. Because each $A_i, i = 1, 2, \cdots, m$ is closed, we conclude that $x' \in \bigcap_{i=1}^{m} A_i$ and thus $\bigcap_{i=1}^{m} A_i$ is non empty.

Set $Z = \bigcap_{i=1}^{m} A_i$ Obviously, Z is also closed and G-complete. Consider the restriction of f to Z, that is, $f|_Z : Z \to Z$. Next, we will prove that $f|_Z$ has a unique fixed point in $Z \subset Y$. Now $x' \in Z$, since $f|_Z(x') \in Z$ and $x_n \in A_{i_n}$, we can choose A_{i_n+1} such that $f|_Z(x') \in A_{i_n+1}$. Hence, for any $t > 0$, we have

$$M(f|_Z(x'), x', t) = M(f(x'), x', t)$$

$$\geq T(M(f(x'), f(x_n), t/2), M(x_{n+1}, x', t/2))$$

$$\geq T(\phi(x', x_n, t/2), M(x_{n+1}, x', t/2)) \to T(1, 1) = 1(n \to \infty).$$

Clearly, we get $f|_Z(x') = x'$, namely, x' a fixed point, which is obtained by iteration from starting point x_0. To show uniqueness, we assume that $z \in \bigcap_{i=1}^{m} A_i$ is another fixed point of $f|_Z$. Since $x', z \in A_i$ for all $i \in N$, we can obtain

$$M(x', z, t) = M(f|_Z(x'), f|_Z(z), t)$$

$$= M(f(x'), f(z), t)$$

$$\geq \phi(\min M(x', z, t), M(x', f(x'), t), M(z, f(z), t))$$

$$> M(x', z, t).$$
This leads to a contradiction. Thus, x' is the unique fixed point of $f|_{Z}$ for any starting point $x_0 \in Z \subseteq Y$. Now, we still have to prove that the iterative sequence x_n, $n \geq 0$ converges to x' for any initial point $x_0 \in Y$. Let $x \in Y = \bigcup_{i=1}^{m} A_i$, there exists $i_0 \in 1, 2, \ldots, m$ such that $x \in A_{i_0}$. As $x' \in \bigcap_{i=1}^{m} A_i$, it follows that $x' \in A_{i_0+1}$ as well. Then, for any $t > 0$, we have

$$M(f(x), f(x'), t) \geq \phi(M(x, x', t)).$$

By induction and Definition [2.6], we can obtain

$$M(x_n, x', t) = M(f_n(x_0), x', t)$$
$$= M(f_n(x_0), f(x'), t)$$
$$= M(f(f_{n-1}(x_0)), f(x'), t)$$
$$\geq \phi(\min\{M(f_{n-1}(x_0), x', t), M(f_{n-1}(x_0), f(f_{n-1}(x_0)), t), M(x', f(x'), t)\})$$
$$\geq \phi(M(f_{n-1}(x_0), x', t))$$
$$\geq \phi^n(M(x_0, x', t)).$$

Supposing $x_0 \neq x'$, it follows immediately that $x_n \to x'$ as $n \to \infty$. So the iterative sequence $\{x_n\}, n \geq 0$ converges to the unique fixed point x' of f for any starting point $x_0 \in Y$.

Definition 3.1. Let (X, M, T) be a fuzzy metric space, m a positive integer, $A_1, A_2, \ldots, A_m \in P_c(X), Y = \bigcup_{i=1}^{m} A_i$ and $f : Y \to Y$ an operator. If

(i) $\bigcup_{i=1}^{m} A_i$ is cyclic representation of Y with respect to f;
(ii) there exists a comparison function $\psi : [0, 1] \to [0, 1]$ such that

$$M(fx, fy, t) \geq \psi(\min\{M(x, y, t), M(x, fx, t), M(y, fy, t)\}),$$

for any $x \in A_i, y \in A_{i+1}$ and $t > 0$, where $A_{m+1} = A_1$, then f is called cyclic ψ-contraction in the fuzzy metric space (X, M, T).

Theorem 3.2. Let (X, M, T) be a G-complete fuzzy metric space, m a positive integer, $A_1, A_2, \ldots, A_m \in P_c(X), Y = \bigcup_{i=1}^{m} A_i, \phi : [0, 1] \to [0, 1]$ a comparison function and $f : Y \to Y$ an operator. Assume that

(i) $\bigcup_{i=1}^{m} A_i$ is cyclic representation of Y with respect to f;

(ii) f is a cyclic ψ-contraction.

Then f has a unique fixed point $x' \in \bigcap_{i=1}^{m} A_i$ and the iterative sequence $\{x_n\}_{n \geq 0}, (x_n = f(x_{n-1})) n \in N$ converges to x' for any starting point $x_0 \in Y$.

Proof. Let the point $x_0 \in Y = \bigcap_{i=1}^{m} A_i$ be a starting point. Since $x_n = f(x_{n-1})(n \geq 1)$, we have $M(x_n, x_{n+1}, t) = M(f(x_{n-1}), f(x_n), t)$ for any $t > 0$. Besides, for any $n \geq 0$, there exists $i_n \in 1, 2, \ldots, m$ such that $x_n \in A_{i_n}$ and $x_{n+1} \in A_{i_{n+1}}$. Therefore, we can get

$$M(x_n, x_{n+1}, t) = M(f(x_{n-1}), f(x_n), t)$$

$$\geq \psi(\min\{M(x_{n-1}, x_n, t), M(x_{n-1}, f(x_{n-1}), t), M(x_n, f(x_{n-1}), t)\})$$

$$= \psi(\min\{M(x_{n-1}, x_n, t), M(x_{n-1}, x_n, t), M(x_n, x_n, t)\})$$

$$= \psi(\min\{M(x_{n-1}, x_n, t), 1\})$$

$$= \psi(M(x(n-1), x_n, t)).$$

Consider the definition of ψ, we get by induction that

$$M(x_n, x_{n+1}, t) \geq \psi^n(M(x_0, x_1, t)).$$

Thus, for any $p > 0$, we have

$$M(x_n, x_{n+p}, t) \geq T(M(x_n, x_{n+1}, t/p), M(x_{n+1}, x_{n+2}, t/p), \ldots, M(x_{n+p-1}, x_{n+p}, t/p))$$

$$\geq T(\psi^n(M(x_0, x_1, t/p)), \psi^{n+1}(M(x_0, x_1, t/p)), \ldots, \psi^{n+p-1}(M(x_0, x_1, t/p)))$$

$$= T_{i=0}^{p-1} \psi^{n+i}(M(x_0, x_1, t/p)).$$

Using Lemma [2.1], for every $i \in 0, 1, \ldots, p - 1$, we obtain that $\lim_{n \to \infty} \psi^{n+i}(M(x_0, x_1, t/p)) = 1$. As T is continuous t-norm, $M(x_n, x_{n+p}, t) \to 1$ as $n \to \infty$. It shows that $\{x_n\}_{n \geq 0}$ is a G-Cauchy sequence in the G-complete subspace Y. So there exists $x' \in Y$ such that $\lim_{n \to \infty} x_n = x'$.

Now using the condition (i) in this theorem, it follows that the iterative sequence $\{x_n\}_{n \geq 0}$ has an infinite number of terms in each $A_i, i = 1, 2, \ldots, m$. Since Y is G-complete, from each $A_i, i = 1, 2, \ldots, m$, one can extract a subsequence of $\{x_n\}_{n \geq 0}$ which converges to x' as well. Because each $A_i, i = 1, 2, \ldots, m$ is closed, we conclude that $x' \in \bigcap_{i=1}^{m} A_i$ and thus $\bigcap_{i=1}^{m} A_i$ is non empty. Set $Z = \bigcap_{i=1}^{m} A_i$. Obviously, Z is also closed and G-complete. Consider the restriction of
Next, we will prove that \(f|_Z \) has a unique fixed point in \(Z \subset Y \). For the foregoing \(x' \in Z \), since \(f|_Z(x') \in Z \) and \(x_n \in A_{i_n} \), we can choose \(A_{i_{n+1}} \) such that \(f|_Z(x') \in A_{i_{n+1}} \).

Hence, for any \(t > 0 \), we have

\[
M(f|_Z(x'), x', t) = M(f(x'), x', t) \\
\geq T(M(f(x'), f(x_n), t/2), M(x_n+1, x', t/2)) \\
\geq T(\psi(x', x_n, t/2), M(x_n+1, x', t/2)) \to T(1, 1) = 1(n \to \infty).
\]

Clearly, we get \(f|_Z(x') = x' \) namely, \(x' \) a fixed point, which is obtained by iteration from starting point \(x_0 \). To show uniqueness, we assume that \(z \in \bigcap_{i=1}^m A_i \) is another fixed point of \(f|_Z \). Since \(x', z \in A_i \) for all \(i \in N \), we can obtain

\[
M(x', z, t) = M(f|_Z(x'), f|_Z(z), t) \\
= M(f(x'), f(z), t) \\
\geq \psi(\min M(x', z, t), M(x', f(x'), t), M(z, f(x'), t)) \\
> M(x', z, t).
\]

This leads to a contradiction. Thus, \(x' \) is the unique fixed point of \(f|_Z \) for any starting point \(x_0 \in Z \subset Y \). Now, we still have to prove that the iterative sequence \(x_n \geq 0 \) converges to \(x' \) for any initial point \(x_0 \in Y \). Let \(x \in Y = \bigcup_{i=1}^m A_i \), there exists \(i_0 \in 1, 2, \ldots, m \) such that \(x \in A_{i_0} \). As \(x' \in \bigcap_{i=1}^m A_i \), it follows that \(x' \in A_{i_{0+1}} \) as well. Then, for any \(t > 0 \), we have

\[
M(f(x), f(x'), t) \geq \psi(M(x, x', t)).
\]

By induction and Definition [2.6], we can obtain

\[
M(x_n, x', t) = M(f_n(x_0), x', t) \\
= M(f_n(x_0), f(x'), t) \\
= M(f(f_n(x_0)), f(x'), t)
\]
\[\geq \psi(\min\{(M(f_{n-1}(x_0),x',t),M(f_{n-1}(x_0),f(f_{n-1}(x_0)),t),M(x',f(f_{n-1}(x_0)),t))\}) \]
\[\geq \psi(M(f_{n-1}(x_0),x',t)) \]
\[\geq \psi^{n}(M(x_0,x',t)). \]

Supposing \(x_0 \neq x' \), it follows immediately that \(x_n \to x' \) as \(n \to \infty \). So the iterative sequence \(\{x_n\}, n \geq 0 \) converges to the unique fixed point \(x' \) of \(f \) for any starting point \(x_0 \in Y \).

Theorem 3.3. Let \(f : Y \to Y \) be a self-mapping as in Theorem [3.1]. If there exists an iterative sequence \(\{y_n\} n \in N \) in \(Y \) such that \(M(y_n,f(y_n),t) \to 1 \) as \(n \to \infty \) for any \(t > 0 \), then \(y_n \to x' \) as \(n \to \infty \).

Proof. In view the proof of Theorem [3.1], we can find \(x' \) as unique fixed point of \(f \) for any starting point \(x_0 \in Y \). Therefore, for any \(t > 0 \), we have

\[1 \geq M(y_n,x',t) \geq T(M(y_n,f(y_n),t/2),M(f(y_n),f(x'),t/2)) \]
\[\geq T(M(y_n,f(y_n),t/2),\phi(\min\{M(y_n,x',t/2),M(y_n,f(y_n),t/2),M(x',f(x'),t/2)\})) \]
\[T(M(y_n,f(y_n),t/2),\phi^{n}(M(x_0,x',t/2))). \]

Since \(M(y_n,f(y_n),t/2) \to 1 \) and \(\phi^{n}(M(x_0,x',t/2)) \to 1 \) as \(n \to \infty \), it shows that \(M(y_n,x',t) \to 1 \) which is equivalent to \(y_n \to x' \) as \(n \to \infty \).

Theorem 3.4. Let \(f : Y \to Y \) be a self-mapping as in Theorem [3.1]. If there exists a convergent sequence \(\{y_n\} n \in N \) in \(Y \) such that \(M(y_{n+1},f(y_n),t) \to 1 \) as \(n \to \infty \) for any \(t > 0 \), then there exists \(x_0 \in Y \) such that \(M(y_n,f^n(x_0),t) \to 1 \) as \(n \to \infty \).

Proof. For any \(t > 0 \), let \(y_n \in Y, n \in N \) such that \(M(y_{n+1},f(y_n),t) \to 1, n \to \infty \). Set \(y \) as a limit of \(\{y_n\} n \in N \). By the proof of previous Theorem we note that \(x' \in \cap_{i=1}^{n} A_i \) is the unique fixed point of \(f \) for any starting point \(x_0 \in Y \) and \(t > 0 \). Therefore, for any \(t = t_1 + t_2 \) with \(t_1, t_2 > 0 \) and \(n \geq 0 \), we have

\[M(y_{n+1},x',t) \geq T(M(y_{n+1},f(y_n),t_1),M(f(y_n),f(x'),t_2)). \]

Now, Suppose that \(M(y_{n+1},x',t) \neq 1, n \to \infty \), there exists \(0 < \varepsilon < 1 \) and \(t > 0 \) such that

\[\lim_{n \to \infty} M(y_{n+1},x',t) = M(y,x',t) = 1 - \varepsilon. \]
Then there exists $0 < t_0 < t$ such that

$$M(y, x', t_0) \leq 1 - \varepsilon$$

and

$$\limsup_{n \to \infty} M(y_n, x', t_0) = 1 - \varepsilon.$$

Since $y_n \in Y = \bigcup_{i=1}^{m} A_i$ for each $n \geq 0$, there is $i_n \in 1, 2, \cdots, m$ such that $y_n \in A_{i_n}$. But $x' \in \bigcap_{i=1}^{m} A_i$, so we can select one $A_{i_{n+1}}$ such that $x' \in A_{i_{n+1}}$. Therefore, we can obtain

$$M(y_{n+1}, x', t) \geq T(M(y_{n+1}, f(y_n), t - t_0), \phi(M(y_n, x', t_0))), n \geq 0.$$

As T is continuous t-norm, we have

$$1 - \varepsilon = \lim_{n \to \infty} M(y_{n+1}, x', t) = M(y, x', t)$$

$$\geq \limsup_{n \to \infty} T(M(y_{n+1}, f(y_n), t - t_0), \phi(M(y_n, x', t_0)))$$

$$= T(\limsup_{n \to \infty} M(y_{n+1}, f(y_n), t - t_0), \limsup_{n \to \infty} \phi(M(y_n, x', t_0)))$$

$$= T(1, \limsup_{n \to \infty} \phi(M(y_n, x', t_0)))$$

$$= T(1, \limsup_{n \to \infty} \phi(M(y_n, x', t_0)))$$

$$= \phi(1 - \varepsilon) > 1 - \varepsilon,$$

which is a contradiction. Hence, $M(y, x', t) = 1$, namely, $y = x'$. Thus, for any $t > 0$, we have

$$M(y_n, f^n(x_0), t) \to M(y, x', t) \text{ as } n \to \infty.$$

Theorem 3.5. Let $f : Y \to Y$ be a self-mapping as in Theorem [3.1] and $f_n : Y \to Y, n \in N$. Moreover if the following three conditions hold:

(i) there exists a fixed point x'_n for each f_n;

(ii) $\{f_n\}n \in N$ converges uniformly to f;

(iii) the sequence $x'_n, n \in N$ is convergent.

Then, $x'_n \to x'$ as $n \to \infty$.

Proof. Suppose that $x'_n n \in N$ converges to x''. Since $\{f_n\}, n \in N$ converges uniformly to f, for any $\varepsilon \in (0, 1)$ and $t > 0$, there exists an $n_0 \in N$ such that $M(f_n(x), f(x), t) > 1 - \varepsilon$ for all
$n \geq n_0$ and $x \in Y$. That is, for every $x \in Y, M(f_n(x), f(x), t) \to 1$ as $n \to \infty$. By induction, for any $t = t_1 + t_2$ with $t_1, t_2 > 0$, we can easily get $M(x'_n, x', t) = M(f_n(x'_n), f(x'), t_1 + t_2)$

\[
\begin{align*}
&\geq T(M(f_n(x'_n), f(x'_n), t_1), M(f(x'_n), f(x'), t_2)) \\
&\geq T(M(f_n(x'_n), f(x'_n), t_1), \phi(\min\{M(x'_n, x', t_2), M(x'_n, f(x'_n), t_2), M(x', f(x'), t_2)\})) \\
&= T(M(f_n(x'_n), f(x'_n), t_1), \phi(M(x'_n, x', t_2))).
\end{align*}
\]

Now, let us assume that $x'_n \neq x'$ as $n \to \infty$, i.e., there exist $\eta \in (0, 1)$ and $t > 0$ such that

\[
\lim_{n \to \infty} M(x'_n, x', t) = M(x''_n, x', t) = 1 - \eta.
\]

Then there exists $0 < t_0 < t$ such that $M(x'', x', t_0) \leq 1 - \eta$

and

\[
\limsup_{n \to \infty} M(x'_n, x', t_0) = 1 - \eta.
\]

Thus, we can have

\[
1 - \eta = \lim_{n \to \infty} M(x'_n, x', t) = M(x'', x', t)
\]

\[
\geq \limsup_{n \to \infty} T(M(f_n(x'_n), f(x_n), t - t_0), \phi(\min\{M(x'_n, x', t_0), M(x'_n, f(x'_n), t_0), M(x', f(x'), t_0)\}))
\]

\[
= \limsup_{n \to \infty} T(M(f_n(x'_n), f(x_n), t - t_0), \phi(M(x'_n, x', t_0)))
\]

\[
= T(1, \limsup_{n \to \infty} \phi(M(x'_n, x', t_0)))
\]

\[
= \limsup_{n \to \infty} \phi(M(x'_n, x', t_0))
\]

\[
= \phi(1 - \eta) > 1 - \eta,
\]

which is not true. Hence, $M(x'_n, x', t) \to 1$ as $n \to \infty$, i.e., $x'_n \to x'$ as $n \to \infty$.

Theorem 3.6. Let (X, M, T) be a G-complete fuzzy metric space, m a positive integer, $A_1, A_2, \cdots, A_m \in P_{cl}(X), Y = \bigcup_{i=1}^m A_i, \phi : [0, 1] \to [0, 1]$ a comparison function and $f : Y \to Y$ an operator. Assume that
(i) $\bigcup_{i=1}^{m} A_i$ is cyclic representation of Y with respect to f;
(ii) f is a cyclic ψ-contraction.

If there exists an iterative sequence $\{y_n\}_{n \in \mathbb{N}}$ in Y such that $M(y_n, f(y_n), t) \to 1$ as $n \to \infty$ for any $t > 0$, then $y_n \to x'$ as $n \to \infty$.

Theorem 3.7. Let (X, M, T) be a G-complete fuzzy metric space, m a positive integer, $A_1, A_2, \cdots, A_m \in \mathcal{P}_{cl}(X)$, $Y = \bigcup_{i=1}^{m} A_i$, $\phi : [0, 1] \to [0, 1]$ a comparison function and $f : Y \to Y$ an operator. Assume that

(i) $\bigcup_{i=1}^{m} A_i$ is cyclic representation of Y with respect to f;
(ii) f is a cyclic ψ-contraction.

and $f_n : Y \to Y, n \in \mathbb{N}$. Moreover if the following three conditions hold:

(iii) there exists a fixed point x'_n for each f_n;
(iv) $\{f_n\}_{n \in \mathbb{N}}$ converges uniformly to f;
(v) the sequence $x'_n, n \in \mathbb{N}$ is convergent.

Then, $x'_n \to x'$ as $n \to \infty$.

Theorem 3.8. Let (X, M, T) be a G-complete fuzzy metric space, m a positive integer, $A_1, A_2, \cdots, A_m \in \mathcal{P}_{cl}(X)$, $Y = \bigcup_{i=1}^{m} A_i$, $\phi : [0, 1] \to [0, 1]$ a comparison function and $f : Y \to Y$ an operator. Assume that

(i) $\bigcup_{i=1}^{m} A_i$ is cyclic representation of Y with respect to f;
(ii) f is a cyclic ψ-contraction.

If there exists a convergent sequence $\{y_n\}_{n \in \mathbb{N}}$ in Y such that $M(y_{n+1}, f(y_n), t) \to 1$ as $n \to \infty$ for any $t > 0$, then there exists $x_0 \in Y$ such that $M(y_n, f^n(x_0), t) \to 1$ as $n \to \infty$.

Conflict of Interests

The authors declare that there is no conflict of interests.

References

[13] D. Qiu, L. Shu and J. Guan, Common fixed point theorems for fuzzy mappings under \(\phi \)-contraction condition, Chaos, Solitons and Fractals, 41 (2009), 360-367.

