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Abstract. We develop the fixed point theorems for φ -weak contractions in fuzzy metric spaces. We also define

ψ-weak contractive condition and establish the fixed point in G-complete fuzzy metric spaces.
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1. Introduction

Grabiec [5] established the Banach contraction theorem and Edelstein fixed point theorem in

fuzzy metric spaces. Vasuki [16] generalised Grabiec’s fuzzy Banach contraction. In Vasuki

[16] defined a generalization of Grabiecs fuzzy Banach contraction theorem and proved a com-

mon fixed point theorem for a sequence of mappings in a fuzzy metric space. Cho [4] defined

the concept of compatible mappings and proved common fixed point theorems in fuzzy metric

spaces. Pacurar and Rusin [12] introduced the concept of φ -contraction. They developed some

fixed point theorems using cyclic φ - contraction in complete metric space. Based on these ideas

Shen et.al [14] came up with notion of cyclic φ - contraction in fuzzy metric spaces. In addition,
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several problems in connection with the fixed point are investigated. In this paper, we generalize

the fixed point theorems of Shen et. al in G-fuzzy metric spaces.

2. Preliminaries

Definition 2.1. [18] A binary operation T : [0,1]× [0,1]→ [0,1] is called a continuous triangular

norm (in short, continuous t-norm) if it satisfies the following conditions:

(i) T is commutative and associative;

(ii) T is continuous;

(iii) T (a,1) = a,∀a ∈ [0,1];

(iv) T (a,b)≤ T (c,d) whenever a≤ b and c≤ d. a,b,c,d ∈ [0,1].

Generally t-norm T can be expressed (by associativity) in a unique way to an n-ary operator

taking for (x1,x2, · · · ,xn) ∈ [0,1]n,n ∈ N, the value T (x1,x2, · · · ,xn) is defined, in [11], by

T 0
i=1 = T n

i=1xi = T (T n−1
i=1 xi,xn) = T (x1,x2, · · · ,xn).

Definition 2.2.[12] Let X be a nonempty set, m a positive integer and f : X → X an operator.

X =
⋃m

i=1 Xi is a cyclic representation of X with respect to f if

(1) Xi, i = 1,2, · · · ,m are nonempty sets;

(2) f (X1)⊂ X2, · · · , f (Xm−1)⊂ Xm, f (Xm)⊂ X1.

Definition 2.3. [3] A fuzzy metric space is an ordered triple (X ,M,T ) such that X is a nonempty

set, T is a continuous t-norm and M is a fuzzy set on X ×X × (0,∞) satisfying the following

conditions, for all x,y,z ∈ X ,s, t > 0:

(i) M(x,y, t)> 0;

(ii) M(x,y, t) = 1 if and only if x = y;

(iii) M(x,y, t) = M(y,x, t);

(iv) T
(

M(x,y, t),M(y,z,s)
)
≤M(x,z, t + s);

(v) M(x,y, ·) : (0,∞)→ (0,1] is continuous.

Definition 2.4. [5] Let (X ,M,T ) be a fuzzy metric space. Then
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(i) A sequence {xn} in X is said to converge to x ∈ X , denoted by xn → x, if and only if

limn→∞ M(xn,x, t) = 1 for all t > 0, i.e. for each r ∈ (0,1) and t > 0, there exists n0 ∈ N

such that M(xn,x, t)> 1− r for all n≥ n0.

(ii) A sequence {xn} is a G-Cauchy sequence if and only if limn→∞ M(xn+p,xn, t) = 1 for any

p > 0 and t > 0.

(iii) The fuzzy metric space (X ,M,T ) is called G-complete if every G-Cauchy sequence is

convergent.

Definition 2.5. [14] A function φ : [0,1]→ [0,1] is called a comparison function if it satisfies

(1) φ is nondecreasing and left continuous;

(2) φ(t)> t for all t ∈ (0,1).

Lemma 2.1. [14] If φ be a comparison function, then

(i) φ(1) = 1

(ii) limn→+∞ φ n(t) = 1 for all t ∈ (0,1), where φ n(t) denotes the composition of φ(t) with

itself n times.

With the inspiration from cyclic φ -contraction in [14] we present a contraction in fuzzy metric

space, with Pcl , the collection of closed subsets of X .

Definition 2.6. Let (X ,M,T ) be a fuzzy metric space, m a positive integer, A1,A2, · · · ,Am ∈

Pcl(X),Y =
⋃m

i=1 Ai and f : Y → Y an operator. If

(i)
⋃m

i=1 Ai is cyclic representation of Y with respect to f ;

(ii) there exists a comparison function φ : [0,1]→ [0,1] such that

M( f x, f y, t)≥ φ(min{M(x,y, t),M(x, f x, t),M(y, f y, t)})

for any x ∈ Ai,y ∈ Ai+1 and t > 0, where Am+1 = A1, then f is called cyclic φ - weak

contraction in the fuzzy metric space (X ,M,T ).

Definition 2.7. [14] Let (X ,M,T ) be a fuzzy metric space and let { fn} be a sequence of self-

mappings on X . f0 : X→X is a given mapping. The sequence { fn} is said to converge uniformly

to f0 if for each ε ∈ (0,1) and t > 0, there exists n0 ∈ N such that

M( fn(x), f0(x), t)> 1− ε
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for all n≥ n0 and x ∈ X .

3. Main results

Theorem 3.1. Let (X ,M,T ) be a G-complete fuzzy metric space, m a positive integer, A1,A2, · · · ,Am ∈

Pcl(X),Y =
⋃m

i=1 Ai,φ : [0,1]→ [0,1] a comparison function and f : Y →Y an operator. Assume

that

(i)
⋃m

i=1 Ai is cyclic representation of Y with respect to f ;

(ii) f is a cyclic φ -weak contraction.

Then f has a unique fixed point x′ ∈
⋂m

i=1 Ai and the iterative sequence {xn}n≥0,(xn = f (xn−1)n∈

N) converges to x′ for any starting point x0 ∈ Y .

Proof. Let x0 ∈ Y =
⋂m

i=1 Ai be starting point, since xn = f (xn1)(n≥ 1), we have

M(xn,xn+1, t) = M( f (xn−1), f (xn), t) f or any t > 0.

For any n ≥ 0, there exists in ∈ 1,2, · · · ,m such that xn ∈ Ain and xn+1 ∈ Ain+1. Therefore, we

can get

M(xn,xn+1, t) = M( f (xn−1), f (xn), t)

≥ φ(min{(M(xn−1,xn, t),M(xn−1, f xn−1, t),M(xn, f xn, t))})

= φ(min{M(xn−1,xn, t),M(xn−1,xn, t),M(xn,xn+1, t)})

= φ(min{M(xn−1,xn, t),M(xn,xn+1, t)}).

If min{M(xn−1,xn, t),M(xn,xn+1, t)}=M(xn,xn+1, t) It leads a contradiction that M(xn,xn+1, t)>

M(xn,xn+1, t). Hence min{M(xn−1,xn, t),M(xn,xn+1, t)}= M(xn−1,xn, t). Thus we get

M(xn,xn+1, t)≥ φ(M(xn−1,xn, t)).

Using the definition of φ , we get by induction that

M(xn,xn+1, t)≥ φ
n(M(x0,x1, t)).
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Therefore, for any p > 0, we have

M(xn,xn+p, t)≥ T (M(xn,xn+1, t/p),M(xn+1,xn+2, t/p), · · · ,M(xn+p−1,xn+p, t/p))

≥ T (φ n(M(x0,x1, t/p)),φ n+1(M(x0,x1, t/p)), · · · ,φ n+p−1(M(x0,x1, t/p))

= T p−1
i=0 φ

n+i(M(x0,x1, t/p)).

According to Lemma [2.1], for every i∈ 0,1, · · · , p−1, we obtain that limn→∞ φ n+i(M(x0,x1, t/p))=

1. As T is continuous t-norm, M(xn,xn+p, t)→ 1 as n→∞. It shows that {xn}n≥0 is a G-Cauchy

sequence in the G-complete subspace Y . Hence there is x′ ∈ Y such that limn→∞ xn = x′.

Using the condition (i) in this theorem, it follows that the iterative sequence {xn}n≥0 has an

infinite number of terms in each Ai, i = 1,2, · · · ,m. Since Y is G-complete, from each Ai, i =

1,2, · · · ,m, we can extract a subsequence of {xn}n≥0 which converges to x′ as well. Because

each Ai, i = 1,2, · · · ,m is closed, we conclude that x′ ∈
⋂m

i=1 Ai and thus
⋂m

i=1 Ai is non empty.

Set Z =
⋂m

i=1 Ai Obviously, Z is also closed and G-complete. Consider the restriction of f to Z,

that is, f |Z : Z→ Z. Next, we will prove that f |Z has a unique fixed point in Z ⊂Y . Now x′ ∈ Z,

since f |Z(x′) ∈ Z and xn ∈ Ain, we can choose Ain+1 such that f |Z(x′) ∈ Ain+1 . Hence, for any

t > 0, we have

M( f |Z(x′),x′, t) = M( f (x′),x′, t)

≥ T (M( f (x′), f (xn), t/2),M(xn+1,x′, t/2))

≥ T (φ(x′,xn, t/2),M(xn+1,x′, t/2))→ T (1,1) = 1(n→ ∞).

Clearly, we get f |Z(x′) = x′, namely, x′ a fixed point, which is obtained by iteration from starting

point x0. To show uniqueness, we assume that z ∈
⋂m

i=1 Ai is another fixed point of f |Z. Since

x′,z ∈ Ai for all i ∈ N, we can obtain

M(x′,z, t) = M( f |Z(x′), f |Z(z), t)

= M( f (x′), f (z), t)

≥ φ(minM(x′,z, t),M(x′, f (x′), t),M(z, f (z), t))

> M(x′,z, t).



72 M. T. SHIRUDE, C. T. AAGE

This leads to a contradiction. Thus, x′ is the unique fixed point of f |Z for any starting point

x0 ∈ Z ⊂ Y . Now, we still have to prove that the iterative sequence xn,n≥ 0 converges to x′ for

any initial point x0 ∈ Y . Let x ∈ Y =
⋃m

i=1 Ai, there exists i0 ∈ 1,2, · · · ,m such that x ∈ Ai0 . As

x′ ∈
⋂m

i=1 Ai, it follows that x′ ∈ Ai0+1 as well. Then, for any t > 0, we have

M( f (x), f (x′), t)≥ φ(M(x,x′, t)).

By induction and Definition [2.6], we can obtain

M(xn,x′, t) = M( fn(x0),x′, t)

= M( fn(x0), f (x′), t)

= M( f ( fn−1(x0)), f (x′), t)

≥ φ(min{(M( fn−1(x0),x′, t),M( fn−1(x0), f ( fn−1(x0)), t),M(x′, f (x′), t))})

≥ φ(M( fn−1(x0),x′, t))

≥ φ
n(M(x0,x′, t)).

Supposing x0 6= x′, it follows immediately that xn → x′ as n→ ∞. So the iterative sequence

{xn},n≥ 0 converges to the unique fixed point x′ of f for any starting point x0 ∈ Y .

Definition 3.1. Let (X ,M,T ) be a fuzzy metric space, m a positive integer, A1,A2, · · · ,Am ∈

Pcl(X),Y =
⋃m

i=1 Ai and f : Y → Y an operator. If

(i)
⋃m

i=1 Ai is cyclic representation of Y with respect to f ;

(ii) there exists a comparison function ψ : [0,1]→ [0,1] such that

M( f x, f y, t)≥ ψ(min{M(x,y, t),M(x, f x, t),M(y, f x, t)}),

for any x∈Ai,y∈Ai+1 and t > 0, where Am+1 =A1, then f is called cyclic ψ-contraction

in the fuzzy metric space (X ,M,T ).

Theorem 3.2. Let (X ,M,T ) be a G-complete fuzzy metric space, m a positive integer, A1,A2, · · · ,Am ∈

Pcl(X),Y =
⋃m

i=1 Ai,φ : [0,1]→ [0,1] a comparison function and f : Y →Y an operator. Assume

that

(i)
⋃m

i=1 Ai is cyclic representation of Y with respect to f ;
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(ii) f is a cyclic ψ-contraction.

Then f has a unique fixed point x′ ∈
⋂m

i=1 Ai and the iterative sequence {xn}n≥0,(xn = f (xn−1)n∈

N) converges to x′ for any starting point x0 ∈ Y .

Proof. Let the point x0 ∈ Y =
⋂m

i=1 Ai be a starting point. Since xn = f (xn−1)(n ≥ 1), we

have M(xn,xn+1, t) = M( f (xn−1), f (xn), t) for any t > 0. Besides, for any n ≥ 0, there exists

in ∈ 1,2, · · · ,m such that xn ∈ Ain and xn+1 ∈ Ain+1. Therefore, we can get

M(xn,xn+1, t) = M( f (xn−1), f (xn), t)

≥ ψ(min{(M(xn−1,xn, t),M(xn−1, f xn−1, t),M(xn, f xn−1, t))})

= ψ(min{M(xn−1,xn, t),M(xn−1,xn, t),M(xn,xn, t)})

= ψ(min{M(xn−1,xn, t),1})

= ψ(M(x(n−1),xn, t)).

Consider the definition of ψ , we get by induction that

M(xn,xn+1, t)≥ ψ
n(M(x0,x1, t)).

Thus, for any p > 0, we have

M(xn,xn+p, t)≥ T (M(xn,xn+1, t/p),M(xn+1,xn+2, t/p), · · · ,M(xn+p−1,xn+p, t/p))

≥ T (ψn(M(x0,x1, t/p)),ψn+1(M(x0,x1, t/p)), · · · ,ψn+p−1(M(x0,x1, t/p))

= T p−1
i=0 ψ

n+i(M(x0,x1, t/p)).

Using Lemma [2.1], for every i ∈ 0,1, · · · , p−1, we obtain that limn→∞ ψn+i(M(x0,x1, t/p)) =

1. As T is continuous t-norm, M(xn,xn+p, t)→ 1 as n→∞. It shows that {xn}n≥0 is a G-Cauchy

sequence in the G-complete subspace Y . So there exists x′ ∈ Y such that limn→∞ xn = x′.

Now using the condition (i) in this theorem, it follows that the iterative sequence {xn}n≥0

has an infinite number of terms in each Ai, i = 1,2, · · · ,m. Since Y is G-complete, from each

Ai, i = 1,2, · · · ,m, one can extract a subsequence of {xn}n≥0 which converges to x′ as well.

Because each Ai, i = 1,2, · · · ,m is closed, we conclude that x′ ∈
⋂m

i=1 Ai and thus
⋂m

i=1 Ai is non

empty. Set Z =
⋂m

i=1 Ai Obviously, Z is also closed and G-complete. Consider the restriction of
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f to Z, that is, f |Z : Z→ Z. Next, we will prove that f |Z has a unique fixed point in Z⊂Y . For the

foregoing x′ ∈ Z, since f |Z(x′) ∈ Z and xn ∈ Ain, we can choose Ain+1 such that f |Z(x′) ∈ Ain+1 .

Hence, for any t > 0, we have

M( f |Z(x′),x′, t) = M( f (x′),x′, t)

≥ T (M( f (x′), f (xn), t/2),M(xn+1,x′, t/2))

≥ T (ψ(x′,xn, t/2),M(xn+1,x′, t/2))→ T (1,1) = 1(n→ ∞).

Clearly, we get f |Z(x′) = x′ namely, x′ a fixed point, which is obtained by iteration from starting

point x0. To show uniqueness, we assume that z ∈
⋂m

i=1 Ai is another fixed point of f |Z. Since

x′,z ∈ Ai for all i ∈ N, we can obtain

M(x′,z, t) = M( f |Z(x′), f |Z(z), t)

= M( f (x′), f (z), t)

≥ ψ(minM(x′,z, t),M(x′, f (x′), t),M(z, f (x′), t))

> M(x′,z, t).

This leads to a contradiction. Thus, x′ is the unique fixed point of f |Z for any starting point

x0 ∈ Z ⊂ Y . Now, we still have to prove that the iterative sequence xnn≥ 0 converges to x′ for

any initial point x0 ∈ Y . Let x ∈ Y =
⋃m

i=1 Ai, there exists i0 ∈ 1,2, · · · ,m such that x ∈ Ai0 . As

x′ ∈
⋂m

i=1 Ai, it follows that x′ ∈ Ai0+1 as well. Then, for any t > 0, we have

M( f (x), f (x′), t)≥ ψ(M(x,x′, t)).

By induction and Definition [2.6], we can obtain

M(xn,x′, t) = M( fn(x0),x′, t)

= M( fn(x0), f (x′), t)

= M( f ( fn1(x0)), f (x′), t)
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≥ ψ(min{(M( fn−1(x0),x′, t),M( fn−1(x0), f ( fn−1(x0)), t),M(x′, f ( fn−1(x0)), t))})

≥ ψ(M( fn−1(x0),x′, t))

≥ ψ
n(M(x0,x′, t)).

Supposing x0 6= x′, it follows immediately that xn → x′ as n→ ∞. So the iterative sequence

{xn},n≥ 0 converges to the unique fixed point x′ of f for any starting point x0 ∈ Y .

Theorem 3.3. Let f : Y → Y be a self-mapping as in Theorem [3.1]. If there exists an iterative

sequence {yn}n ∈ N in Y such that M(yn, f (yn), t)→ 1 as n→ ∞ for any t > 0, then yn→ x′ as

n→ ∞.

Proof. In view the proof of Theorem [3.1], we can find x′ as unique fixed point of f for any

starting point x0 ∈ Y . Therefore, for any t > 0, we have

1≥M(yn,x′, t)≥ T (M(yn, f (yn), t/2),M( f (yn), f (x′), t/2))

≥ T (M(yn, f (yn), t/2),φ(min{M(yn,x′, t/2),M(yn, f (yn), t/2),M(x′, f (x′), t/2)}))

T (M(yn, f (yn), t/2),φ n(M(x0,x′, t/2))).

Since M(yn, f (yn), t/2)→ 1 and φ n(M(x0,x′, t/2))→ 1 as n→∞, it shows that M(yn,x′, t)→ 1

which is equivalent to yn→ x′ as n→ ∞.

Theorem 3.4. Let f : Y →Y be a self-mapping as in Theorem [3.1]. If there exists a convergent

sequence {yn}n∈N in Y such that M(yn+1, f (yn), t)→ 1 as n→∞ for any t > 0, then there exists

x0 ∈ Y such that M(yn, f n(x0), t)→ 1 as n→ ∞.

Proof. For any t > 0, let yn ∈Y,n∈N such that M(yn+1, f (yn), t)→ 1,n→∞. Set y as a limit of

{yn}n∈N . By the proof of previous Theorem we note that x′ ∈
⋂m

i=1 Ai is the unique fixed point

of f for any starting point x0 ∈ Y and t > 0. Therefore, for any t = t1 + t2 with t1, t2 > 0 and

n≥ 0, we have

M(yn+1,x′, t)≥ T (M(yn+1, f (yn), t1),M( f (yn), f (x′), t2)).

Now, Suppose that M(yn+1,x′, t) 6= 1,n→ ∞, there exists 0 < ε < 1 and t > 0 such that

lim
n→∞

M(yn+1,x′, t) = M(y,x′, t) = 1− ε.
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Then there exists 0 < t0 < t such that

M(y,x′, t0)≤ 1− ε

and

limsup
n→∞

M(yn,x′, t0) = 1− ε.

Since yn ∈ Y =
⋃m

i=1 Ai for each n ≥ 0, there is in ∈ 1,2, · · · ,m such that yn ∈ Ain . But x′ ∈⋂m
i=1 Ai, so we can select one Ain+1 such that x′ ∈ Ain+1 . Therefore, we can obtain

M(yn+1,x′, t)≥ T (M(yn+1, f (yn), t− t0),φ(M(yn,x′, t0))),n≥ 0.

As T is continuous t-norm , we have

1− ε = lim
n→∞

M(yn+1,x′, t) = M(y,x′, t)

≥ limsup
n→∞

T (M(yn+1, f (yn), t− t0),φ(M(yn,x′, t0)))

= T (limsup
n→∞

M(yn+1, f (yn), t− t0), limsup
n→∞

φ(M(yn,x′, t0)))

= T (1, limsup
n→∞

φ(M(yn,x′, t0)))

= T (1, limsup
n→∞

φ(M(yn,x′, t0)))

= φ(1− ε)> 1− ε,

which is a contradiction. Hence, M(y,x′, t) = 1, namely, y = x′. Thus, for any t > 0, we have

M(yn, f n(x0), t)→M(y,x′, t) as n→ ∞.

Theorem 3.5. Let f : Y → Y be a self-mapping as in Theorem [3.1] and fn : Y → Y,n ∈ N.

Moreover if the following three conditions hold:

(i) there exists a fixed point x′n for each fn;

(ii) { fn}n ∈ N converges uniformly to f ;

(iii) the sequence x′n,n ∈ N is convergent.

Then, x′n→ x′ as n→ ∞.

Proof. Suppose that x′nn ∈ N converges to x′′. Since { fn},n ∈ N converges uniformly to f ,

for any ε ∈ (0,1) and t > 0, there exists an n0 ∈ N such that M( fn(x), f (x), t) > 1− ε for all
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n ≥ n0 and x ∈ Y . That is, for every x ∈ Y,M( fn(x), f (x), t)→ 1 as n→ ∞. By induction, for

any t = t1 + t2 with t1, t2 > 0, we can easily get

M(x′n,x
′, t) = M( fn(x′n), f (x′), t1 + t2)

≥ T (M( fn(x′n), f (x′n), t1),M( f (x′n), f (x′), t2))

≥ T (M( fn(x′n), f (x′n), t1),φ(min{(M(x′n,x
′, t2),M(x′n, f (x′n), t2),M(x′, f (x′), t2))}))

= T (M( fn(x′n), f (x′n), t1),φ(M(x′n,x
′, t2))).

Now, let us assume that x′n 6= x′ as n→ ∞, i.e., there exist η ∈ (0,1) and t > 0 such that

lim
n→∞

M(x′n,x
′, t) = M(x′′,x′, t) = 1−η .

Then there exists 0 < t0 < t such that

M(x′′,x′, t0)≤ 1−η

and

limsup
n→∞

M(x′n,x
′, t0) = 1−η .

Thus, we can have

1−η = lim
n→∞

M(x′n,x
′, t) = M(x′′,x′, t)

≥ limsup
n→∞

T (M( fn(x′n), f (x,n ), t− t0),φ(min{(M(x′n,x
′, t0),M(x′n, f (x′n), t0),M(x′, f (x′), t0))})

= limsup
n→∞

T (M( fn(x′n), f (x,n ), t− t0),φ(M(x′n,x
′, t0))

= T (1, limsup
n→∞

φ(M(x′n,x
′, t0))

= limsup
n→∞

φ(M(x′n,x
′, t0))

= φ(1−η)> 1−η ,

which is not true. Hence, M(x′n,x
′, t)→ 1 as n→ ∞, i.e.,x′n→ x′ as n→ ∞.

Theorem 3.6. Let (X ,M,T ) be a G-complete fuzzy metric space, m a positive integer, A1,A2, · · · ,Am ∈

Pcl(X),Y =
⋃m

i=1 Ai,φ : [0,1]→ [0,1] a comparison function and f : Y →Y an operator. Assume

that
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(i)
⋃m

i=1 Ai is cyclic representation of Y with respect to f ;

(ii) f is a cyclic ψ-contraction.

If there exists an iterative sequence {yn}n∈N in Y such that M(yn, f (yn), t)→ 1 as n→ ∞ for

any t > 0, then yn→ x′ as n→ ∞.

Theorem 3.7. Let (X ,M,T ) be a G-complete fuzzy metric space, m a positive integer, A1,A2, · · · ,Am ∈

Pcl(X),Y =
⋃m

i=1 Ai,φ : [0,1]→ [0,1] a comparison function and f : Y →Y an operator. Assume

that

(i)
⋃m

i=1 Ai is cyclic representation of Y with respect to f ;

(ii) f is a cyclic ψ-contraction.

and fn : YtoY,n ∈ N. Moreover if the following three conditions hold:

(iii) there exists a fixed point x′n for each fn;

(iv) { fn}n ∈ N converges uniformly to f ;

(v) the sequence x′nn ∈ N is convergent.

Then, x′n→ x′ as n→ ∞.

Theorem 3.8. Let (X ,M,T ) be a G-complete fuzzy metric space, m a positive integer, A1,A2, · · · ,Am ∈

Pcl(X),Y =
⋃m

i=1 Ai,φ : [0,1]→ [0,1] a comparison function and f : Y →Y an operator. Assume

that

(i)
⋃m

i=1 Ai is cyclic representation of Y with respect to f ;

(ii) f is a cyclic ψ-contraction.

If there exists a convergent sequence {yn}n ∈ N in Y such that M(yn+1, f (yn), t)→ 1 as n→ ∞

for any t > 0, then there exists x0 ∈ Y such that M(yn, f n(x0), t)→ 1 as n→ ∞.
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