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Abstract. In this paper we consider a nonlinear fractional differential equation with weighted initial and nonlocal

condition and prove the existence and approximation of the solution. We also extend to prove the existence of

Maximal and Minimal solutions for a nonlinear fractional differential equation with weighted initial and nonlocal

conditions, and these maximal and minimal solution will serve as bounds for the nonlinear fractional differential

equation with weighted initial and nonlocal conditions.
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1. Introduction

In many engineering and scientific disciplines such as physics, chemistry, aerodynamics, elec-

trodynamics of complex medium, polymer rheology, economics, control theory, signal and im-

age processing, biophysics, blood flow phenomena, etc the fractional differential and integral

equations represents the processes in a more effective manner than by integer order. Because
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of this the subject of fractional order differential and integral equations became the interest of

mathematicians and researchers.

Nonlinear fractional differential equation with weighted initial data has been studied by several

authors. The weighted Cauchy-type problem

(1.1)
Dα(u(t)) = f (t,u(t))

t1−αu(t)|t=0 = b

Studied by Khaled et al [5].

The solution of the periodic boundary value problem for a fractional differential equation in-

volving a RiemannLiouville fractional derivative

(1.2)
Dα(u(t)) = f (t,u(t))

t1−αu(t)|t=0 = t1−αu(t)|t=T

Studied by Weia et al [6], Also the existence of solutions of fractional equations of Volterra type

with the RiemannLiouville derivative,

(1.3)
Dα(u(t)) = f (t,u(t),

∫ t

0
k(t,s)u(s)ds)

t1−αu(t)|t=0 = r

Studied by Jankowski [7]. The weighted nonlocal fractional differential equation

(1.4)

cDα(u(t)) = f (t,u(t))

lim
t→0+

t1−αu(t) =
m

∑
i=1

aiu(τi)

studied by Holambe et al[3, 4] etc. , and the references therein. Problems in nonlinear fractional

differential equation were studied by various researchers.

The immportance of non-local problems appears to have been first noted in the literature by

Bitsadze-Samarski[15]. By Byszewski[8, 9], the nonlocal condition can be more useful than

the standard initial contion to describe some physical phenomena.
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Now here we consider the weighted nonlocal fractional differential equation

(1.5)
Dα(u(t))+au(t) = f (t,u(t))

lim
t→0+

t1−αu(t) = u0

where Dα is Riemann-Liouville fractional derivatives of order 0 < α ≤ 1 and 0 < t ≤ T < ∞.

2. Auxiliary Results

let E denote a partially ordered real normed linear space with an order relation � and the norm

‖ ·‖. It is known that E is regular if {xn}n∈N is a nondecreasing (resp. nonincreasing) sequence

in E such that xn→ x∗ as n→∞, then xn � x∗ (resp. xn � x∗) for all n ∈N. Clearly, the partially

ordered Banach space C(J,R) is regular and the conditions guaranteeing the regularity of any

partially ordered normed linear space E may be found in Heikkilä and Lakshmikantham [?] and

the references therein.

We need the following definitions.

Definition 2.1. A mapping T : E → E is called isotone or nondecreasing if it preserves the

order relation �, that is, if x� y implies T x�T y for all x,y ∈ E.

Definition 2.2 ([13]). A mapping T : E→ E is called partially continuous at a point a ∈ E if

for ε > 0 there exists a δ > 0 such that ‖T x−T a‖ < ε whenever x is comparable to a and

‖x− a‖ < δ . T called partially continuous on E if it is partially continuous at every point

of it. It is clear that if T is partially continuous on E, then it is continuous on every chain C

contained in E.

Definition 2.3. A mapping T : E→E is called partially bounded if T (C) is bounded for every

chain C in E. T is called uniformly partially bounded if all chains T (C) in E are bounded by

a unique constant. T is called bounded if T (E) is a bounded subset of E.

Definition 2.4. A mapping T : E → E is called partially compact if T (C) is a relatively

compact subset of E for all totally ordered sets or chains C in E. T is called uniformly

partially compact if T (C) is a uniformly partially bounded and partially compact on E. T is
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called partially totally bounded if for any totally ordered and bounded subset C of E, T (C)

is a relatively compact subset of E. If T is partially continuous and partially totally bounded,

then it is called partially completely continuous on E.

Definition 2.5 ([13]). The order relation � and the metric d on a non-empty set E are said to

be compatible if {xn}n∈N is a monotone, that is, monotone nondecreasing or monotone nonin-

creasing sequence in E and if a subsequence {xnk}n∈N of {xn}n∈N converges to x∗ implies that

the original sequence {xn}n∈N converges to x∗. Similarly, given a partially ordered normed

linear space (E,�,‖ · ‖), the order relation � and the norm ‖ · ‖ are said to be compatible if �

and the metric d defined through the norm ‖ · ‖ are compatible.

Definition 2.6 ( [10]). An upper semi-continuous and monotone nondecreasing function ψ :

R+→ R+ is called a D-function provided ψ(r) = 0 iff r = 0. Let (E,�,‖ · ‖) be a partially

ordered normed linear space. A mapping T : E→ E is called partially nonlinear D-Lipschitz

if there exists a D-function ψ : R+→ R+ such that

(2.1) ‖T x−T y‖ ≤ ψ(‖x− y‖)

for all comparable elements x,y ∈ E. If ψ(r) = k r, k > 0, then T is called a partially Lipschitz

with a Lipschitz constant k.

Let (E,�,‖ · ‖) be a partially ordered normed linear algebra. Denote

E+ =
{

x ∈ E | x� θ , where θ is the zero element of E
}

and

(2.2) K = {E+ ⊂ E | uv ∈ E+ for all u,v ∈ E+}.

The elements of K are called the positive vectors of the normed linear algebra E. The

following lemma follows immediately from the definition of the set K and which is often

times used in the applications of hybrid fixed point theory in Banach algebras.

Lemma 2.7 ( [11]). If u1,u2,v1,v2 ∈K are such that u1 � v1 and u2 � v2, then u1u2 � v1v2.



NONLOCAL FRACTIONAL DIFFERENTIAL EQUATION 225

Definition 2.8. An operator T : E→ E is said to be positive if the range R(T ) of T is such

that R(T )⊆K .

The method may be stated as “the monotonic convergence of the sequence of successive

approximations to the solutions of a nonlinear equation beginning with a lower or an upper

solution of the equation as its initial or first approximation” which is a powerful tool in the

existence theory of nonlinear analysis. A few other hybrid fixed point theorems involving the

method may be found in [13, 14].

Theorem 2.9 ( [14]). Let
(
E,�,‖ · ‖

)
be a regular partially ordered complete normed linear

algebra such that the order relation � and the norm ‖ · ‖ in E are compatible in every compact

chain of E. Let A ,B : E→K be nondecreasing operators such that

(a) A is partially bounded and partially nonlinear D-Lipschitz with D-function ψA .

(b) B is partially continuous and uniformly partially compact, and

(c) MψA (r)< r, r > 0, where M = sup{‖B(C)‖ : C is a chain in E}, and

(d) there exists an element x0 ∈ X such that x0 �A x0 +Bx0 or x0 �A x0 +Bx0.

Then the operator equation

(2.3) A x +Bx = x

has a solution x∗ in E and the sequence {xn} of successive iterations defined by xn+1 = A xn +

Bxn, n = 0,1, . . . , converges monotonically to x∗.

Remark 2.10. The compatibility of the order relation � and the norm ‖ · ‖ in every compact

chain of E holds if every partially compact subset of E possesses the compatibility property

with respect to � and ‖ · ‖. Note that a subset S of the partially ordered Banach space C(J,R)

is called partially compact if every chain C in S is compact. This simple fact has been utilized

to prove the main results of this paper.

3. Main Results

The equaivalent integral form of the problem 1.5 is considered in the function space C(J,R) of

continuous real-valued functions defined on J. We define a norm ‖ · ‖ and the order relation ≤
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in C(J,R) by

(3.1) ‖x‖= sup
t∈J
|x(t)|

and

(3.2) x≤ y ⇐⇒ x(t)≤ y(t)

for all t ∈ J respectively. Clearly, C(J,R) is a Banach algebra with respect to above supremum

norm and is also partially ordered w. r. t. the above partially order relation ≤. It is known that

the partially ordered Banach algebra C(J,R) has some nice properties concerning the compati-

bility property with respect to the norm ‖ · ‖ and the order relation ≤ in certain subsets of of it.

The following lemma in this connection follows by an application of Arzelá-Ascoli theorem.

Lemma 3.1. Let
(
C(J,R),≤,‖ ·‖

)
be a partially ordered Banach space with the norm ‖ ·‖ and

the order relation ≤ defined by (3.1) and (3.2) respectively. Then ‖ · ‖ and ≤ are compatible in

every partially compact subset of C(J,R).

Proof. The lemma mentioned in Dhage [14], but the proof appears in Dhage [?]. �

We need the following definition in what follows.

Definition 3.2. A function ul ∈C(J,R) is said to be a lower solution of the problem (1.5) if it

satisfies

Dα(ul(t))+aul(t)≤ f (t,ul(t))

lim
t→0+

t1−αul(t)≤ ul0

for all t ∈ J. Similarly, a function uu ∈C(J,R) is said to be an upper solution of the problem

(1.5) if it satisfies the above inequalities with reverse sign.

Definition 3.3. A function f (t,u) is called Carathéodory if

(i) the map t 7→ f (t,u) is measurable for each u ∈ R and

(ii) the map u 7→ f (t,u) is continuous for each t ∈ J.

A Caratheódory function f is called L2-Carathéodory if
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(iii) there exists a function h ∈ L2(J,R) such that

| f (t,u)| ≤ h(t) a. e. t ∈ J

We consider the following set of assumptions in what follows:

(A1) The functions f : J×R→ R+,α : J→ R+ where α is continuous function.

(A2) There exist constants M,M f > 0 such that 0 ≤ tα−1 ≤ M and 0 ≤ f (t,x) ≤ M f for all

t ∈ J and x ∈ R.

(A3) There exists a D-function ψ f such that

0≤ f (t,x)− f (t,y)≤ ψ f (x− y)

for all t ∈ J and x,y ∈ R, x≤ y.

(A4) f (t,x) is nondecreasing in x for all t ∈ J.

(A5) The problem (1.5) has a lower solution ul ∈C(J,R).

The following lemma is useful in what follows.

Lemma 3.4. For any f ∈C(J×R,R)), if u is a solution of the problem

Dα(u(t))+au(t) = f (t,u(t))

lim
t→0+

t1−αu(t) = u0

0 < α ≤ 1, 0 < t ≤ T < ∞

then

(3.3) u(t) = u0tα−1Eα,α(−atα)Γ(α)+
∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) f (s,u(s))ds

where Eα,α(t) = ∑
∞
k=0

tk

Γ(α(k+1)) is the classical Mittag-Leffler function

and vice-versa.

Proof. The solution followed by [1, 2] �

Theorem 3.5. Assume that hypotheses (A1)-(A5) hold. Furthermore, assume that

(3.4)
(
M f T α−1{1−Eα,α(a(t)α)}

)
ψ f (r)< r, r > 0,



228 TARACHAND L. HOLAMBE, MOHAMMED MAZHAR UL HAQUE

then the FDE(1.5) has a solution x∗ defined on J and the sequence {xn}n∈N∪{0} of successive

approximations defined by

(3.5)
xn+1(t) = x0tα−1Eα,α(−atα)Γ(α)+

∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) f (s,xn(s))ds

for all t ∈ J, where x0 = c, converges monotonically to x∗.

Proof. Set E = C(J,R). Then, from Lemma 3.1 it follows that every compact chain in E pos-

sesses the compatibility property with respect to the norm ‖ · ‖ and the order relation ≤ in E.

Define three operators A and B on E by

(3.6) A x(t) = x0tα−1Eα,α(−atα)Γ(α) t ∈ J,

and

(3.7) Bx(t) =
∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) f (s,x(s))ds, t ∈ J.

From the continuity of the integral and the hypotheses (A1)-(A5), it follows that A and B

define the maps A ,B : E→K . Now by definitions of the operators A and B, the FDE (1.5)

is equivalent to the operator equation

(3.8) A x(t)+Bx(t) = x(t), t ∈ J.

We shall show that the operators A and B satisfy all the conditions of Theorem 2.9. This is

achieved in the series of following steps.

Step I: A and B are nondecreasing on E.

Let x,y ∈ E be such that x≥ y. Then by hypothesis (A2), (A3) and (A4), we obtain

A x(t) = x0tα−1Eα,α(−atα)Γ(α), t ∈ J,

≥ y0tα−1Eα,α(−atα)Γ(α), t ∈ J,

= A y(t)
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for all t ∈ J. This shows that A is nondecreasing operators on E into E. Similarly, using

hypothesis (A4),

Bx(t) =
∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) f (s,x(s))ds

≥
∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) f (s,y(s))ds

= By(t)

for all t ∈ J. Hence, it is follows that the operator B is also a nondecreasing operator on E into

itself. Thus, A and B are nondecreasing positive operators on E into itself.

Step II: A is partially bounded and partially D-Lipschitz on E.

Let x ∈ E be arbitrary. Then by (A2),

|A x(t)| =
∣∣x0tα−1Eα,α(−atα)Γ(α)

∣∣
≤

∣∣tα−1∣∣ |x0Eα,α(−atα)Γ(α)|

≤
∣∣tα−1∣∣ |Eα,α(−atα)| |x0Γ(α)|

≤ M |Eα,α(−atα)|K0

taking supremum over t, we get ‖A x‖ ≤ M |Eα,α(−atα)|K0 and consequently A is partially

bounded on E.

Next, let x,y ∈ E be such that x≤ y. Then, by hypothesis (A3),

|A x(t)−A y(t)| =
∣∣x0tα−1Eα,α(−atα)Γ(α)− y0tα−1Eα,α(−atα)Γ(α)

∣∣
≤

∣∣tα−1Eα,α(−atα)Γ(α)
∣∣ |x0− y0|

≤ ψ|x(t)− y(t)|

≤ ψ(|x− y|),

for all t ∈ J. Taking supremum over t, we obtain

‖A x−A y‖ ≤ ψ(‖x− y‖)
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for all x,y ∈ E with x ≤ y. Hence A is partially nonlinear D-Lipschitz operators on E which

further implies it is also a partially continuous on E into itself.

Step III: B is a partially continuous operator on E.

Let {xn}n∈N be a sequence in a chain C of E such that xn → x for all n ∈ N. Then, by

dominated convergence theorem, we have

lim
n→∞

Bxn(t) = lim
n→∞

∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) f (s,xn(s))ds

=
∫ t

0
(t− s)α−1Eα,α(−a(t− s)α)

[
lim
n→∞

f (s,xn(s))
]

ds

=
∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) f (s,x(s))ds

= Bx(t),

for all t ∈ J. This shows that Bxn converges monotonically to Bx pointwise on J.

Next, we will show that {Bxn}n∈N is an equicontinuous sequence of functions in E. Let

t1, t2 ∈ J with t1 < t2. Then∣∣∣Bxn(t2)−Bxn(t1)
∣∣∣

=

∣∣∣∣∫ t2

0
(t2− s)α−1Eα,α(−a(t2− s)α) f (s,xn(s))ds

−
∫ t1

0
(t1− s)α−1Eα,α(−a(t1− s)α) f (s,xn(s))ds

∣∣∣∣
≤
∣∣∣∣∫ t2

0
(t2− s)α−1Eα,α(−a(t2− s)α) f (s,xn(s))ds

−
∫ t2

0
(t2− s)α−1Eα,α(−a(t1− s)α) f (s,xn(s))ds

∣∣∣∣
+

∣∣∣∣∫ t2

0
(t2− s)α−1Eα,α(−a(t1− s)α) f (s,xn(s))ds

−
∫ t1

0
(t2− s)α−1Eα,α(−a(t1− s)α) f (s,xn(s))ds

∣∣∣∣
+

∣∣∣∣∫ t1

0
(t2− s)α−1Eα,α(−a(t1− s)α) f (s,xn(s))ds

(3.9)
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−
∫ t1

0
(t1− s)α−1Eα,α(−a(t1− s)α) f (s,xn(s))ds

∣∣∣∣
≤
∫ t2

0
(t2− s)α−1 |Eα,α(−a(t2− s)α)−Eα,α(−a(t1− s)α)| | f (s,xn(s))|ds

+

∣∣∣∣∫ t2

t1
(t2− s)α−1Eα,α(−a(t1− s)α) f (s,xn(s))ds

∣∣∣∣
+
∫ t1

0

∣∣(t2− s)α−1− (t1− s)α−1∣∣Eα,α(−a(t1− s)α) | f (s,xn(s))|ds

≤
∫ T

0
(t2− s)α−1 |Eα,α(−a(t2− s)α)−Eα,α(−a(t1− s)α)|M f ds

+
∫ T

0

∣∣(t2− s)α−1− (t1− s)α−1∣∣Eα,α(−a(t1− s)α)M f ds

+
∫ T

0

∣∣(t2− s)α−1− (t1− s)α−1∣∣Eα,α(−a(t1− s)α)M f ds

≤M f

(∫ T

0

∣∣(t2− s)α−1∣∣2 ds
)1/2(∫ T

0
|Eα,α(−a(t2− s)α)−Eα,α(−a(t1− s)α)|2 ds

)1/2

+2
(∫ T

0

∣∣(t2− s)α−1− (t1− s)α−1∣∣2 ds
)1/2(∫ T

0
|Eα,α(−a(t1− s)α)|2 ds

)1/2

M f

Since the functions Eα,α and α are continuous on compact interval J so uniformly continuous

there. Therefore, from the above inequality (3.9) it follows that

|Bxn(t2)−Bxn(t1)| → 0 as n→ ∞

uniformly for all n ∈ N. This shows that the convergence Bxn→Bx is uniform and hence B

is partially continuous on E.

Step IV: B is uniformly partially compact operator on E.

Let C be an arbitrary chain in E. We show that B(C) is a uniformly bounded and equicon-

tinuous set in E. First we show that B(C) is uniformly bounded. Let y ∈B(C) be any element.
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Then there is an element x ∈C be such that y = Bx. Now, by hypothesis ,

|y(t)| =
∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) f (s,x(s))ds

≤ M f T α−1{1−Eα,α(a(t)α)}

= r

for all t ∈ J. Taking the supremum over t, we obtain ‖y‖ ≤ ‖Bx‖ ≤ r for all y ∈B(C). Hence,

B(C) is a uniformly bounded subset of E. Moreover, ‖B(C)‖ ≤ r for all chains C in E. Hence,

B is a uniformly partially bounded operator on E.

Next, we will show that B(C) is an equicontinuous set in E. Let t1, t2 ∈ J with t1 < t2. Then,

for any y ∈B(C), one has

∣∣∣Bx(t2)−Bx(t1)
∣∣∣

=

∣∣∣∣∫ t2

0
(t2− s)α−1Eα,α(−a(t2− s)α) f (s,x(s))ds

−
∫ t1

0
(t1− s)α−1Eα,α(−a(t1− s)α) f (s,x(s))ds

∣∣∣∣
≤
∣∣∣∣∫ t2

0
(t2− s)α−1Eα,α(−a(t2− s)α) f (s,x(s))ds

−
∫ t2

0
(t2− s)α−1Eα,α(−a(t1− s)α) f (s,x(s))ds

∣∣∣∣
+

∣∣∣∣∫ t2

0
(t2− s)α−1Eα,α(−a(t1− s)α) f (s,x(s))ds

−
∫ t1

0
(t2− s)α−1Eα,α(−a(t1− s)α) f (s,x(s))ds

∣∣∣∣
+

∣∣∣∣∫ t1

0
(t2− s)α−1Eα,α(−a(t1− s)α) f (s,x(s))ds

−
∫ t1

0
(t1− s)α−1Eα,α(−a(t1− s)α) f (s,x(s))ds

∣∣∣∣
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≤
∫ t2

0
(t2− s)α−1 |Eα,α(−a(t2− s)α)−Eα,α(−a(t1− s)α)| | f (s,x(s))|ds

+

∣∣∣∣∫ t2

t1
(t2− s)α−1Eα,α(−a(t1− s)α) f (s,x(s))ds

∣∣∣∣
+
∫ t1

0

∣∣(t2− s)α−1− (t1− s)α−1∣∣Eα,α(−a(t1− s)α) | f (s,x(s))|ds

≤
∫ T

0
(t2− s)α−1 |Eα,α(−a(t2− s)α)−Eα,α(−a(t1− s)α)|M f ds

+
∫ T

0

∣∣(t2− s)α−1− (t1− s)α−1∣∣Eα,α(−a(t1− s)α)M f ds

+
∫ T

0

∣∣(t2− s)α−1− (t1− s)α−1∣∣Eα,α(−a(t1− s)α)M f ds

≤M f

(∫ T

0

∣∣(t2− s)α−1∣∣2 ds
)1/2(∫ T

0
|Eα,α(−a(t2− s)α)−Eα,α(−a(t1− s)α)|2 ds

)1/2

+2
(∫ T

0

∣∣(t2− s)α−1− (t1− s)α−1∣∣2 ds
)1/2(∫ T

0
|Eα,α(−a(t1− s)α)|2 ds

)1/2

M f

−→ 0 as t1→ t2,

uniformly for all y ∈B(C). Hence B(C) is an equicontinuous subset of E. Now, B(C) is a

uniformly bounded and equicontinuous set of functions in E, so it is compact. Consequently,

B is a uniformly partially compact operator on E into itself.

Step V: ul satisfies the operator inequality ul ≤A ul +Bul .

By hypothesis (A5), the FDE 1.5 has a lower solution ul defined on J. Then, we have

(3.10) ul(t)≤ ul(0)tα−1Eα,α(−atα)Γ(α)+
∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) f (s,ul(s))ds

for all t ∈ J. From the definitions of the operators A and B it follows that ul(t) ≤ A ul(t)+

Bul(t) for all t ∈ J. Hence ul ≤A ul +Bul .

Step VI: The D-functions ψA satisfy the growth condition MψA (r)< r, for r > 0.

Finally, the D-function ψA of the operator A satisfy the inequality given in hypothesis of

Theorem 2.9, viz. ,

MψA (r)≤ r
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for all r > 0.

Thus A and B satisfy all the conditions of Theorem 2.9 and we conclude that the operator

equation A x+Bx = x has a solution. Consequently the FDE (1.5) has a solution x∗ defined on

J. Furthermore, the sequence {xn}n∈N of successive approximations defined by (3.5) converges

monotonically to x∗. This completes the proof. �

The conclusion of Theorems 3.5 also remains true if we replace the hypothesis (A5) with the

following one:

(A′5) The FDE (1.5) has an upper solution uu ∈C(J,R).

The proof of Theorem 3.5 under this new hypothesis is similar and can be obtained by closely

observing the same arguments with appropriate modifications. We need the following definition

in what follows.

Definition 3.6. A function r ∈C(J,R) is said be a maximal solution of the FDE (1.5)if for any

other solution x of the FDE (1.5), one has x(t)≤ r(t) for all t ∈ J. Similarly, a minimal solution

ρ of the FDE (1.5) can be defined in a similar way by reversing the above inequality.

The following lemma is fundamental in the proof of maximal and minimal solutions for the

FDE (1.5) on J.

Lemma 3.7. Suppose that there exist two functions y,z ∈C(J,R) satisfying

y(t)≤ y(0)tα−1Eα,α(−atα)Γ(α)+
∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) f (s,y(s))ds(3.11)

and

z(t)≥ z(0)tα−1Eα,α(−atα)Γ(α)+
∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) f (s,z(s))ds(3.12)

for all t ∈ J. If one of the inequalities (3.11) and (3.12) is strict, then

(3.13) y(t)< z(t)

for all t ∈ J.
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Proof. Suppose that the inequality (3.12) is strict and let the conclusion (3.13) be false. Then

there exists t1 ∈ J such that

y(t1) = z(t1), t1 > 0,

and

y(t)< z(t),0 < t < t1.

From the monotonicity of f (t,x) in x , we get

y(t1)≤ y(0)tα−1
1 Eα,α(−atα

1 )Γ(α)+
∫ t1

0
(t1− s)α−1Eα,α(−a(t1− s)α) f (s,y(s))ds

= z(0)tα−1
1 Eα,α(−atα

1 )Γ(α)+
∫ t1

0
(t1− s)α−1Eα,α(−a(t1− s)α) f (s,z(s))ds

< z(t1)(3.14)

which contradicts the fact that y(t1) = z(t1). Hence, y(t)< z(t) for all t ∈ J. �

Theorem 3.8. Suppose that all the hypotheses of Theorem 3.5 hold. Then the FDE (1.5) has a

maximal and a minimal solution on J.

Proof. Let ε > 0 be given. Now consider the fractional integral equation

(3.15) xε(t) = xε(0)tα−1Eα,α(−atα)Γ(α)+
∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) fε(s,xε(s))ds

for all t ∈ J, where

fε(t,xε(t)) = f (t,xε(t))+ ε

Clearly the function fε(t,xε(t)), satisfy all the hypotheses (A1)-(A5)and therefore, by Theorem

3.5, FDE (1.5) has at least a solution xε(t) ∈C(J,R).

Let ε1 and ε2 be two real numbers such that 0 < ε2 < ε1 < ε . Then, we have

xε2(t) = xε2(0)t
α−1Eα,α(−atα)Γ(α)+

∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) fε2(s,xε2(s))ds

= xε2(0)t
α−1Eα,α(−atα)Γ(α)+

∫ t

0
(t− s)α−1Eα,α(−a(t− s)α)[ f (s,xε2(s))+ ε2]ds(3.16)
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and

xε1(t) = xε1(0)t
α−1Eα,α(−atα)Γ(α)+

∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) fε1(s,xε1(s))ds

= xε(0)tα−1Eα,α(−atα)Γ(α1)+
∫ t

0
(t− s)α−1Eα,α(−a(t− s)α)[ f (s,xε1(s))+ ε1]ds

> xε1(0)t
α−1Eα,α(−atα)Γ(α)+

∫ t

0
(t− s)α−1Eα,α(−a(t− s)α)[ f (s,xε2(s))+ ε2]ds(3.17)

for all t ∈ J. Now, applying the Lemma 3.7 to the inequalities (3.16) and (3.17), we obtain

(3.18) xε2(t)< xε1(t)

for all t ∈ J.

Let ε0 = ε and define a decreasing sequence {εn}∞
n=0 of positive real numbers such that

limn→∞ εn = 0. Then in view of the above facts {xεn} is a decreasing sequence of functions in

C(J,R). We show that is is uniformly bounded and equicontinuous. Now, by hypotheses,

|xεn(t)| ≤ |xεn(0)t
α−1Eα,α(−atα)Γ(α)+

∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) fεn(s,xεn(s))ds|

≤ (KMEα,α(−aT α)Γ(α))+ ε +
(
M f T α−1(1−Eα,α(aT α))

)
+ ε

≤ r

for all t ∈ J. Taking the supremum over t, we obtain ‖xεn‖ ≤ r for all n ∈ N. This shows that

the sequence {xεn} is uniformly bounded.

Next we show that {xεn} is an equicontinuous sequence of functions in C(J,R). Let t1, t2 ∈ J

be arbitrary. Then,
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|xεn(t1)− xεn(t2)| ≤ |xεn(0)t
α−1
1 Eα,α(−atα

1 )Γ(α)+
∫ t1

0
(t1− s)α−1Eα,α(−a(t1− s)α) fεn(s,xεn(s))ds

− xεn(0)t
α−1
2 Eα,α(−atα

2 )Γ(α)−
∫ t2

0
(t2− s)α−1Eα,α(−a(t2− s)α) fεn(s,xεn(s))ds|

= xεn(0)Γ(α)|tα−1
1 Eα,α(−atα

1 )− tα−1
2 Eα,α(−atα

2 )|

(3.19)

+ |
∫ t1

0
(t1− s)α−1Eα,α(−a(t1− s)α) fεn(s,xεn(s))ds

−
∫ t2

0
(t2− s)α−1Eα,α(−a(t2− s)α) fεn(s,xεn(s))ds|

≤ xεn(0)Γ(α)|tα−1
1 Eα,α(−atα

1 )− tα−1
1 Eα,α(−atα

2 )+ tα−1
1 Eα,α(−atα

2 )− tα−1
2 Eα,α(−atα

2 )|

+

∣∣∣∣∫ t2

0
(t2− s)α−1Eα,α(−a(t2− s)α) fεn(s,xεn(s))ds

−
∫ t2

0
(t2− s)α−1Eα,α(−a(t1− s)α) fεn(s,xεn(s))ds

∣∣∣∣
+

∣∣∣∣∫ t2

0
(t2− s)α−1Eα,α(−a(t1− s)α) fεn(s,xεn(s))ds

−
∫ t1

0
(t2− s)α−1Eα,α(−a(t1− s)α) fεn(s,xεn(s))ds

∣∣∣∣
+

∣∣∣∣∫ t1

0
(t2− s)α−1Eα,α(−a(t1− s)α) fεn(s,xεn(s))ds

−
∫ t1

0
(t1− s)α−1Eα,α(−a(t1− s)α) fεn(s,xεn(s))ds

∣∣∣∣
≤ xεn(0)Γ(α)

{
tα−1
1 |Eα,α(−atα

1 )−Eα,α(−atα
2 )|+Eα,α(−atα

2 )|tα−1
1 − tα−1

2 |
}

+
∫ t2

0
(t2− s)α−1 |Eα,α(−a(t2− s)α)−Eα,α(−a(t1− s)α)| | fεn(s,xεn(s))|ds

+

∣∣∣∣∫ t2

t1
(t2− s)α−1Eα,α(−a(t1− s)α) fεn(s,xεn(s))ds

∣∣∣∣
+
∫ t1

0

∣∣(t2− s)α−1− (t1− s)α−1∣∣Eα,α(−a(t1− s)α) | fεn(s,xεn(s))|ds

(3.20)
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≤ xεn(0)Γ(α)
{

tα−1
1 |Eα,α(−atα

1 )−Eα,α(−atα
2 )|+Eα,α(−atα

2 )|tα−1
1 − tα−1

2 |
}

+
∫ T

0
(t2− s)α−1 |Eα,α(−a(t2− s)α)−Eα,α(−a(t1− s)α)| [M f + εn]ds

+
∫ T

0

∣∣(t2− s)α−1− (t1− s)α−1∣∣Eα,α(−a(t1− s)α)[M f + εn]ds

+
∫ T

0

∣∣(t2− s)α−1− (t1− s)α−1∣∣Eα,α(−a(t1− s)α)[M f + εn]ds

≤ xεn(0)Γ(α)
{

tα−1
1 |Eα,α(−atα

1 )−Eα,α(−atα
2 )|+Eα,α(−atα

2 )|tα−1
1 − tα−1

2 |
}

+[M f + εn]

(∫ T

0

∣∣(t2− s)α−1∣∣2 ds
)1/2(∫ T

0
|Eα,α(−a(t2− s)α)−Eα,α(−a(t1− s)α)|2 ds

)1/2

+2
(∫ T

0

∣∣(t2− s)α−1− (t1− s)α−1∣∣2 ds
)1/2(∫ T

0
|Eα,α(−a(t1− s)α)|2 ds

)1/2

[M f + εn]

Since the functions f and Eα,α are continuous on compact [0,T ]× [−r,r]× [−r,r], (t− s)1−α

is continuous on compact [0,T ]× [0,T ], so uniformly continuous there. Hence, from (3.19) it

follows that

|xεn(t1)− xεn(t2)| → 0 as t1→ t2

uniformly for all n∈N. As a result {xεn} is an equicontinuous sequence of functions in C(J,R).

Now the sequence {xεn} is uniformly bounded and equicontinuous, so it is compact in view of

Arzelá-Ascoli theorem. By Lemma 3.1, {xεn} converges uniformly to a function say r∈C(J,R),

i. e. limn→∞ xεn(t) = r(t) uniformly on J.

We show that the function r is a solution of the FDE (1.5) on J. Now, {xεn} is a solution of

the FDE

xεn(t) = xεn(0)t
α−1Eα,α(−atα)Γ(α)+

∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) fεn(s,xεn(s))ds

(3.21)
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= xεn(0)t
α−1Eα,α(−atα)Γ(α)+

∫ t

0
(t− s)α−1Eα,α(−a(t− s)α)[ f (s,xεn(s))+ εn]ds(3.22)

for all t ∈ J. Now, taking the limit as by hypotheses n→ ∞ in the above inequality (3.21), we

obtain

r(t) = r(0)tα−1Eα,α(−atα)Γ(α)+
∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) f (s,r(s))ds

for all t ∈ J. This shows that r is a solution of the FDE (1.5) defined on J.

Finally, we shall show that r(t) is the maximal solution of the FDE (1.5) defined on J. To do

this, let x(t) be any solution of the FDE (1.5) defined on J. Then, we have

x(t) = x(0)tα−1Eα,α(−atα)Γ(α)+
∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) f (s,x(s))ds(3.23)

for all t ∈ J. Similarly, if xε is any solution of the FDE

xε(t) = xε(0)tα−1Eα,α(−atα)Γ(α)+
∫ t

0
(t− s)α−1Eα,α(−a(t− s)α)[ f (s,xε(s))+ ε]ds

(3.24)

then,

xε(t)> xε(0)tα−1Eα,α(−atα)Γ(α)+
∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) f (s,xε(s))ds(3.25)

for all t ∈ J. From the inequalities (3.23) and (3.25) it follows that x(t)≤ xε(t), t J. Taking the

limit as ε → 0, we obtain x(t) ≤ r(t) for all t ∈ J. Hence r is a maximal solution of the FDE

(1.5) defined on J. In the same way Minimal solution of the FDE can be obtained �

Further we prove now that the maximal and minimal solutions serve as the bounds for the

solutions of the related differential inequality to FDE (1.5) on J = [0,T ].

Theorem 3.9. Suppose that all the hypotheses of Theorem 3.5 hold. Further, if there exists a

function u ∈C(J,R) such that

(3.26) u(t)≤ u(0)tα−1Eα,α(−atα)Γ(α)+
∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) f (s,u(s))ds

for all t ∈ J, then,

(3.27) u(t)≤ r(t)
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for all t ∈ J, where r is a maximal solution of the FDE (1.5) on J.

Proof. Let ε > 0 be arbitrary small. Then, by Theorem 3.5, rε(t) is a solution of the FDE and

that the limit

(3.28) r(t) = lim
ε→0

rε(t)

is uniform on J and is a maximal solution of the FDE (1.5) on J. Hence, we obtain

(3.29)

rε(t) = rε(0)tα−1Eα,α(−atα)Γ(α)+
∫ t

0
(t− s)α−1Eα,α(−a(t− s)α)[ f (s,rε(s))+ ε]ds

for all t ∈ J. From the above inequality it follows that

(3.30) rε(t)> rε(0)tα−1Eα,α(−atα)Γ(α)+
∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) f (s,rε(s))ds

Now we apply Lemma 3.7 to the inequalities (3.26) and (3.30) and conclude that

(3.31) u(t)< rε(t)

for all t ∈ J. This further in view of limit (3.28) implies that the inequality (3.27) holds on J.

This completes the proof. �

Similarly, we have the following result for the FDE (1.5) on J.

Theorem 3.10. Suppose that all the hypotheses of Theorem 3.5 hold. Further, if there exists a

function v ∈C(J,R) such that

(3.32) v(t)≥ v(0)tα−1Eα,α(−atα)Γ(α)+
∫ t

0
(t− s)α−1Eα,α(−a(t− s)α) f (s,v(s))ds

for all t ∈ J, then,

(3.33) v(t)≥ ρ(t)

for all t ∈ J, where ρ is a minimal solution of the FDE (1.5) on J.
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