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1. Introduction and Preliminaries 

Fixed point theory is one of the most fruitful and applicable topics of nonlinear analysis, which is 

widely used not only in other mathematical theories, but also in many practical problems of 

natural sciences and engineering. The Banach contraction mapping principle [1] is indeed the 

most popular result of metric fixed point theory. This principle has many application in several 

domains, such as differential equations, functional equations, integral equations, economics, wild 

life, and several others. 

Branciari [2] gave an integral version of the Banach contraction principles and proved 

fixed point theorem for a single-valued contractive mapping of integral type in metric space. 

Afterwards many researchers [3–18] extended the result of Branciari and obtained fixed point 

and common fixed point theorems for various contractive conditions of integral type on different 

spaces.  
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Now, we recollect some known definitions and results from the literature which are helpful in the 

proof of our main results.  

Definition 1.1. A coincidence point of a pair of self-mapping A, B : X→X  is a point x ∈ X for 

which Ax = Bx. 

A common fixed point of a pair of self-mapping A, B: X→X  is a point x ∈ X for which Ax = Bx 

= x. Jungck [19] initiated the concept of weakly compatible maps to study common fixed point 

theorems. 

Definition 1.2. [19] A pair of self-mapping A, B: X → X  is weakly compatible if they commute 

at their coincidence points, that is, if there exists a point x ∈ X such that ABx = BAx whenever 

Ax = Bx. 

In the study of common fixed points of weakly compatible mappings, we often require the 

assumption of completeness of the space or subspace or continuity of mappings involved besides 

some contractive condition. Aamri and El Moutawakil [20] introduced the notion of (E.A) 

property, which requires only the closedness of the subspace and Liu et al. [21] extended the 

(E.A) property to common the (E.A) property as follows. 

Definition 1.3. Let (X, d) be a metric space and A, B, P, Q: X → X  be four self-maps. The pairs 

(A, Q) and (B, P) satisfy the common (E.A) property if there exist two sequences {xn} and {yn} 

in X such that 

 

lim
n→∞

Axn = lim
n→∞

Qxn = lim
n→∞

Byn = lim
n→∞

Pyn = s ∈ X. 

Sintunavarat and Kumam [22] introduced the notion of the (CLR) property,which never requires 

any condition on closedness of the space or subspace and Imdad et al. [23] introduced the 

common (CLR) property which is an extension of the (CLR) property. 

Definition 1.4. Let (X, d) be a metric space and A, B, P, Q : X → X  be four self- maps. The 

pairs (A, Q) and (B, P) satisfy the common limit range property with respect to mappings Q and 

P, denoted by (CLRPQ) if there exist two sequences {xn} and {yn} in X such that 

 

lim
n→∞

Axn = lim
n→∞

Qxn = lim
n→∞

Byn = lim
n→∞

Pyn = s ∈ QX⋂PX. 

Definition 1.5. Let Φ be the family of functions ϕ : [0,∞)→[0,∞) satisfying the following : 

(1) ϕ is lower semi continuous. 

(2) ϕ (t) ˃ 0 for all t ˃ 0 and φ(0) = 0. 
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(3)  ϕ is discontinuous at t=0. 

Definition 1.6. Let Ψ be the family of functions ψ : [0,∞)→[0,∞) satisfying the following : 

(1) ψ is monotonically increasing and continuous . 

(2) ψ(t) < t for all t ˃ 0 and ψ(0) =0. 

Finally, we will need the following results. 

Lemma 1.7. [9] Let φ ∈ Φ and {rn}n∈N  be a non negative sequence with   limn→∞ rn = a.Then 

lim
n→∞

∫ φ(t)dt = ∫ φ(t)dt.
a

0

rn

0

 

 

2.  Common Fixed Point Theorems 

In this section, we study common fixed point theorems for weakly compatible mappings using 

(CLR) property and E.A. property. 

 

Theorem 2.1 Let (X, d) be a metric space and A, B, P, Q be four self maps on X satisfying the 

following: 

(1) The pairs (A, P) and (B, Q) share (CLRPQ) property; 

(2) 𝜓 ∫ 𝜑(𝑡)𝑑𝑡 ≤ 𝜓 ∫ 𝜑(𝑡)𝑑𝑡 − 𝜙 ∫ 𝜑(𝑡)𝑑𝑡
𝑑(𝐴𝑥,𝑃𝑥)+𝑑(𝐵𝑦,𝑄𝑦)

0
.

𝑑(𝐴𝑥,𝑃𝑥)+𝑑(𝐵𝑦,𝑄𝑦)

0

𝑑(𝐴𝑥,𝐵𝑦)

0
      

(2.1) 

IF the pairs (A,P) and (B,Q) are weakly compatible, then A,B,P and Q have a unique common 

fixed point in X. 

 

Proof. Suppose that the pairs (A, P) and (B, Q) share the (CLRPQ) property, then there exist two 

sequences {xn} and {yn} in X such that  

 

lim
n→∞

Axn = lim
n→∞

Pxn = lim
n→∞

Byn = lim
n→∞

Qyn = z for some z ∈ PX⋂QX.       (2.2) 

    

Since  z ∈ PX , there exists a point s ∈ X such that Ps = z From (2.2), we have 

 

lim
n→∞

Axn = lim
n→∞

Pxn = lim
n→∞

Byn = lim
n→∞

Qyn = z = Ps           (2.3) 
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Now we claim that As = Ps. Let if possible, As ≠ Ps. Putting x = s and y = yn in (2.1), we get 

 

ψ ∫ φ(t)dt ≤  ψ ∫ φ(t)dt − ϕ ∫ φ(t)dt
d(As,Ps)+d(Byn,Qyn)

0

.
d(As,Ps)+d(Byn,Qyn)

0

d(As,Byn)

0

 

≤ ψ ∫ φ(t)dt
d(As,Ps)+d(Byn,Qyn)

0
                                                   (2.4) 

 

Making  limit  as  n→∞, we  get  

 

ψ ∫ φ(t)dt ≤  ψ ∫ φ(t)dt − ϕ ∫ φ(t)dt
d(As,Ps)

0

.
d(As,Ps)

0

d(As,z)

0

 

≤ ψ ∫ φ(t)dt
d(As,Ps)

0
 

Using (2.3) 

 

ψ ∫ φ(t)dt ≤  ψ ∫ φ(t)dt − ϕ ∫ φ(t)dt
d(As,z)

0

.
d(As,z)

0

d(As,z)

0

 

≤ ψ ∫ φ(t)dt
d(As,z)

0
,                                                         (2.5) 

which is a contradiction, therefore 

Ps = As = z.                                                               (2.6) 

Similarly, since z ∈ QX, so there exists a point v ∈ X such that Qv = z. Thus (2.2) becomes 

 

lim
n→∞

Axn = lim
n→∞

Pxn = lim
n→∞

Byn = lim
n→∞

Qyn = z = Qv          (2.7) 

 

Now, we claim that Bv = Qv. To support the claim, let Bv ≠ Qv. Then on putting x = xn and y = 

v in (2.1), one can get 

Bv = Qv = z.                                                                  (2.8) 

 

Therefore, from (2.6) and (2.8), one can write 

 

As = Ps = Bv = Qv = z.                                                (2.9) 
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Next, we show that z is a common fixed point of A, B, P, and Q. To this aim, since the pairs (A, 

P) and (B, Q) are weakly compatible, then using (2.9) we have 

As = Ps ⇒ PAs = APs ⇒ Az = Pz,                             (2.10) 

and 

Bv = Qv ⇒ QBv = BQv ⇒ Bz = Qz.                          (2.11) 

 

We will show next that Az = z. Otherwise, if Az ≠ z, using (2.1) of Theorem 2.1 with x = z and y 

= v, we have 

 

ψ ∫ φ(t)dt ≤  ψ ∫ φ(t)dt − ϕ ∫ φ(t)dt
d(Az,Pz)+d(Bv,Qv)

0

.
d(Az,Pz)+d(Bv,Qv)

0

d(Az,Bv)

0

 

      (2.12) 

         = 0, a contradiction. 

Hence Az = z. From (2.10) ,we can write 

 

Az = Pz = z                                                         (2.13) 

 

Similarly, setting x = u, y = z in 2.1 and using (2.9), (2.11), we can have 

 

Bz = Qz = z.                                                      (2.14) 

 

Therefore from (2.13) and (2.14), it follows that 

 

Az = Bz = Qz = Pz = z,                             (2.15) 

 

that is, z is a common fixed point of A, B, Q, and P. 

 

Finally, we prove the uniqueness of the common fixed point of A, B, Q, and P. Assume that  z1  

and  z2  are two distinct common fixed points of A, B, Q, and P. Then replacing x by z1 and y by 

z2 in (2.1) of Theorem 2.1, we have 
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ψ ∫ φ(t)dt ≤ ψ ∫ φ(t)dt − ϕ ∫ φ(t)dt
d(Az1,Pz1)+d(Bz2,Qz2)

0
.

d(Az1,Pz1)+d(Bz2,Qz2)

0

d(Az1,Bz2)

0
               

(2.16) 

         = 0, a contradiction 

 

Hence z1 = z2. Therefore A, B, P and Q have a unique common fixed point in X. 

 

From theorem 2.1, we can easily deduce the following corollaries. 

 

Corollary 2.1. Let (X, d) be a metric space and A, P, Q be three self maps on X satisfying the 

following: 

(1) The pair (A, P) and (A, Q) share (CLRPQ) property; 

(2) 𝜓 ∫ 𝜑(𝑡)𝑑𝑡 ≤             𝜓 ∫ 𝜑(𝑡)𝑑𝑡 − 𝜙 ∫ 𝜑(𝑡)𝑑𝑡
𝑑(𝐴𝑥,𝑃𝑥)+𝑑(𝐴𝑦,𝑄𝑦)

0
.

𝑑(𝐴𝑥,𝑃𝑥)+𝑑(𝐴𝑦,𝑄𝑦)

0

𝑑(𝐴𝑥,𝐴𝑦)

0
 

 

IF the pairs (A, P) and (A, Q) are weakly compatible, then A, P and Q have a unique common 

fixed point in X. 

Corollary 2.2. Let (X, d) be a metric space and A, Q be two self maps on X satisfying the 

following: 

(1) The pair  (A, Q) share (CLRQ) property; 

(2) 𝜓 ∫ 𝜑(𝑡)𝑑𝑡 ≤         𝜓 ∫ 𝜑(𝑡)𝑑𝑡 − 𝜙 ∫ 𝜑(𝑡)𝑑𝑡
𝑑(𝐴𝑥,𝑄𝑥)+𝑑(𝐴𝑦,𝑄𝑦)

0
.

𝑑(𝐴𝑥,𝑄𝑥)+𝑑(𝐴𝑦,𝑄𝑦)

0

𝑑(𝐴𝑥,𝐴𝑦)

0
 

IF the pair (A, Q) is weakly compatible, then A and Q have a unique common fixed point in X. 

Obviously, the (CLRMN) property implies the common property (E.A) but the converse is not 

true in general. So replacing the (CLRMN) property by the common property (E.A) in Theorem 

2.1, we get the following results, the proofs of which can easily be done by following the lines of 

the proof of Theorem 2.1, because the (E.A) property together with the closedness property of a 

suitable subspace gives rise to the closed range property. 

 

Corollary 2.3. Let (X, d) be a metric space and A, B, P and Q be four self maps on X satisfying 

the following: 

(1) The pair (A, P) and (B, Q) share common (E.A.) property such that QX (or NX) is closed 

subspace of X; 
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(2) 𝜓 ∫ 𝜑(𝑡)𝑑𝑡 ≤  𝜓 ∫ 𝜑(𝑡)𝑑𝑡 − 𝜙 ∫ 𝜑(𝑡)𝑑𝑡
𝑑(𝐴𝑥,𝑃𝑥)+𝑑(𝐵𝑦,𝑄𝑦)

0
.

𝑑(𝐴𝑥,𝑃𝑥)+𝑑(𝐵𝑦,𝑄𝑦)

0

𝑑(𝐴𝑥,𝐵𝑦)

0
             

 

IF the pairs (A, P) and (B, Q) are weakly compatible, then A, B, P and Q have a unique common 

fixed point in X. 

 

Corollary 2.4. Let (X, d) be a metric space and A be two self maps on X satisfying the following 

condition 

𝜓 ∫ 𝜑(𝑡)𝑑𝑡 ≤  𝜓 ∫ 𝜑(𝑡)𝑑𝑡 − 𝜙 ∫ 𝜑(𝑡)𝑑𝑡
𝑑(𝐴𝑥,𝑥)+𝑑(𝐴𝑦,𝑦)

0

.
𝑑(𝐴𝑥,𝑥)+𝑑(𝐴𝑦,𝑦)

0

𝑑(𝐴𝑥,𝐴𝑦)

0

 

 

For all x, y ∈ X. Then A has a unique common fixed point in X. 

 

To illustrate Theorem 2.1, we construct the following example. 

 

Example 2.5. Let X = (0, 7) be a metric space with metric d(x, y) = |x – y|, where x, y ∈ X and A, 

B, P and Q be self-maps of X, defined by 

 

Ax = {
5    if x ∈ (0,3]
1    if x ∈ (3,7)

   ;          Bx = {
5    if x ∈ (0,3]
1

2
   if x ∈ (3,7)

 

 

Px = {
 5   if x ∈ (0,3]
2   if x ∈ (3,7)

    ;          Qx = {
5    if x ∈ (0,3]
4   if x ∈ (3,7)

 

 

First we verify condition (1) of Theorem 2.1. To this aim, 

 let {xn} = {
3n

n+1
 }n≥1 and {yn} = {

3

n+1
 }n≥1  be two sequences in X. Then 

 

lim
n→∞

Axn = lim
n→∞

A (
3n

n + 1
) = A(3) = 5 

 

lim
n→∞

Pxn = lim
n→∞

P (
3n

n + 1
) = P(3) = 5 
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lim
n→∞

Byn = lim
n→∞

B (
3

n + 1
) = B(0) = 5 

 

lim
n→∞

Qyn = lim
n→∞

Q (
3

n + 1
) = Q(0) = 5 

Thus 

 

lim
n→∞

Axn = lim
n→∞

Pxn = lim
n→∞

Byn = lim
n→∞

Qyn = 5 ∈ PX⋂QX. 

 

That is, (A, P) and (B, Q) satisfies the common (CLRPQ )property. 

 

Next, to verify condition (2) of Theorem 2.1 let us define ϕ (t) = 
t

3
 , φ(t) = 2t and ψ(t) = t. 

 

Let x,y ∈ (0,3] . Then Ax = Px = By = Qy = 5 and from equation (2.1) 

 

L.H.S. =  ψ ∫ φ(t)dt
d(Ax,By)

0
=  ψ ∫ 2t dt

d(3,3)

0
= ψ(0) =  0 

 

R.H.S. =  ψ ∫ φ(t)dt − ϕ ∫ φ(t)dt
d(Ax,Px)+d(By,Qy)

0
.

d(Ax,Px)+d(By,Qy)

0
 

=  ψ ∫ φ(t)dt − ϕ ∫ φ(t)dt
d(3,3)+d(3,3)

0
.

d(3,3)+d(3,3)

0
 

=  ψ(0) − ϕ (0) = 0 – 0 = 0. 

 

Therefore   L.H.S. = R.H.S. 

 

Now let x, y ∈ (3,7) 

 

L.H.S. =  ψ ∫ φ(t)dt
d(Ax,By)

0
=  ψ ∫ 2t dt

d(1,
1

2
)

0
= ψ ∫ 2t dt

|1−
1

2
|

0
 

= ψ ∫ 2t dt
1

2
0

 = ψ (
1

22) = ψ (
1

4
) = 

1

4
 = .25 
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R.H.S. =  ψ ∫ φ(t)dt − ϕ ∫ φ(t)dt
d(Ax,Px)+d(By,Qy)

0
.

d(Ax,Px)+d(By,Qy)

0
 

 

=  ψ ∫ φ(t)dt − ϕ ∫ φ(t)dt
d(1,2)+d(

1

2
,4)

0
.

d(1,2)+d(
1

2
,4)

0
 

=  ψ ∫ φ(t)dt − ϕ ∫ φ(t)dt
1+

7

2
0

.
1+

7

2
0

 

=  ψ ∫ 2tdt − ϕ ∫ 2tdt
9

2
0

.
9

2
0

 = ψ (
81

4
) −  ϕ (

81

4
) = 

81

4
 - 

81

12
 =

27

2
 = 13.5  

 

Therefore   L.H.S. <  R.H.S. 

 

Therefore from Theorem 2.1, the mappings A, B, P and Q have a unique common fixed point, 

which is x = 3. 
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