COMMON FIXED POINTS FOR WEAK CONTRACTION OCCASIONALLY WEAKLY BIASED MAPPINGS

M. R. SINGH¹, G.A. HIRANKUMAR SHARMA², Y. MAHENDRA SINGH²,*

¹Department of Mathematics, Manipur University, Canchipur-795003, Manipur, India
²Department of Humanities and Applied Sciences, Manipur Institute of Technology, Takyelpat-795001, Manipur, India

Abstract. We discuss some common fixed point theorems for weakly contractive occasionally weakly biased mappings on metric spaces with illustrative examples.

Keywords: compatible maps; weakly compatible mappings; occasionally weakly compatible mappings; occasionally weakly biased; coincidence points and common fixed point.

2010 AMS Subject Classification: 47H10, 54H25.

1. Introduction and Preliminaries

Let \((X, d)\) be a metric space. A mapping \(f : X \rightarrow X\), is called contraction if for each \(x, y \in X\), there exists a constant \(k \in [0, 1)\) such that

\[d(fx, fy) \leq kd(x, y)\]

*(Corresponding author)

E-mail address: ymahenmit@rediffmail.com

Received February 23, 2017
Alber and Guerre-Delabriere[2] defined the concept of weakly contractive mapping on Hilbert spaces and proved the existence of fixed points. Rhoades [11] showed that most results of Alber and Guerre-Delabriere[2] are still true for any Banach space. Note that in Alber and Guerre-Delabriere[2], ϕ is assumed with an additional condition $\lim_{t \to \infty} \phi(t) = \infty$. However, Rhoades [11] obtained the result without using this additional condition. Following Rhoades [11], a mapping $f : (X,d) \to (X,d)$ is called a weakly contractive, if for each $x, y \in X$

\begin{equation}
\tag{1.2}
d(fx, fy) \leq d(x, y) - \phi(d(x, y))
\end{equation}

where $\phi : [0, \infty) \to [0, \infty)$ is continuous, non-decreasing and positive on $(0, \infty)$ with $\phi(0) = 0$.

Let $f, g : (X, d) \to (X, d)$ be two mappings, then the mapping f is called g-weakly contractive[15] if for each $x, y \in X$

\begin{equation}
\tag{1.3}
d(fx, fy) \leq d(gx, gy) - \phi(d(gx, gy)),
\end{equation}

where $\phi : [0, \infty) \to [0, \infty)$ is a lower semi-continuous function from right such that ϕ is positive on $(0, \infty)$ and $\phi(0) = 0$. If $g = I$, an identical operator, then f is reduced to weak contraction.

Further, if $g = I$ and $\phi(t) = (1 - k)t$ where $k \in (0, 1)$, then g-weakly contractive is reduced to inequality(1.1). If $\psi(t) = t - \phi(t)$ and $g = I$, then $\psi(t)$ is upper semi-continuous from right and inequality (1.3) reduces into contractive types of Boyd and Wong [4]. Thus

\begin{equation}
\tag{1.4}
d(fx, fy) \leq \psi(d(x, y))
\end{equation}

Further more, if $k(t) = 1 - \frac{\phi(t)}{t}$ for $t > 0$ and $k(0) = 0$ together with $g = I$, then inequality(1.3) is closely related to Reich type[10]. In fact, the classes of weak contractive are closely related to Boyd and Wong [4], and Reich[10] types (see also [16],[15]).

We denote $C(f, g) = \{x \in X : fx = gx\}$ and $F(f, g) = \{x \in X : fx = gx = x\}$.

In the sequel we need the following definitions.

Definition 1.1[13]. Mappings f and g are called weakly commuting if $d(fgx, gfx) \leq d(fx, gx)$, for all $x \in X$.
Definition 1.2[1](also see Sastry and Murthy[12]). Mappings \(f \) and \(g \) are called said to satisfy property (E.A) if there exists a sequences \(\{x_n\} \) in \(X \) such that \(\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t \) for some \(t \in X \).

Definition 1.3[9]. Mappings \(f \) and \(g \) are called weakly compatible if \(fgx = gf x \) for all \(x \in C(f, g) \).

Definition 1.4[8]. Mappings \(f \) and \(g \) are called weakly \(g \)-biased if \(d(gfx, gx) \leq d(fgx, fx) \) for all \(x \in C(f, g) \).

If the role of \(f \) and \(g \) are interchanged in above definition, then the mappings are called weakly \(f \)-biased. Note that weakly compatible mappings implies weakly biased mappings (i.e. both \(f \)- and \(g \)-biased) but the converse is not true in general[14].

Definition 1.5[3]. Mappings \(f \) and \(g \) are called occasionally weakly compatible(owc) if \(fgx = gf x \) for some \(x \in C(f, g) \).

From above definitions, one may agree that weakly compatible mappings pair implies owc but the converse may not be true in general (also see [3]).

Definition 1.6[5]. Mappings \(f \) and \(g \) are called occasionally weakly \(g \)-biased if \(d(gfx, gx) \leq d(fgx, fx) \) for some \(x \in C(f, g) \).

If the role of mappings are interchanged, then the mappings pair is called occasionally weakly \(f \)-biased. Further, it may be noted that the notions of owc and weakly \(g \)-biased mappings are occasionally weakly \(g \)-biased but the converse does not hold in general(see [5]).

Example 1.7. Let \(X = [0, 1] \subset \mathbb{R} \) with usual metric \(d \). Define \(f, g : X \to X \) by \(fx = \frac{x}{3} + x, \, gx = \frac{1}{2} \), for \(x < \frac{1}{2}, f\frac{1}{2} = \frac{2}{3} = g\frac{1}{2}, \, fx = 1, \, gx = 1 - x \), for \(x > \frac{1}{2} \). Here, \(C(f, g) = \{ \frac{1}{6}, \frac{1}{2} \} \). Also, we have \(f\frac{1}{6} = \frac{1}{2} = g\frac{1}{6}, f\frac{1}{2} = \frac{2}{3} = g\frac{1}{2} \) and \(fg\frac{1}{6} = \frac{2}{3} = gf\frac{1}{6} \), but \(fg\frac{1}{2} = 1 \neq gf\frac{1}{2} = \frac{1}{3} \). The mappings pair \((f, g)\) is occasionally weakly compatible but not weakly compatible. However, the mappings are weakly biased and hence occasionally weakly biased.

Example 1.8. Let \(X = [0, 1] \subset \mathbb{R} \) with usual metric \(d \). Define \(f, g : X \to X \) by \(fx = 1, \, gx = \frac{1}{2} \), for \(x < \frac{1}{2}, f\frac{1}{2} = 0 = g\frac{1}{2}, \, fx = x, \, gx = 1 - x \), for \(x > \frac{1}{2} \). Here, \(C(f, g) = \{ \frac{1}{2} \} \). Also, we have \(f\frac{1}{2} = 0 = g\frac{1}{2} \) and \(|gf\frac{1}{2} - g\frac{1}{2}| = |\frac{1}{2} - 0| = \frac{1}{2} \leq |fg\frac{1}{2} - f\frac{1}{2}| = |1 - 0| = 1 \). The mappings pair
\((f, g)\) is weakly biased and hence occasionally weakly \(g\)-biased but neither weakly compatible nor owc.

Example 1.9. Let \(X = [0, 1] \subset \mathbb{R}\) with usual metric \(d\). Define \(f, g : X \to X\) by \(fx = 2x, gx = 1 - 2x\), for \(x \leq \frac{1}{4}\), \(fx = 1, gx = \frac{1}{2}\), for \(\frac{1}{4} < x \leq \frac{1}{2}\), \(fx = \frac{7}{8}, gx = \frac{1 + 8x}{8}\), for \(\frac{1}{2} < x \leq \frac{3}{4}\), \(fx = \frac{1}{6}, gx = \frac{3}{4}\), for \(\frac{3}{4} < x \leq 1\). Here, \(C(f, g) = \{\frac{1}{4}, \frac{3}{4}\}\). Also \(f\frac{1}{4} = g\frac{1}{4} = \frac{1}{2} = g\frac{3}{4}\) and \(f\frac{3}{4} = g\frac{3}{4} = \frac{7}{8} = g\frac{3}{4}\) implies that

\[
|gf\frac{1}{4} - g\frac{1}{4}| = \frac{1}{4} \leq |fg\frac{1}{4} - f\frac{1}{4}| = \frac{1}{2}
\]

and

\[
|gf\frac{3}{4} - g\frac{3}{4}| = \frac{1}{8} \leq |fg\frac{3}{4} - f\frac{3}{4}| = \frac{17}{24}
\]

Therefore, the pair \((f, g)\) is occasionally weakly \(g\)-biased, but it is neither weakly \(g\)-biased nor weakly compatible (resp. owc)

In this paper, we prove some common fixed point theorems for weak contraction occasionally weakly biased mappings pair on metric spaces.

2. Main Results

Song[15] proved the following theorem.

Theorem 1.1 (Song[15]). Let \((X, d)\) be a metric space and \(f, g : X \to X\) two self mappings with \(fX \subset gX\). Assume that either \(fX\) or \(gX\) is complete, and \(f\) is \(g\)-weakly contractive mapping, then \(C(f, g) \neq \emptyset\). If in addition, \((f, g)\) is weakly compatible, then \(F(f, g)\) is singleton.

Let \(\varphi : [0, \infty) \to [0, \infty)\) be a lower semi-continuous function with \(\varphi(t) = 0\) if and only it \(t = 0\).

Let \(f\) and \(g\) be two self mappings on a metric space \((X, d)\). We denote

\[
M(x, y) = \max \left\{ d(gx, gy), d(fx, gy), d(fy, gx), \frac{1}{2} [d(fx, gx) + d(fy, gy)] \right\}
\]

and

\[
N(x, y) = \max \left\{ d(gx, fy), d(fx, fy), d(gx, gy), \frac{1}{2} [d(fx, gx) + d(fy, gy)] \right\}
\]
Theorem 2.2. Let f and g be two self mappings of a metric space (X,d) satisfying the following inequality

\[(2.3) \quad d(fx, fy) \leq M(x, y) - \varphi(M(x, y)), \forall x, y \in X\]

If (f, g) satisfies property-(E.A) and gX is closed in X, then $C(f, g) \neq \phi$. Further, if (f, g) is occasionally weakly g-biased, then $F(f, g)$ is singleton.

Proof. Since f and g satisfy property (E.A), there exists a sequence in X such that $fx_n, gx_n \to t$ for some $t \in X$. As gX is closed and $t \in X$, there exists $u \in X$ such that $t = gu$. We claim that $fu = gu$. By (2.1) and (2.3), we obtain

\[d(fx_n, fu) \leq M(x_n, u) - \varphi(M(x_n, u))\]

and

\[M(x_n, u) = \max \left\{ d(gx_n, gu), d(fx_n, gu), d(fu, gx_n), \frac{1}{2}[d(fx_n, gx_n) + d(fu, gu)] \right\} \]

On letting $n \to \infty$, we obtain

\[d(gu, fu) \leq \max \left\{ 0, 0, d(fu, gu), \frac{1}{2}d(fu, gu) \right\} - \varphi\left(\max \left\{ 0, 0, d(fu, gu), \frac{1}{2}d(fu, gu) \right\} \right) = d(fu, gu) - \varphi(d(fu, gu))\]

which gives $fu = gu$. Therefore, $C(f, g) \neq \phi$. Since (f, g) is occasionally weakly g-biased mappings, then $fu = gu$ for some $u \in C(f, g)$ and

\[(2.4) \quad d(gfu, gu) \leq d(fgu, fu).\]
Also, \(f u = gu\) yields \(ffu = fg u\) and \(gfu = ggu\). Now we show that \(ffu = fu\), otherwise by (2.1), (2.3) and (2.4), we obtain

\[
d(ffu, fu) \leq M(fu, u) - \varphi \left(M(fu, u) \right)
\]

\[
= \max \left\{ d(gfu, gu), d(ffu, gu), \frac{1}{2} [d(ffu, gfu) + d(fu, gu)] \right\}
\]

\[
- \varphi \left(\max \left\{ d(gfu, gu), d(ffu, gu), \frac{1}{2} [d(ffu, gfu) + d(fu, gu)] \right\} \right)
\]

\[
\leq d(ffu, fu) - \varphi(d(ffu, fu))
\]

which gives \(\varphi(d(ffu, fu)) = 0 \Rightarrow ffu = fu\). By occasionally weakly \(g\)-biased of \(f\) and \(g\), we obtain

\[
d(gfu, gu) \leq d(fgu, fu) = d(ffu, fu) = 0,
\]

which in turn gives \(gfu = fu\). Therefore, \(fu = z\) is a common fixed point of \(f\) and \(g\). For the uniqueness, let \(z \neq z' \in X\) such that \(fz = gz = z\) and \(fz' = gz' = z'\), then by (2.1) and (2.3), we obtain

\[
d(z, z') = d(fz, f z')
\]

\[
\leq M(z, z') - \varphi \left(M(z, z') \right)
\]

\[
= d(z, z') - \varphi(d(z, z'))
\]

which yields \(\varphi(d(z, z')) = 0\) and \(z = z'\). This completes the proof.

The following example illustrate the validity of above theorem.

Example 2.3. Let \(X = [0, 1] \subset \mathbb{R}\) with usual metric \(d(x, y) = |x - y|\). Define \(f, g : X \to X\) by \(fx = \frac{x}{2}\), for \(0 \leq x \leq \frac{1}{2}\); \(fx = \frac{1}{4}\), for \(\frac{1}{2} < x < 1\) and \(gx = \frac{1}{2} (1 + x)\), for \(0 \leq x < \frac{1}{2}\); \(g \frac{1}{2} = \frac{1}{2}\), \(gx = \frac{3}{4}\), for \(\frac{1}{2} < x < 1\). Here, \(fX = \left\{ \frac{1}{4}, \frac{1}{2} \right\}\) is not contained in \(gX = \left[\frac{1}{2}, \frac{3}{4} \right]\), and \(gX\) is closed in \(X\). Mappings \(f\) and \(g\) satisfy property (E.A), to verify this, let \(\{x_n\}\) be a sequence in \(X\), \(x_n > 0, n = 1, 2, 3, \ldots\) such that \(x_n \to 0\) as \(n \to \infty\) then \(fx_n, gx_n \to \frac{1}{2} \in X\). One can also verify that \((f, g)\) satisfies inequality (2.3) for every \(x, y \in X\) taking with \(\varphi(t) = \frac{t}{4}\). Also, \(C(f, g) = \left\{ 0, \frac{1}{2} \right\}\) and \(f0 = \frac{1}{2} = g0\) which implies \(f\) and \(g\) are occasionally weakly \(g\)-biased mappings. Thus, all the conditions of the theorem are satisfied and \(\frac{1}{2}\) is the unique common point.
Corollary 2.4 Let f and g be two self mappings of a metric space (X, d) satisfying the following: for every $x, y \in X$,

$$d(fx, fy) \leq \psi(M(x, y))$$

where $\psi : [0, \infty) \to [0, \infty)$ is a function such that $0 < \psi(t) < t$ for $t > 0$ and $\psi(0) = 0$. If (f, g) satisfies the property (E.A) and gX is closed in X, then $C(f, g) \neq \phi$. Further, if (f, g) is occasionally weakly g-biased, then $F(f, g)$ is singleton.

Proof. Letting $\varphi(t) = t - \psi(t)$, then $0 < \psi(t) = t - \varphi(t) < t$ for $t > 0$ (by definition of ψ) and inequality (2.5) implies that

$$d(fx, fy) \leq M(x, y) - \varphi(M(x, y))$$

Therefore, the result follows from Theorem 2.2.

Corollary 2.5 Let f and g be two self mappings of a metric space (X, d) such that for every $x, y \in X$

$$d(fx, fy) \leq \alpha(M(x, y))M(x, y)$$

where $\alpha : [0, \infty) \to [0, 1)$ is a function. If (f, g) satisfies the property (E.A) and gX is closed in X, then $C(f, g) \neq \phi$. Further, if (f, g) is occasionally weakly g-biased, then $F(f, g)$ is singleton.

Proof. Setting $\varphi(t) = [1 - \alpha(t)]t$, then equation (2.6) implies that

$$d(fx, fy) \leq M(x, y) - \varphi(M(x, y))$$

The result follows from Theorem 2.2.

Theorem 2.6. Let f and g be two self mappings of a metric space (X, d) satisfying

$$d(fx, gy) \leq N(x, y) - \varphi(N(x, y)), \forall x, y \in X$$

If (f, g) satisfies the property-(E.A) and fX is closed in X, then $C(f, g) \neq \phi$. Further, if (f, g) is occasionally weakly g-biased, then $F(f, g)$ is singleton.

Proof. Since f and g satisfy property-(E.A), there exists a sequence $\{x_n\}$ in X such that $fx_n, gx_n \to t$ for some $t \in X$. As fX is closed and $t \in X$, there exists $u \in X$ such that $t = fu$. We
claim that $fu = gu$. By (2.2) and (2.7), we obtain
\[d(f x_n, gu) \leq N(x_n, u) - \varphi(N(x_n, u)) \]
and
\[N(x_n, u) = \max \left\{ d(g x_n, fu), d(f x_n, fu), d(g x_n, gu), \frac{1}{2}[d(f x_n, g x_n) + d(fu, gu)] \right\} \]
On letting $n \to \infty$, we obtain
\[d(gu, fu) \leq \max \left\{ 0, 0, d(fu, gu), \frac{1}{2}d(fu, gu) \right\} - \varphi \left(\max \left\{ 0, 0, d(fu, gu), \frac{1}{2}d(fu, gu) \right\} \right) \]
\[= d(fu, gu) - \varphi(d(fu, gu)) \]
which gives $fu = gu$. Therefore, $C(f, g) \neq \emptyset$.

Since (f, g) is occasionally weakly g-biased mappings, then $fu = gu$ for some $u \in C(f, g)$ and
\[(2.8) \quad d(gfu, gu) \leq d(fgu, fu). \]
Also, $fu = gu$ yields $ffu = fgu$ and $gfu = ggu$. Now we show that $ffu = fu$, otherwise by (2.7), (2.2) and (2.8), we obtain
\[d(ffu, fu) = d(ffu, gu) \]
\[\leq N(fu, u) - \varphi \left(N(fu, u) \right) \]
\[= \max \left\{ d(gfu, fu), d(ffu, fu), \frac{1}{2}d(ffu, gfu) \right\} - \varphi \left(\max \left\{ d(gfu, fu), d(ffu, fu), \frac{1}{2}d(ffu, gfu) \right\} \right) \]
\[\leq \max \{ d(ffu, fu), d(ffu, fu), d(fgu, fu) \} - \varphi \left(\max \{ d(ffu, fu), d(ffu, fu), d(fgu, fu) \} \right) \]
\[= d(ffu, fu) - \varphi(d(ffu, fu)) \]
which gives $\varphi(d(ffu, fu)) = 0 \Rightarrow ffu = fu$.

By occasionally weakly g-biased of f and g, we obtain
which in turn gives $gfu = fu$. Therefore, $fu = z$ is a common fixed point of f and g. For the uniqueness, let $z \neq z' \in X$ such that $fz = gz = z$ and $fz' = gz' = z'$, then by (2.2) and (2.7), we obtain

$$d(z, z') = d(fz, gz') \leq N(z, z') - \varphi(N(z, z')) = d(z, z') - \varphi(d(z, z'))$$

which yields $\varphi(d(z, z')) = 0$ and $z = z'$. This completes the proof.

The validity of above theorem is illustrated by the following example.

Example 2.7. Let $X = [0, 1) \subset \mathbb{R}$ with usual metric d. Define $f, g : X \rightarrow X$ by $fx = \frac{1}{2}$, for $0 \leq x \leq \frac{1}{2}$, $fx = 0$, for $x > \frac{1}{2}$ and $gx = \frac{1}{2}(1 + x)$, for $0 \leq x < \frac{1}{2}$, $g\frac{1}{2} = \frac{1}{2}$, $gx = \frac{3}{2}$, for $x > \frac{1}{2}$. Here, $fX = \{0, \frac{1}{2}\}$ is not contained in $gX = [\frac{1}{2}, \frac{3}{2})$, and fX is closed in X. Mappings f and g satisfy property (E.A), to verify this, let $\{x_n\}$ be a sequence in X, $x_n > 0$, $n = 1, 2, 3, \ldots$ such that $x_n \rightarrow 0$ as $n \rightarrow \infty$ then $fx_n, gx_n \rightarrow \frac{1}{2} \in X$. One can also verify that f and g satisfy inequality (2.7) for every $x, y \in X$ taking with $\varphi(t) = \frac{t}{2}$. Also, $C(f, g) = \{0, \frac{1}{2}\}$ and $f0 = \frac{1}{2} = g0$ implies f and g are occasionally weakly g-biased mappings. Thus, all the conditions of the theorem are satisfied and $f0 = \frac{1}{2}$ is the unique common point.

Corollary 2.8. Let f and g be two self mappings of a metric space (X, d) satisfying

$$d(fx, gy) \leq N(x, y) - \varphi(N(x, y)), \forall x, y \in X$$

If (f, g) satisfies the property-(E.A) and fX is closed in X, then $C(f, g) \neq \phi$. Further, if (f, g) is occasionally weakly compatible, then $F(f, g)$ is singleton.

References

