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Abstract. In this paper coincidence and fixed point theorems for a pair of single-valued and multi-valued compat-

ible mappings on complete partial metric spaces are presented. The notion of compatible mappings for a pair of

single-valued and multi-valued mappings proved to be very useful as the existing metric fixed point theory contains

numerous fixed point results for pair(s) of mappings established under compatibility condition and its generaliza-

tions. Partial metric spaces are one of generalizations of the notion of a metric space that allows non-zero self

distance. The existing metric fixed point theory approaches, are adapted to establish the results. The main result

generalizes, in particular, a fixed point theorem due to Kaneko and Sessa for hybrid pair of compatible mappings.

An illustrative example is also provided.
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1. Introduction

The study of fixed points for compatible mappings on complete metric spaces was initiated

by Jungck [ 2 ]. Kaneko and Sessa [ 4 ] extended the notion of compatible mappings to include

multi-valued mappings, and established some metric fixed point results for single-valued and

multi-valued compatible mappings.

Partial metric spaces were introduced by Mathews [ 7 ] while studying denotational seman-

tics in data flow networks. Partial metric spaces are generalization of the notion of metric spaces

such that the distance of a point of the space from itself is not necessarily zero [ 8 ]. Matthews

established, as a tool for his study, a fixed point theorem, a generalization of the Banach contrac-

tion principle, for contraction mappings on complete partial metric spaces. Matthews therefore

initiated the study of fixed points in the framework of partial metric spaces. Matthews [ 8 ] also

studied topological aspects for partial metric spaces. Recently, there has been several studies on

possible generalizations of the existing metric fixed point results to partial metric spaces. This

paper forms a part of the studies for metric fixed point results for a hybrid pair of compatible

mappings.

The purpose of this paper is to generalize a metric fixed point theorem due to Kaneko and

Sessa [ 4 ] to partial metric spaces.

2. Preliminaries

The following definitions and preliminary results will be required to establish the results.

Definition 2.1. Let X be a non-empty set. Let T : X → 2X , where 2X denotes the collection

of all non-empty subsets of X , be a multi-valued mapping and f : X → X be a single-valued

mapping. Then:

( i ) a point t ∈ X is called a common fixed point of T and f if t = f t ∈ Tt.

( ii ) a point s ∈ X is called a coincidence point of f and T if f s ∈ T s.

Definition 2.2. [ 8 ] Let X be non-empty set. A partial metric space is a pair (X , p), where p is

a function p : X×X → [0,∞), called the partial metric, such that for all x,y,z ∈ X the following

hold:
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( P1 ) x = y⇔ p(x,y) = p(x,x) = p(y,y);

( P2 ) p(x,x)≤ p(x,y);

( P3 ) p(x,y) = p(y,x);

( P4 ) p(x,y)≤ p(x,z)+ p(z,y)− p(z,z).

Clearly, by ( P1 ) - ( P3 ) , if p(x,y) = 0, then x = y. But, the converse is in general not true.

Amongst classical examples of partial metric spaces is a pair ([0,∞), p) where p(x,y) =

max{x,y} for all x,y ∈ [0,∞). More examples of partial metric spaces may be found in [ 1 , 3 ].

Each partial metric p on X generates a T0 topology τp on X whose basis is the collection of

all open p-balls {Bp(x,ε) : x ∈ X ,ε > 0} where

Bp(x,ε) = {y ∈ X : p(x,y)< p(x,x)+ ε} for all x ∈ X , and ε is a real number.

Let (X , p) be a partial metric space. Let A be any non-empty subset of the set X and x be an

element of the set X . It is well known [ 11 ] that x ∈ Ā, where Ā is the closure of A, if and only

if p(x,A) = p(x,x). Also, the set A is said to closed in (X , p) if and only if A = Ā.

Definition 2.3. [ 8 ] Let (X , p) be a partial metric space. Then:

( i ) A sequence {xn} in (X , p) is said to be convergent to x ∈ X if and only if p(x,x) =

limn→∞ p(x,xn).

( ii ) A sequence {xn} in (X , p) is a Cauchy sequence if and only if

limn,m→∞ p(xn,xm) exists and is finite.

( iii ) A partial metric space (X , p) is said to be complete if every Cauchy sequence {xn}

in X converges with respect to the topology τp to a point x ∈ X such that p(x,x) =

limn,m→∞ p(xn,xm).

Lemma 2.1. [ 1 ] Let (X , p) be a partial metric space. Then the mapping ps : X ×X → [0,∞)

given by

ps(x,y) = 2p(x,y)− p(x,x)− p(y,y)

for all x,y ∈ X defines a metric on X .

Lemma 2.2. [ 1 ] Let (X , p) be a partial metric space. Then:

( i ) A sequence {xn} is a Cauchy sequence in (X , p) if and only if it is a Cauchy sequence

in the metric space (X , ps).
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( ii ) A partial metric space (X , p) is complete if and only if the metric space (X , ps) is com-

plete.

Let (X ,d) be a metric space and CB(X) denotes the collection of all non-empty bounded

closed subsets of X . For A,B ∈CB(X), define

H(A,B) = max{sup
a∈A

d(a,B),sup
b∈B

d(b,A)}

where d(x,A) = inf{d(x,a) : a ∈ A} is the distance from a point x ∈ X to the set A ∈CB(X). It

is well known [ 6 ] that H is a metric, called the Pompeiu-Hausdorff metric, on CB(X) induced

by the metric d. The metric space (CB(X),H) is complete whenever (X ,d) is complete.

Definition 2.4. [ 2 ] Let (X ,d) be a metric space. The mappings f ,g : X → X are called

compatible if and only if d( f gxn,g f xn) approaches 0 whenever {xn} is a sequence in X such

that { f xn} approaches t, {gxn} approaches t for some point t ∈ X .

Definition 2.5. [ 4 ] Let (X ,d) be a metric space. The mappings f : X → X and T : X →CB(X)

are compatible if and only if f T x ∈ CB(X) for all x in X and H(T f xn, f T xn) approaches 0,

whenever {xn} is a sequence in X such that {T xn} approaches N ∈CB(X) and { f xn} approaches

t ∈ N.

Kaneko and Sessa [ 4 ] extended the Proposition 2.2 due to Jungck [ 2 ] to include a hybrid

pair of mappings, and obtained the following result:

Lemma 2.3. [ 4 ] Let (X ,d) be a metric space. Let f : X→X and T : X→CB(X) be compatible

mappings. If f y ∈ Ty for some y ∈ X, then f Ty = T f y .

Definition 2.6. [ 10 ] Let (X , p) be a partial metric space. Mappings f ,g : X → X are:

( i ) compatible if and only if p( f gxn,g f xn) approaches p(t, t) whenever {xn} is a sequence

in X such that both { f xn} and {gxn} approach t ∈ X .

( ii ) non-compatible if there exists at least one sequence {xn} in X such that both { f xn} and

{gxn} approach t ∈ X , but p( f gxn,g f xn) diverges.

Definition 2.7. [ 3 ] Let (X , p) be a partial metric space and CBp(X) denotes the collection of

all non-empty bounded and closed subsets of X . For A,B ∈CBp(X), define

Hp(A,B) = max{δp(A,B),δp(B,A)}
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where p(x,A)= inf{p(x,a) : a ∈ A}, δp(A,B)= sup{p(a,B) : a ∈ A} and δp(B,A)= sup{p(b,A) : b ∈ B}.

Then the mapping Hp is a partial metric, called the partial Hausdorff metric, on CBp(X) induced

by the partial metric p.

Proposition 2.1. [ 3 ] Let (X , p) be a partial metric space. For A,B,C ∈CBp(X), the following

hold:

( h1 ) Hp(A,A)≤ Hp(A,B);

( h2 ) Hp(A,B) = Hp(B,A);

( h3 ) Hp(A,B)≤ Hp(A,C)+Hp(C,B)− infc∈C p(C,C).

Lemma 2.3. [ 3 ] Let (X , p) be a partial metric space. Let A,B ∈CBp(X) and q > 1. Then for

any a ∈ A, there exists b ∈ B that depends on a such that

p(a,b)≤ qHp(A,B).

Definition 2.8. Let (X , p) be a partial metric space. The mappings f : X → X and T : X →

CBp(X) are:

( i ) compatible if and only if f T x ∈CBp(X) for all x ∈ X and

Hp(T f xn, f T xn) = Hp( f T xn, f T xn)

whenever {xn} is a sequence in X such that {T xn} approaches N ∈CBp(X) and { f xn}

approaches t ∈ N.

( ii ) non-compatible if there exists at least one sequence {xn} in X such that {T xn} ap-

proaches N ∈CBp(X) and { f xn} approaches t ∈M, but

Hp(T f xn, f T xn) 6= Hp( f T xn, f T xn).

Lemma 2.4. Let (X , p) be a partial metric space. Let f : X → X and T : X → CBp(X) be

compatible mappings. If f y ∈ Ty for some y ∈ X, then f Ty = T f y.

Proof. Let xn = y for each n, then f xn = f y→ f y and T xn⇒ N = Ty. Suppose that f y ∈ Ty

for some y ∈ X , then

Hp( f Ty,T f y) = Hp( f T xn,T f xn) = Hp( f T xn, f T xn) by compatibility of the mappings f and
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T ( see Definition 2.8 ) Thus by Definition 2.2 (P2) we have f Ty = T f y. This completes the

proof.

Motivated by Nadler [ 6 ] and inspired by Kubiak [ 9 ], Kaneko and Sessa [ 4 ] established

the following metric fixed point result for a hybrid pair of compatible mappings.

Theorem 2.1. [ 4 ] Let (X ,d) be a complete metric space, f : X → X and T : X →CB(X) be

compatible continuous mappings such that T (X)⊆ f (X) and

H(T x,Ty)

≤ hmax
{

d( f x, f y),d( f x,T x),d( f y,Ty),
1
2
[d( f x,Ty)+d( f y,T x)]

}
for all x,y in X, where 0≤

h < 1. Then, there exists a point t ∈ X such that f t ∈ Tt .

In this paper Theorem 2.1 is generalized to partial metric spaces in order to obtain a fixed

point theorem for hybrid pair of compatible mappings in partial metric spaces.

3. Main Results

The following theorem is a generalization of Theorem 2.1 to partial metric spaces.

Theorem 3.1. Let (X , p) be a complete partial metric space. Let f : X→X and T : X→CBp(X)

be compatible continuous mappings such that

( i ) T (X)⊆ f (X) and

( ii ) Hp(T x,Ty)

≤ hmax
{

p( f x, f y), p( f x,T x), p( f y,Ty),
1
2
[p( f x,Ty)+ p( f y,T x)]

}
for all x,y in X ,

where 0≤ h < 1.

Then, the mappings f and T have a common coincidence point. i.e. there exists a point t ∈ X

such that f t ∈ Tt.

Proof. Let x0 be an arbitrary point in X . Using Theorem 3.1 (i) we can find x1 ∈ X such that

f x1 ∈ T x0. By the definition of Hp (refer Definition 2.7) , and the Theorem 3.1 (ii) for h = 0,

we have

p( f x1,T x1)≤Hp(T x0,T x1) = 0

≤Hp(T x1,T x1)



FIXED POINT THEOREMS FOR HYBRID MAPPINGS 495

This implies that f x1 is contained in T x1.

Consider a case when h > 0.

For define q =
1√
h

. So q > 1. By Lemma 2.3 , there exists a point z1 ∈ T x1 such that

p(z1, f x1)≤ qHp(T x1,T x0). By Theorem 3.1 (i), we can find x2 ∈ X such that z1 = f x2 ∈ T x1.

In general, after selecting xn, we can choose xn+1 ∈ X and set

zn = f xn+1 ∈ T xn satisfying:

p(zn, f xn) = p( f xn+1, f xn)≤ qHp(T xn,T xn−1) for each n≥ 1. Now,

p( f xn, f xn+1)≤qHp(T xn−1,T xn)(1)

≤qhmax{p( f xn−1, f xn), p( f xn−1,T xn−1), p( f xn,T xn),

1
2
[p( f xn−1,T xn)+ p( f xn,T xn−1)]}

≤
√

hmax{p( f xn−1, f xn), p( f xn−1, f xn), p( f xn, f xn−1),

1
2
[p( f xn−1, f xn+1)+ p( f xn, f xn)]}

≤
√

hmax{p( f xn, f xn−1),
1
2
[p( f xn−1, f xn+1)+ p( f xn, f xn)]}

≤
√

hmax{p( f xn, f xn−1), p( f xn, f xn+1)}

p( f xn, f xn+1)≤
√

hp( f xn, f xn−1) for all n≥ 2.(2)

By mathematical induction, we get

(3) p( f xn, f xn+1)≤ (
√

h)
n−1

p( f x2, f x1) for all n ∈ N.

By ( 3 ) and Definition 2.2 ( P4 ), for any m ∈ N we have

p( f xn, f xn+m)≤ p( f xn, f xn+1)+ p( f xn+1, f xn+2)+ · · ·+ p( f xn+m−2, f xn+m−1)

+ p( f xn+m−1, f xn+m)

≤
[
(
√

h)
n−1

+(
√

h)
n
+ · · ·+(

√
h)

n+m−3
+(
√

h)
n+m−2]

p(x2,x1)

≤ (
√

h)n−1

1−
√

h
p(x2,x1)→ 0 as n→ ∞ since 0 < h < 1.

By the Lemma 2.1 , we get for any m ∈ N, ps( f xn, f xn+m) ≤ 2p( f xn, f xn+m)→ 0 as n→ ∞.

This yields { f xn} is a Cauchy sequence with respect to ps and hence convergent by Lemma 2.2.
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Thus, there exist some t ∈ X such that

(4) p(t, t) = lim
n→∞

p( f xn, t) = lim
n,m→∞

p( f xn, f xm).

From ( 1 ) and ( 2 ) we have:

qHp(T xn,T xn−1)≤
√

hp( f xn−1, f xn)

Hp(T xn,T xn−1)≤hp( f xn−1, f xn). for n≥ 2.

This implies that {T xn} is a Cauchy sequence as { f xn} is a Cauchy sequence. Hence {T xn} is

convergent by completeness of (CBp(X),Hp).

Now, let T xn→ N ∈CBp(X). Then we have the following:

p(t,N)≤ p(t, f xn)+ p( f xn,N)− p( f xn, f xn)

≤ p(t, f xn)+Hp(T xn−1,N)−Hp(T xn−1,T xn−1)

≤ p(t, t)+0 as n→ ∞ by (4)

= p(t, t)

This implies that t ∈ N, since N is closed.

By compatibility of the mappings as in Definition 2.8 (Hp(T f xn, f T xn) = Hp( f T xn, f T xn)),

Proposition 2.1 ( h3 ) and continuities of the mappings f ,T we have :

p( f t,Tt)≤ p( f t, f f xn+1)+ p( f f xn+1,Tt))− p( f f xn+1, f f xn+1)

≤ p( f t, f f xn+1)+Hp( f T xn,Tt)−Hp( f T xn, f T xn)

≤ p( f t, f f xn+1)+Hp( f T xn,T f xn)

+Hp(T f xn,Tt)−Hp( f T xn, f T xn)− inf
z∈T f xn

p(z,z)

≤ p( f t, f t).

So we have p( f t, f t)≤ p( f t,Tt)≤ p( f t, f t).

This implies p( f t,Tt) = p( f t, f t). Therefore f t ∈ Tt since Tt is closed. This completes the

proof.
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Corollary 3.1. Let (X , p) be a complete partial metric space. Let T : X→CBp(X) and f : X→

X be a continuous mapping satisfying Hp(T x,Ty)≤ hp( f x, f y) for all x,y∈ X, where 0≤ h < 1

and T f x = f T x. If the mappings f ,T satisfy condition ( i ) of Theorem 3.1 , then the mappings

f and T have a common coincidence point.

Remark 3.1. Let (X , p) be a partial metric space. We denote by PBp(X) the collection of all

non-empty and bounded subsets G of X such that for each x ∈ X , there exists a point y ∈G with

p(x,y) = p(x,G). If we define T : X → PBp(X), then the iterative process zn in the above proof

can be simplified to the modified iteration scheme of Smithson [ 5 ], where T x is compact and

therefore contained in PBp(X). This can be done as follows: after selecting xn, let xn+1 ∈ X

be such that zn = f xn+1 ∈ T xn and p( f xn,zn) = p( f xn,T xn). Clearly PBp(X) ⊆ CBp(X) and

therefore we have the following as corollary of Theorem 3.1.

Corollary 3.2. Let (X , p) be a complete partial metric space. Let f : X → X and T : X →

PBp(X) be continuous mappings satisfying f T x ∈ PBp(X) for all x ∈ X. If the mappings f and

T are such that Hp(T f x, f T x)≤ p( f x,T x) for all x ∈ X and satisfy conditions ( i ) and ( ii ) of

the Theorem 3.1 , then the mappings f and T have a common coincidence point.

We now present an illustrative example for Theorem 3.1.

Example 3.1. Let X = [1,∞) and p : X×X→ [0,∞) be a function given by p(x,y) = max{x,y},

for all x,y ∈ X . Clearly (X , p) is a partial metric space. Define f x = 2x4− 1 and T x = [1,x2]

for each x ≥ 1. Clearly, the mappings f and T are continuous and satisfy condition (i) of the

Theorem 3.1. Since { f xn} → 1 and {T xn} → {1} if and only if {xn} → 1, Hp( f T xn,T f xn) =

Hp( f T xn, f T xn) = 2xn
8−1 if and only if {xn} → 1 and f T xn = [1,2xn

8−1] ∈CBp(X) for all

x,y∈X , then f and T are compatible mappings. Now, Hp(T x,Ty) =Hp([1,x2], [1,y2]). Without

loss of generality we assume y≤ x. This implies that

Hp(T x,Ty) =x2

≤2(x2 +1)(x2−1)+1
2

=
1
2

max{ f x, f y}

=
1
2

p( f x, f y) for all x,y ∈ X .
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Thus, the mappings f and T satisfy condition ( ii ) of the Theorem 3.1 for h = 1
2 . Therefore by

the Theorem 3.1 , 1 is a coincidence point for the mappings f and T . i.e. t = 1.

We now present a fixed point result by imposing appropriate restrictions to the mappings f

and T as defined in Theorem 3.1.

Theorem 3.2. Let (X , p) be a complete partial metric space. Let f : X→X and T : X→CBp(X)

be compatible continuous mappings satisfying both conditions ( i ) and ( ii ) of the Theorem

3.1. Furthermore, if for each x ∈ X either f x 6= f 2x implies f x 6∈ T x or f x ∈ T x implies that

f nx→ y for some y ∈ X . Then the mappings f and T have a common fixed point in X .

Proof. Since f and T satisfy both conditions of the Theorem 3.1 , then f t ∈ Tt for some t ∈ X .

We assume f x 6= f 2x implies f x 6∈ T x for each x ∈ X . Now, by continuity of f and the Lemma

2.8 we have f 2t ∈ f Tt = T f t. Thus we have f t = f 2t ∈ T f t. i.e. f (t) is a common fixed point

for f and T .

We assume f x ∈ T x implies that f nx→ y for some y ∈ X . By continuity of f we have f y = y.

We now show that y is also a fixed point for T . By the Lemma 2.4 , f nt ∈ T f n−1t for each

natural number n, and the continuity of T we have:

p(y,Ty)≤ p(y, f nt)+ p( f nt,Ty)− p( f nt, f nt)

≤ p(y, f nt)+Hp(T f n−1,Ty)−Hp(T f n−1t,T f n−1t)

≤ p(y,y)

= p(y,y).

Therefore, y ∈ Ty since Ty is closed. This completes the proof.
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