
Available online at http://scik.org

Adv. Fixed Point Theory, 9 (2019), No. 3, 214-238

https://doi.org/10.28919/afpt/3394

ISSN: 1927-6303

A NEW ALGORITHM FOR VARIATIONAL INEQUALITY PROBLEMS WITH
ALPHA-INVERSE STRONGLY MONOTONE MAPS AND COMMON FIXED

POINTS FOR A COUNTABLE FAMILY OF RELATIVELY WEAK
NONEXPANSIVE MAPS, WITH APPLICATIONS

CHARLES E. CHIDUME1,∗, CHINEDU G. EZEA1,2, EMMANUEL E. OTUBO1,3

1Department of Pure and Applied Mathematics, African University of Science and Technology, Abuja, Nigeria
2Department of Mathematics, Nnamdi Azikiwe University, Awka, Nigeria

3Department of Mathematics and Computer Science, Ebonyi State University, Abakaliki, Nigeria

Copyright c© 2019 the authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Let E be a 2-uniformly convex and uniformly smooth real Banach space with dual space E∗. Let C

be a nonempty closed and convex subset of E. Let A : C → E∗ and Ti : C → E, i = 1,2, · · · , be an α-inverse

strongly monotone map and a countable family of relatively weak nonexpansive maps, respectively. Assume that

the intersection of the set of solutions of the variational inequality problem, V I(C,A), and the set of common

fixed points of {Ti}∞
i=1, ∩∞

i=1F(Ti), is nonempty. A generalized projection algorithm is constructed and proved

to converge strongly to some x∗ ∈ V I(C,A)∩
(
∩∞

i=1 F(Ti)
)

. Our theorem is a significant improvement of recent

important results, in particular, the results of Zegeye and Shahzad (Nonlinear Anal. 70 (7) (2009), 2707-2716), Liu

(Appl. Math. Mech. -Engl. Ed. 30 (7) (2009), 925-932), and Zhang et al. (Appl. Math. and Informatics 29 (1-2)

(2011), 87-102) and a host of other results. Finally, applications of our theorem to convex optimization problems,

zeros of α-inverse strongly monotone maps and complementarity problems are presented.
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1. INTRODUCTION

Let E be a real Banach space with dual space E∗. Let C be a nonempty closed and convex

subset of E and A : C→ E∗ be a monotone-type map. Then, we study the following problem:

find u ∈C such that

(1)
〈
y−u,Au

〉
≥ 0, for all y ∈C.

This problem is called the variational inequality problem and has been studied extensively by

various authors (see e.g., Aoyama et al. [4], Blum and Oettli [6], Censor et al.
(
[8],[9], [10],

[11]
)
, Chidume [12], Chidume et al. [17], Gibali et al. [19], Iiduka and Takahashi [22], Iiduka

et al. [23], Kassay et al. [25], Kinderlehrer and Stampacchia [26], Lions and Stampacchia [28],

Liu [29], Liu and Nashed [31], Ofoedu and Malonza [35], Osilike et al. [36], Reich and Sabach

[37], Reich [39], Su and Xu [42], Zegeye et al. [48], Zhang et al. [51] and the references

contained in them). The set of solutions of the variational inequality problem is denoted by

V I(C,A) = {u ∈C : 〈y−u,Au〉 ≥ 0, ∀ y ∈C}.

Variational inequality problems are connected with convex minimization problems, zeros of

monotone-type maps, complementarity problems, and so on. For more on variational inequal-

ity problems and some of their applications one is refered to the classic book of Kinderlehrer

and Stampacchia [26].

A map A : C→ E∗ is called α-inverse strongly monotone if there exists α > 0 such that

〈
x− y,Ax−Ay

〉
≥ α‖Ax−Ay‖2, for all x,y ∈C.

If A is an α-inverse strongly monotone map, then it is Lipschitz with Lipschitz constant 1
α
, i.e.

‖Ax−Ay‖ ≤ 1
α
‖x− y‖, for all x,y ∈C. In the case where E = RN , for finding a zero of an α-

inverse strongly monotone map, Golshten and Tretyakov [20] studied the following recursion

formula: x1 = x ∈ RN and

xn+1 = xn−λnAxn, n≥ 1,(2)
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where {λn}∞
n=1 is a sequence in [0,2α]. They proved that the sequence {xn}∞

n=1 generated by

the recursion formula (2) converges strongly to an element of A−10, where

A−10 :=
{

x ∈ RN : Ax = 0
}
.

In the case that E = H, a real Hilbert space, a well known method for solving the variational

inequality problem (1) is by the use of projection algorithm which starts with x1 = x ∈C and

generates a sequence {xn}∞
n=1 using the following recursion formula,

xn+1 = PC(xn−λnAxn), n≥ 1,(3)

where A : C→ H is a monotone map and PC is the metric projection of H onto C, {λn}∞
n=1 is a

sequence of positive numbers satisfying appropriate conditions. In the case that A is α-inverse

strongly monotone, Iiduka et al. [23] proved that the sequence {xn}∞
n=1 generated by recursion

formula (3) converges weakly to an element of V I(C,A).

In real Banach spaces more general than Hilbert spaces, Alber introduced a notion of projection,

ΠC : E → C, called generalized projection, which is a generalization of the metric projection

on a Hilbert space. This generalized projection is now a key tool in approximation methods for

nonlinear operators in real Banach spaces more general than Hilbert space.

Iiduka and Takahashi [22] used the generalized projection to prove a weak convergence theorem

for solutions of variational inequality problems under the following assumptions:

(i) E is a 2-uniformly convex and uniformly smooth real Banach space,

(ii) A is α-inverse strongly monotone,

(iii) V I(C,A) 6= /0,

(iv) ‖Ay‖ ≤ ‖Ay−Au‖, for all y ∈C and u ∈V I(C,A) and

(v) The normalized duality map J : E→ E∗ is weakly sequentially continuous.

Chidume et al. [18], using the generalized projection, proved a strong convergence theorem

for solutions of variational inequality problems assuming only conditions (i) to (iv) above in a

2-uniformly convex and uniformly smooth real Banach space.



A NEW ALGORITHM FOR VARIATIONAL INEQUALITY PROBLEMS 217

Remark 1. In Lp spaces, 1 < p < ∞, p 6= 2, the normalized duality map J is not weakly sequen-

tially continuous and so the theorem of Iiduka and Takahashi [22], may not be applicable, since

in this theorem J is required to be weakly sequentially continuous. The theorem of Chidume

et al. [18] is applicable in Lp spaces, 1 < p < 2. Consequently, the theorem of Chidume et al.

[18] provides strong convergence theorem in Lp spaces, 1 < p < 2.

To obtain a strong convergence theorem for finding a common element of the set of fixed points

of a relatively nonexpansive map and the set of solutions of a variational inequality problem

for an inverse-strongly monotone map, in a uniformly smooth and 2-uniformly convex Banach

space by using a hybrid method Liu [30] proved the following theorem.

Theorem 1.1 (Liu [30]). Let E be a 2-uniformly convex, uniformly smooth Banach space and

C be a nonempty, closed convex subset of E. Assume that A is an operator of C into E∗ that

satisfies the conditions (ii) to (iv) and T is a relatively nonexpansive mapping from C into itself

such that F := F(T )∩V I(C,A) 6= /0. Let {xn} be the sequence defined by



x0 ∈C chosen arbitrarily,

wn = J−1(βnJxn +(1−βn)JΠCJ−1(Jxn−λnAxn),

zn = ΠCwn,

yn = J−1(αnJxn +(1−αn)JT zn),

C0 =C,

Cn = {v ∈Cn−1 : φ(v,yn)≤ φ(v,xn)},

Qn = {v ∈C :
〈
xn− v,Jx0− Jxn

〉
≥ 0},

xn = ΠCn∩Qnx0, ∀ n≥ 0,

(4)

where {αn} and {βn} satisfy 0 ≤ αn < 1, limsupαn < 1, 0 ≤ βn < 1 and limsupβn < 1. If

{λn} is chosen so that λn ∈ [a,b] for some a, b with 0 < a < b < c2α

2 , then the sequence {xn}

converges strongly to ΠFx0, where 1
c is the 2-uniformly convexity constant of E.

For solving variational inequality problems and fixed points of relatively weak nonexpansive

maps, Zegeye and Shahzad [49] introduced the following generalized projection algorithm:
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x0 ∈C, 

x0 ∈C chosen arbitrarily,

yn = ΠCJ−1(Jxn−αnAxn),

zn = Tyn,

H0 = {v ∈C : φ(v,z0)≤ φ(v,y0)≤ φ(v,x0)},

Hn = {v ∈ Hn−1∩Wn−1 : φ(v,zn)≤ φ(v,yn)≤ φ(v,xn)},

W0 =C,

Wn = {v ∈ Hn−1∩Wn−1 :
〈
xn− v,Jx0− Jxn

〉
≥ 0},

xn+1 = ΠHn∩Wn(x0), ∀ n≥ 0,

(5)

and proved that the sequence {xn}∞
n=1 generated by recursion formula (5) converges strongly

to ΠV I(K,A)∩F(T )x0, where ΠV I(K,A)∩F(T ) is the generalized projection from E onto V I(K,A)∩

F(T ).

Motivated by Liu [30] and Zegeye and Shahzad [49], Zhang et al. [51] using the following

algorithm 

x0 ∈C chosen arbitrarily,

wn = J−1(βnJxn +(1−βn)JΠCJ−1(Jxn−λnAxn),

zn = ΠCwn,

yn = J−1(αnJxn +(1−αn)JT zn),

C0 =C,

Cn = {v ∈Cn−1 : φ(v,yn)≤ φ(v,xn)},

xn = ΠCnx0, ∀ n≥ 0,

(6)

where {αn} and {βn} are sequences in [0,1) such that limsupβn < 1 and liminfαn < 1, {λn}

is chosen so that λn ∈ [a,b] for some a, b with 0 < a < b < c2α

2 , proved a strong convergence

theorem in a 2-uniformly convex and uniformly smooth Banach space, for finding a common

element of the set of variational inequality problem for an inverse strongly monotone map and

the set of fixed points of a relatively weak nonexpansive map.

Remark 2. The algorithm (5) of Zegeye and Shahzad is an improvement on algorithm (4) of

Liu in the sense that the sequence {wn} defined in algorithm (4) is dispensed with in algorithm
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(5). The algorithm of Zhang et al. [51] (algorithm (6)) is another improvement of algorithm (4)

in the sense that it dispenses with the subset Qn defined in algorithm (4). In Zhang et al. [51],

relatively weak nonexpansive map was called weak relatively nonexpansive map.

It is our purpose in this paper to introduce a generalized projection algorithm which is a signif-

icant improvement on algorithms (4), (5) and (6) and prove a strong convergence theorem for a

common element for a variational inequality and a fixed point of a relatively weak nonexpansive

map in a 2-uniformly convex and uniformly smooth real Banach space. Furthermore, we extend

our theorem to a countable family of relatively weak nonexpansive maps. Finally, applications

of our theorem to convex optimization problems, zeros of α-inverse strongly monotone maps

and complementarity problems are presented.

2. PRELIMINARIES

Definition 2.1. Let E be a real Banach space with dual space E∗. A map T : E → E is said to

be Lipschitz if for each x,y ∈ E, there exists L≥ 0 such that ‖T x−Ty‖ ≤ L‖x− y‖.

Definition 2.2. A map A : E → 2E∗ is said to be monotone if for each x,y ∈ E, the following

inequality holds:
〈
x− y,x∗− y∗

〉
≥ 0, ∀ x∗ ∈ Ax, y∗ ∈ Ay. It is called maximal monotone if, in

addition, the graph of A, G(A) = {(x,y) : y ∈ Ax}, is not properly contained in the graph of any

other monotone operator.

It is well known that A is maximal monotone if and only if for (x,x∗)∈E×E∗, 〈x−y,x∗−y∗
〉
≥

0, ∀ (y,y∗) ∈ G(A) implies that x∗ ∈ Ax.

A map J : E→ E∗ defined by J(x) :=
{

x∗ ∈ E∗ :
〈
x,x∗

〉
= ‖x‖2, ‖x∗‖= ‖x‖, ∀ x∈ E

}
, is called

the normalized duality map on E, where
〈
·, ·
〉

denotes the duality pairing between the elements

of E and E∗. The following are some properties of the normalized duality map which will be

needed in the sequel (see e.g., Ibaraki and Takahashi [21]).

• If E is uniformly convex, then J is one-to-one and onto.

• If E is uniformly smooth, then J is single-valued.
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• In particular, if a Banach space E is uniformly smooth and uniformly convex, the dual

space is also uniformly smooth and uniformly convex. Hence, the normalized duality

map J on E and the normalized duality map J∗ on its dual space E∗, are both uniformly

continuous on bounded sets, and J∗ = J−1.

The modulus of convexity of a space E is the function δE : (0,2]→ [0,1] defined by

δE(ε) := inf
{

1−
∥∥∥x+ y

2

∥∥∥ : ‖x‖= ‖y‖= 1, ε = ‖x− y‖
}
.

The space E is uniformly convex if δE(ε)> 0 for every ε ∈ (0,2]. If there exist a constant c > 0

and a real number p > 1 such that δE(ε)≥ cε p, then E is said to be p-uniformly convex. Typical

examples of such spaces are the Lp, `p and Sobolev spaces, W m
p , for 1 < p < ∞, where

Lp (or lp) or W m
p is

 p−uniformly convex, if 2≤ p < ∞;

2−uniformly convex, if 1 < p≤ 2.

Let S := {z ∈ E : ‖z‖= 1}. A space E is said to have a Gâteaux differentiable norm if

(7) lim
t→0

‖x+ ty‖−‖x‖
t

exists for all x,y ∈ S and is said to have a uniformly Gâteaux differentiable norm if for each

y ∈ S, limit (7) exists and is attained uniformly, for x ∈ S. The space E is said to have a Fréchet

differentiable norm if, for each x ∈ S, limit (7) exists and is attained uniformly for y ∈ S.

Definition 2.3. Let E be a real normed space of dimension ≥ 2. The modulus of smoothness of

E, ρE : [0,∞)→ [0,∞), is defined by ρE(τ) := sup
{
‖x+y‖+‖x−y‖

2 −1 : ‖x‖= 1,‖y‖= τ, τ > 0
}
.

The space E is called smooth if ρE(τ)> 0, ∀ τ > 0 and is called uniformly smooth if lim
t→0+

ρE(t)
t

=

0.

In the sequel, we shall need the following definitions and results. Let E be a smooth real Banach

space with dual space E∗. The function φ : E×E→ R, defined by,

φ(x,y) = ‖x‖2−2〈x,Jy〉+‖y‖2, ∀ x,y ∈ E,(8)

where J is the normalized duality mapping from E into E∗ will play a central role in what

follows. It was introduced by Alber and has been studied by Alber [2], Alber and Guerre-

Delabriere [3], Chidume et al. [14], Chidume et al. [15], Chidume and Idu [16], Chidume et
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al. [13], Kamimura and Takahashi [24], Reich [38], Takahashi and Zembayashi [44], Takahashi

and Zembayashi [45], Zegeye [47] and a host of other authors.

If E =H, a real Hilbert space, equation (8) reduces to φ(x,y)= ‖x−y‖2, ∀x,y∈H. It is obvious

from the definition of the function φ that

(‖x‖−‖y‖)2 ≤ φ(x,y)≤ (‖x‖+‖y‖)2, ∀x, y ∈ E.(9)

Define a map V : E×E∗→ R by V (x,x∗) = ‖x‖2−2〈x,x∗〉+‖x∗‖2. Then, it is easy to see that

V (x,x∗) = φ(x,J−1(x∗)), ∀ x ∈ E, x∗ ∈ E∗.(10)

Let C be a nonempty closed and convex subset of a smooth, strictly convex and reflexive real

Banach space E. The generalized projection map introduced by Alber [1], is a map ΠC : E→C,

such that for any x∈E, there corresponds a unique element x0 :=ΠC(x)∈C such that φ(x0,x)=

min
y∈C

φ(y,x). We remark that if E = H is a real Hilbert space, the generalized projection ΠC

coincides with the metric projection from H onto C.

Definition 2.4. Let C be a nonempty closed and convex subset of E and let T : C→ E be a

map. A point x∗ ∈C is called a fixed point of T if T x∗ = x∗. The set of fixed points of T will

be denoted by F(T ). A point p ∈C is said to be an asymptotic fixed point of T if C contains a

sequence {xn}∞
n=1 which converges weakly to p and lim

n→∞
‖T xn−xn‖= 0. The set of asymptotic

fixed points of T will be denoted by F̂(T ).

Definition 2.5. A map T : C→ E is said to be relatively nonexpansive, if the following condi-

tions hold (see e.g., Butnariu et al. [7], Reich [40] and Matsushita and Takahashi ([32], [33])):

(1) F(T ) 6= /0,

(2) φ(p,T x)≤ φ(p,x), ∀ x ∈C and p ∈ F(T ),

(3) F̂(T ) = F(T ).

Definition 2.6. A point p ∈C is said to be a strong asymptotic fixed point of T if C contains a

sequence {xn}∞
n=1 which converges strongly to p and lim

n→∞
‖T xn− xn‖ = 0 (see e.g., Reich [40]
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and Matsushita and Takahashi [32]). The set of strongly asymptotic fixed points of T will be

denoted by F̃(T ).

Definition 2.7. A map T : C→ E is said to be relatively weak nonexpansive, if the following

conditions hold (see e.g., Zegeye and Shahzad [49]):

(1) F(T ) 6= /0,

(2) φ(p,T x)≤ φ(p,x), ∀ x ∈C and p ∈ F(T ),

(3) F̃(T ) = F(T )

If E is strictly convex and reflexive real Banach space and A : E→ E∗ is a continuous monotone

map with A−1(0) 6= ∅, it is known that Jr := (J + rA)−1J, for r > 0, is relatively weak nonex-

pansive (see e.g., Kohasaka [27]). Clearly, every relatively nonexpansive map is relatively weak

nonexpansive. Let T : C→ E be a map, we have that F(T )⊂ F̃(T )⊂ F̂(T ). It follows that for

any relatively nonexpansive map F(T ) = F̃(T ) = F̂(T ).

An example of a relatively weak nonexpansive map which is not relatively nonexpansive is

given in Zhang et al. [51].

Let E be a real Banach space with dual space E∗. A map A :C→E∗ is said to be hemicontinuous

if for each x,y ∈C, a map F : [0,1]→ E∗ defined by F(t) := A(tx+(1− t)y) is continuous with

respect to the weak topology of E∗. Let NC(v) denote the normal cone for C at a point v ∈C,

that is

NC(v) := {w∗ ∈ E∗ : 〈v− z,w∗〉 ≥ 0, ∀ z ∈C}.

The following lemmas will also be needed in the sequel.

Lemma 2.8 (Alber [1]). Let C be a nonempty closed and convex subset of a smooth, strictly

convex and reflexive real Banach space, E. Then,

φ(y,ΠC(x))+φ(ΠC(x),x)≤ φ(y,x), for all x ∈ E, y ∈C.

Lemma 2.9 (Alber [2]). Let E be a reflexive strictly convex and smooth Banach space with E∗

as its dual. Then,

V (x,x∗)+2〈J−1x∗− x,y∗〉 ≤V (x,x∗+ y∗),(11)
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for all x ∈ E and x∗,y∗ ∈ E∗.

Lemma 2.10 (Alber [2]). Let C be a nonempty closed and convex subset of a smooth real

Banach space E, x ∈ E and x0 ∈C. Then, x0 := ΠCx if and only if

〈y− x0,Jx0− Jx〉 ≥ 0, for all y ∈C.

Lemma 2.11 (Zegeye and Shahzad [50]). Let C be a nonempty closed and convex subset of

a real reflexive, strictly convex and smooth Banach space E. If A : C → E∗ is a continuous

monotone mapping, then V I(C,A) is closed and convex.

Lemma 2.12 ( Nilsrakoo and Saejung [34]). Let C be a closed convex subset of a uniformly

convex and uniformly smooth Banach space E and let {Ti : C→ E}∞
i=1 be a sequence of map-

pings such that ∩∞
i=1F(Ti) 6= /0, φ(p,Tix) ≤ φ(p,x), ∀ x ∈ C and p ∈ ∩∞

i=1F(Ti), i ∈ N. Sup-

pose that {αi}∞
i=1 is a sequence in (0,1) such that

∞

∑
i=1

αi = 1 and T : C → E is defined by

T x = J−1
( ∞

∑
i=1

αiJTix
)

for each x ∈ C. Let {xn} be a bounded sequence in C. Then, the fol-

lowing are equivalent: (a) xn− T xn → 0, (b) xn− Tixn → 0, for each i ∈ N. In particular,

F(T ) = ∩∞
i=1F(Ti).

3. MAIN RESULTS

In theorem 3.1 below, the map A is assumed to satisfy the following condition,

(12) ‖Ay‖ ≤ ‖Ay−Au‖, for all y ∈C and u ∈V I(C,A).

We now prove the following theorem.

Theorem 3.1. Let E be a uniformly smooth and 2-uniformly convex real Banach space with

dual space E∗. Let C be a nonempty closed and convex subset of E, let A : C → E∗ be an

α-inverse strongly monotone map and let T : C→ E be a relatively weak nonexpansive map.

Assume that W := F(T )∩V I(C,A) 6= /0. For arbitrary x1 ∈ C, let the sequence {xn}∞
n=1 be

iteratively defined by
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x1 ∈C :=C1,

un = ΠCJ−1(Jxn−λAxn),

yn = Tun,

Cn+1 = {v ∈Cn : φ(v,yn)≤ φ(v,xn)},

xn+1 = ΠCn+1x1 ∀ n≥ 1,

(13)

where ΠC is the generalized projection of E onto C, J : E → E∗ is the normalized duality map,

λ ∈
(

0, α

2L

)
and L > 0 denotes a Lipschitz constant of J−1. Then, the sequences {xn}∞

n=1 and

{un}∞
n=1 converge strongly to some x∗ ∈W.

Proof. Our method of proof will follow some of the ideas used in Chidume et al. [18]. The

proof will be divided into 5 steps.

Step 1: ΠCn+1 is well defined.

It suffices to show that Cn+1 is closed and convex for all n≥ 1. The proof follows by induction.

Since C1 := C is closed and convex, Cn is closed and convex for some n ≥ 1 and φ(z,yn) ≤

φ(z,xn) if and only if 〈z,Jxn− Jyn〉−‖xn‖2 +‖yn‖2 ≤ 0. Therefore,

Cn+1 = {z ∈Cn : γ(z)≤ 0},

where γ(z) := 〈z,Jxn− Jyn〉−‖xn‖2 +‖yn‖2, is closed and convex, for all n≥ 1. Hence, ΠCn+1

is well defined.

Step 2: xn→ x∗ ∈C as n→ ∞.

Let u ∈Cn, for all n≥ 1. Since xn = ΠCnx1 and by applying lemma 2.8, we have that

φ(xn,x1) = φ(ΠCnx1,x1)≤ φ(u,x1),

which yields that {φ(xn,x1)}∞
n=1 is bounded; it follows by inequality (9) that the sequence

{xn}∞
n=1 is bounded. Furthermore, for each n∈N, xn = ΠCnx1 and xn+1 = ΠCn+1x1 ∈Cn+1 ⊂Cn,

again by lemma 2.8, we obtain that

(14) φ(xn,x1)≤ φ(xn+1,xn)+φ(xn,x1)≤ φ(xn+1,x1).
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Thus, {φ(xn,x1)}∞
n=1 converges. Now, for m > n, xm = ΠCmx1 ∈Cm ⊂Cn, applying lemma 2.8,

we get that

(15) φ(xm,xn) = φ(xm,ΠCnx1)≤ φ(xm,x1)−φ(xn,x1)→ 0 as n,m→ ∞.

From a result of Kamimura and Takahashi, [24], we obtain that

(16) ‖xm− xn‖→ 0 as n,m→ ∞,

and so {xn}∞
n=1 is a Cauchy sequence in C. Since C is closed, it follows that there exists x∗ ∈C

such that

(17) xn→ x∗ as n→ ∞.

Step 3: W ⊂Cn, for each n ∈ N.

The proof is by induction. Clearly, W ⊂ C1 = C. Assume that W ⊂ Cn, for some n ≥ 1. Let

u ∈W be arbitrary. Using lemma 2.8, lemma 2.9, the fact that T is relatively nonexpansive and

the recursion formula (13), we have that

φ(u,yn) = φ(u,Tun)

≤ φ(u,un) = φ(u,ΠCJ−1(Jxn−λAxn))

≤ φ(u,J−1(Jxn−λAxn)) =V (u,Jxn−λAxn)

≤ V (u,Jxn)−2λ 〈J−1(Jxn−λAxn)−u,Axn〉

= φ(u,xn)−2λ 〈xn−u,Axn〉

− 2λ 〈J−1(Jxn−λAxn)− xn,Axn〉.(18)

Since A is α-inverse strongly monotone and u ∈V I(C,A), we obtain that

−2λ 〈xn−u,Axn〉 = −2λ 〈xn−u,Axn−Au〉−2λ 〈xn−u,Au〉

≤ −2αλ‖Axn−Au‖2.(19)
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Furthermore, applying the fact that J−1 : E∗→ E is Lipschitz with constant denoted by L > 0

(see e.g., Xu [46]) and condition (12), we obtain that

−2λ 〈J−1(Jxn−λAxn)− xn,Axn〉 = −2λ 〈J−1(Jxn−λAxn)− J−1(xn),Axn〉

≤ 2λ‖J−1(Jxn−λAxn)− J−1(Jxn)‖‖Axn‖

≤ 2λ
2L‖Axn‖2 ≤ 2λ

2L‖Axn−Au‖2

≤ αλ‖Axn−Au‖2.(20)

Using inequalities (18), (19) and (20), we have that

(21) φ(u,yn)≤ φ(u,un)≤ φ(u,xn)−αλ‖Axn−Au‖2.

Consequently, we obtain that

φ(u,yn) ≤ φ(u,un)≤ φ(u,xn)−αλ‖Axn−Au‖2

≤ φ(u,xn),(22)

and so

(23) φ(u,yn)≤ φ(u,un)≤ φ(u,xn).

Therefore, u ∈Cn+1 and so W ⊂Cn+1. Hence, W ⊂Cn, ∀ n≥ 1.

Step 4: un→ x∗ ∈ F(T ).

By using condition (15), inequality (23) and the fact that xn+1 = ΠCn+1x1 ∈Cn+1 ⊂Cn, we have

that

(24) φ(xn+1,yn)≤ φ(xn+1,un)≤ φ(xn+1,xn)→ 0 as n→ ∞.

This implies by Kamimura and Takahashi [24] that

(25) ‖xn+1− yn‖→ 0 as n→ ∞,
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and

(26) ‖xn+1−un‖→ 0 as n→ ∞.

Applying conditions (16) and (26), we observe that

(27) ‖un− xn‖ ≤ ‖un− xn+1‖+‖xn+1− xn‖→ 0 as n→ ∞.

The fact that J is norm-to-norm uniformly continuous on bounded subsets of E gives that

(28) ‖Jun− Jxn‖→ 0 as n→ ∞.

Moreover, by conditions (17) and (27),

(29) un→ x∗ as n→ ∞,

and by conditions (25) and (26),

(30) ‖yn−un‖= ‖Tun−un‖ ≤ ‖yn− xn+1‖+‖xn+1−un‖→ 0 as n→ ∞.

Since T is relatively nonexpansive map, we obtain that x∗ ∈ F(T ).

Step 5: xn→ x∗ ∈V I(C,A).

Let S⊂ E×E∗ be a map defined as follows:

Sv =


Av+NC(v) i f v ∈ C,

/0 i f v /∈ C.

(31)

From a result of Rockafellar [41], we have that S is maximal monotone and S−10 = V I(C,A).

Let (v,w) ∈ G(S). Therefore, w ∈ Sv = Av+NC(v), and so, we obtain that w−Av ∈ NC(v).

Since un = ΠCJ−1(Jxn− λAxn) ∈ C, we have that 〈v− un,w−Av〉 ≥ 0. Moreover, applying

lemma 2.10 and the recursion formula again, it is easy to see that

(32) 〈v−un,Jun− (Jxn−λAxn)〉 ≥ 0,
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and thus 〈v−un,
Jxn−Jun

λ
−Axn〉 ≤ 0.

Now,

〈v−un,w〉 ≥ 〈v−un,Av〉

≥ 〈v−un,Av〉+
〈

v−un,
Jxn− Jun

λ
−Axn

〉
≥ 〈v−un,Av−Aun〉+ 〈v−un,Aun−Axn〉

+
〈

v−un,
Jxn− Jun

λ

〉
≥ −‖v−un‖

‖un− xn‖
α

−‖v−un‖
‖Jun− Jxn‖

λ

≥ −M
(‖un− xn‖

α
+
‖Jun− Jxn‖

λ

)
,

where M = sup{‖v− un‖ : n ≥ 1}. It follows from conditions (27), (28) and (29) that 〈v−

x∗,w〉 ≥ 0. Since S is maximal monotone, we obtain that x∗ ∈ S−10 =V I(C,A). Hence, x∗ ∈W ,

and this completes the proof. �

4. STRONG CONVERGENCE THEOREMS FOR COUNTABLE FAMILIES

Lemma 4.1. Let C be a closed convex subset of a uniformly convex and uniformly smooth

real Banach space E and let Ti : C→ E, i = 1,2, · · · , be a countable family of relatively weak

nonexpansive maps. Assume that ∩∞
i=1F(Ti) 6= /0 and {αi}∞

i=1 is a sequence in (0,1) such that
∞

∑
i=1

αi = 1. Let the map T : C→ E be defined by

T x = J−1
( ∞

∑
i=1

αiJTix
)
,

for each x ∈C. Then, T is relatively weak nonexpansive and F(T ) = ∩∞
i=1F(Ti).

Proof. By lemma 2.12, we have that F(T ) = ∩∞
i=1F(Ti). It now remains to prove that T is

relatively weak nonexpansive, i.e.

(1) F(T ) 6= /0,

(2) φ(p,T x)≤ φ(p,x), ∀ x ∈C and p ∈ F(T ),

(3) F̃(T ) = F(T ).

Condition (1) follows from lemma 2.12 since F(T ) = ∩∞
i=1F(Ti) 6= /0.
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Let p ∈ F(T ) = ∩∞
i=1F(Ti) and x ∈C. Since Ti, i = 1,2, · · · , is relatively weak nonexpansive,

we obtain that

φ(p,T x) = φ

(
p,J−1

( ∞

∑
i=1

αiJTix
))

= ‖p‖2−2

〈
p,

∞

∑
i=1

αiJTix

〉
+

∥∥∥∥∥ ∞

∑
i=1

αiJTix

∥∥∥∥∥
2

≤
∞

∑
i=1

αi‖p‖2−2
∞

∑
i=1

αi 〈p,JTix〉+
∞

∑
i=1

αi‖Tix‖2

=
∞

∑
i=1

αiφ(p,Tix)≤
∞

∑
i=1

αiφ(p,x)

= φ(p,x).

Therefore, condition (2) holds. For condition (3), we need to show that F̃(T ) = F(T ) =

∩∞
i=1F(Ti). Now, by applying lemma 2.12 and the fact that Ti is relatively weak nonexpan-

sive, for each i ∈ N, yield that

p ∈ F̃(T ) if and only if there is a sequence {xn}∞
n=1 in C and a point p ∈C such that xn→ p and

xn−T xn→ 0 if and only if there is a sequence {xn}∞
n=1 in C and a point p ∈C such that xn→ p

and xn−Tixn→ 0, for each i = 1,2, · · · , if and only if p∈ F̃(Ti) = F(Ti), for each i = 1,2, · · · , if

and only if p ∈ ∩∞
i=1F̃(Ti) = ∩∞

i=1F(Ti) = F(T ). Therefore, F̃(T ) = ∩∞
i=1F(Ti) = F(T ). Hence,

T is relatively weak nonexpansive. �

Remark 3. Lemma 4.1 extends theorem 3.2 of Nilsrakoo and Saejung [34] from the class of

relatively nonexpansive maps to the more general class of relatively weak nonexpansive maps.

We now prove the following strong convergence theorem.

Theorem 4.2. Let E be a uniformly smooth and 2-uniformly convex real Banach space with

dual space E∗. Let C be a nonempty closed and convex subset of E, let A : C→ E∗ be an α-

inverse strongly monotone map and let Ti : C→ E, for i = 1,2, · · · , be a countable family of

relatively weak nonexpansive maps. Assume that W :=∩∞
i=1F(Ti)∩V I(C,A) 6= /0. For arbitrary

x1 ∈C, let the sequence {xn}∞
n=1 be iteratively defined by
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x1 ∈C :=C1,

un = ΠCJ−1(Jxn−λAxn),

yn = J−1
( ∞

∑
i=1

αiJTiun

)
,

Cn+1 = {v ∈Cn : φ(v,yn)≤ φ(v,xn)},

xn+1 = ΠCn+1x1, ∀ n≥ 1,

(33)

where ΠC is the generalized projection of E onto C, J : E → E∗ is the normalized duality map,

λ ∈
(

0, α

2L

)
, L > 0 denotes a Lipschitz constant of J−1 and {αi}∞

i=1 is a sequence in (0,1) such

that
∞

∑
i=1

αi = 1. Then, the sequences {xn}∞
n=1 and {un}∞

n=1 converge strongly to some x∗ ∈W.

Proof. We observe from lemma 4.1 that the map T : C→E defined by Tun := J−1
( ∞

∑
i=1

αiJTiun

)
is relatively weak nonexpansive and F(T ) = ∩∞

i=1F(Ti). It follows by theorem 3.1 that the

sequences {xn}∞
n=1 and {un}∞

n=1 converge strongly to some x∗ ∈W := F(T )∩V I(C,A). �

5. APPLICATIONS

Corollary 5.1. Let E = Lp, `p and W p
m , 1 < p ≤ 2. Let C be a nonempty closed and convex

subset of E and let A : C → E∗ be an α-inverse strongly monotone map. Let Ti : C → E,

for i = 1,2, · · · , be a countable family of relatively weak nonexpansive maps. Assume that

W := ∩∞
i=1F(Ti)∩V I(C,A) 6= /0. For arbitrary x1 ∈C, let the sequence {xn}∞

n=1 be iteratively

defined by



x1 ∈C :=C1,

un = ΠCJ−1(Jxn−λAxn),

yn = J−1
( ∞

∑
i=1

αiJTiun

)
,

Cn+1 = {v ∈Cn : φ(v,yn)≤ φ(v,xn)},

xn+1 = ΠCn+1x1, ∀ n≥ 1,

(34)
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where ΠC is the generalized projection of E onto C, J : E→ E∗ be the normalized duality map,

λ ∈
(

0, α

2L

)
, L > 0 denotes a Lipschitz constant of J−1 and {αi}∞

i=1 is a sequence in (0,1) such

that
∞

∑
i=1

αi = 1. Then, the sequences {xn}∞
n=1 and {un}∞

n=1 converge strongly to some x∗ ∈W.

Proof. We observe that E is 2-uniformly convex and uniformly smooth and from lemma 4.1

the map T : C→ E defined by Tun := J−1
( ∞

∑
i=1

αiJTiun

)
is relatively weak nonexpansive and

F(T ) = ∩∞
i=1F(Ti). It follows from theorem 3.1 that the sequences {xn}∞

n=1 and {un}∞
n=1 con-

verge strongly to some x∗ ∈W := F(T )∩V I(C,A). �

We now consider further applications. We state the theorems. Proofs of the theorems follow

as proofs of similar applications given in Chidume et al. [18], and Iiduka and Takahashi [22].

However, we sketch the details here for completeness.

5.1. Approximating a zero of an α-inverse strongly monotone map.

Theorem 5.2. Let E be a 2-uniformly convex and uniformly smooth real Banach space with

dual space E∗. Let A : E → E∗ be an α-inverse strongly monotone map and let Ti : E → E,

i = 1,2, · · · , be a countable family of relatively weak nonexpansive maps. Assume that W :=

∩∞
i=1F(Ti)∩ A−10 6= /0, where A−10 = {u ∈ E : Au = 0} 6= /0. For arbitrary x1 ∈ E, let the

sequence {xn}∞
n=1 be iteratively defined by



x1 ∈ E :=C1,

un = J−1(Jxn−λAxn),

yn = J−1
( ∞

∑
i=1

αiJTiun

)
,

Cn+1 = {v ∈Cn : φ(v,yn)≤ φ(v,xn)},

xn+1 = ΠCn+1x1, ∀ n≥ 1,

(35)

where J : E→E∗ is the normalized duality map, λ ∈
(

0, α

2L

)
, L> 0 denotes a Lipschitz constant

of J−1 and {αi}∞
i=1 is a sequence in (0,1) such that

∞

∑
i=1

αi = 1. Then, the sequences {xn}∞
n=1

and {un}∞
n=1 converge strongly to some x∗ ∈W := ∩∞

i=1F(Ti)∩A−10.
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Proof. We observe from lemma 4.1 that the map T : E→E defined by Tun := J−1
( ∞

∑
i=1

αiJTiun

)
is relatively weak nonexpansive and F(T ) = ∩∞

i=1F(Ti). By setting C1 = E and ΠE = I in

theorem 3.1, we observe that

un = J−1(Jxn−λAxn) = ΠEJ−1(Jxn−λAxn), n≥ 1.(36)

Also, V I(E,A) = A−10 and ‖Ay‖ = ‖Ay−0‖ = ‖Ay−Au‖, for all y ∈ E, u ∈ A−10. It follows

from theorem 3.1 that {xn}∞
n=1 and {un}∞

n=1 converge strongly to some x∗ ∈W := F(T )∩A−10.

�

5.2. Approximating a solution of complementarity problem. Let C be a nonempty closed

and convex subset of E and A : C→ E∗ be a map. Let the polar in E∗ be defined by the set

C∗ = {y∗ ∈ E∗ : 〈x,y∗〉 ≥ 0, for all x ∈C}. Then, we study the following problem: find u ∈C

such that Au ∈C∗ and
〈
u,Au

〉
= 0. This problem is called the complementarity problem (see

e.g., Blum and Oettli [6]). The set of solutions of the complementarity problem will be denoted

by K(C,A).

Theorem 5.3. Let E be a 2-uniformly convex and uniformly smooth real Banach space with

dual space E∗. Let C be a nonempty closed and convex subset of E, and let A : C→ E∗ be

an α-inverse strongly monotone map and A satisfies the following condition, ‖Ay‖ ≤ ‖Ay−

Au‖, for all y ∈ C and u ∈ K(C,A). Let Ti : C → E, i = 1,2, · · · , be a countable family of

relatively weak nonexpansive maps. Assume that W := ∩∞
i=1F(Ti)∩K(C,A) 6= /0. For arbitrary

x1 ∈C, let the sequence {xn}∞
n=1 be iteratively defined by



x1 ∈C :=C1,

un = ΠCJ−1(Jxn−λAxn),

yn = J−1
( ∞

∑
i=1

αiJTiun

)
,

Cn+1 = {v ∈Cn : φ(v,yn)≤ φ(v,xn)},

xn+1 = ΠCn+1x1, ∀ n≥ 1,

(37)
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where ΠC is the generalized projection of E onto C, J : E → E∗ is the normalized duality map,

λ ∈
(

0, α

2L

)
, L > 0 denotes a Lipschitz constant of J−1 and {αi}∞

i=1 is a sequence in (0,1) such

that
∞

∑
i=1

αi = 1. Then, the sequences {xn}∞
n=1 and {un}∞

n=1 converge strongly to some x∗ ∈W.

Proof. We observe from lemma 4.1 that the map T : C→E defined by Tun := J−1
( ∞

∑
i=1

αiJTiun

)
is relatively weak nonexpansive and F(T ) = ∩∞

i=1F(Ti). From lemma 7.1.1 of Takahashi [43],

we obtain that V I(C,A) = K(C,A). It follows from theorem 3.1 that the sequences {xn}∞
n=1 and

{un}∞
n=1 converge strongly to some x∗ ∈W := F(T )∩K(C,A) 6= /0. �

5.3. Approximating a minimizer of a continuously Fréchet differentiable convex func-

tional.

Lemma 5.4 (Baillon and Haddad [5], see also Iiduka and Takahashi [22]). Let E be a Banach

space, f is a continuously Fréchet differentiable, convex functional on E and let ∇ f denote the

gradient of f . If ∇ f is 1
α

-Lipschitz continuous, then ∇ f is α-inverse strongly monotone.

Theorem 5.5. Let E be a 2-uniformly convex and uniformly smooth real Banach space with

dual space E∗. Let C be a nonempty closed and convex subset of E and let Ti : C→ E, for

i = 1,2, · · · , be a countable family of relatively weak nonexpansive maps. Let f : E → R be a

map satisfying the following conditions:

(1) f is a continuously Fréchet differentiable convex functional on E and ∇ f is a 1
α

-

Lipschitz map;

(2) K = argmin
y∈C

f (y) = {x∗ ∈C : f (x∗) = min
y∈C

f (y)} 6= /0;

(3) ‖∇ f |C(y)‖ ≤ ‖∇ f |C(y)−∇ f |C(u)‖, for all y ∈C and u ∈ K.
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Assume that W := ∩∞
i=1F(Ti)∩K 6= /0. For arbitrary x1 ∈C, let the sequence {xn}∞

n=1 be itera-

tively defined by 

x1 ∈C :=C1,

un = ΠCJ−1(Jxn−λ∇ f |Cxn),

yn = J−1
( ∞

∑
i=1

αiJTiun

)
,

Cn+1 = {v ∈Cn : φ(v,yn)≤ φ(v,xn)},

xn+1 = ΠCn+1x1 ∀ n≥ 1,

(38)

where ΠC is the generalized projection of E onto C, J : E → E∗ is the normalized duality map,

λ ∈
(

0, α

2L

)
, L > 0 denotes a Lipschitz constant of J−1 and {αi}∞

i=1 is a sequence in (0,1) such

that
∞

∑
i=1

αi = 1. Then, the sequences {xn}∞
n=1 and {un}∞

n=1 converge strongly to some x∗ ∈W.

Proof. We observe from lemma 4.1 that the map T : C→E defined by Tun := J−1
( ∞

∑
i=1

αiJTiun

)
is relatively weak nonexpansive and F(T ) = ∩∞

i=1F(Ti). Using condition (1) of theorem 5.5, it

follows from lemma 5.4 that ∇ f |C is an α-inverse strongly monotone map of C into E∗. Since f

is differentiable and convex, we have, as in Chidume et al. [18] and Iiduka and Takahashi [22],

that V I(C,∇ f |C) = K = argmin
y∈C

f (y). By applying theorem 3.1, we obtain that the sequences

{xn}∞
n=1 and {un}∞

n=1 converge strongly to some x∗ ∈W := F(T )∩K 6= /0. �

5.4. Analytical representations of duality maps in Lp, lp and W p
m spaces, 1 < p < ∞. The

analytical representations of duality maps are known in a number of Banach spaces. In par-

ticular, they are known in Lp, lp and W p
m , 1 < p < ∞, (see e.g., Alber and Ryazantseva [2], p.

36).

Remark 4. We make the following remarks.

(1) The generalized projection algorithm (13) studied in theorem 3.1 is much simpler than

the algorithms (4), (5) and (6) studied in theorems of Liu [30], Zegeye and Shahzad [49],

and Zhang et al. [51], respectively. The algorithm (13) contains much less equations to

compute. Furthermore, algorithm (5) has one iteration parameter αn; each of algorithm

(4) and (6) has 3 iterations parameters: βn, λn and αn. These are to be computed at each
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step of the iteration process. The iteration parameter in the algorithm (13) of theorem

3.1 is one fixed arbitrary constant λ ∈
(

0, α

2L

)
, which is to be computed once and then

used at each step of the iteration process. Consequently, this makes algorithm (13) more

efficient and attractive than any of the algorithms (4), (5), and (6).

(2) Theorem 4.2 is an extension of theorem 3.1 from the case where T is a relatively weak

nonexpansive map to the case where the T is replaced by a countable family of relatively

weak nonexpansive maps. Consequently, theorem 4.2 further extends Theorems of Liu

[30], Zegeye and Shahzad [49] and Zhang et al. [51] to countable families of relatively

weak nonexpansive maps.
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