FIXED AND BEST PROXIMITY POINTS FOR CYCLIC WEAKLY
CONTRACTION MAPPINGS

S. N. MISHRA¹, RAJENDRA PANT¹,* AND DPRV SUBBA RAO²

¹Department of Mathematics, Walter Sisulu University, Mthatha 5117, South Africa
²Department of Mathematics, IFHE University, Hyderabad 501504, India

Abstract. In this paper we obtain some fixed and best proximity point theorems for cyclic \((\psi, \varphi)\)-weakly contraction mappings. The results obtained herein extend some recent results.

Keywords: Fixed point; best proximity point; cyclic weakly contraction.

2000 AMS Subject Classification: 54H25; 47H10

1. Introduction and Preliminaries

Though this paper \(\mathbb{N}\) denotes the set of naturals and \(X\) a metric space \((X, d)\). Let \(A\) and \(B\) be nonempty subsets of a metric space \(X\). A mapping \(T : A \cup B \to A \cup B\) is called a cyclic mapping if \(T(A) \subseteq B\) and \(T(B) \subseteq A\). A point \(z \in A \cup B\) is said to be fixed point of \(T\) if \(Tz = z\) and a best proximity point of \(T\) if \(d(z, Tz) = d(A, B)\), where \(d(A, B) = \inf\{d(x, y) : x \in A, y \in B\}\). All mappings do not have fixed points. For example the mapping \(T : [0, \infty) \to [0, \infty)\) defined by \(Tx = 1 + x\), has no fixed points, since \(x\) is never equal to \(x + 1\) for any \(x \in [0, \infty)\). If the fixed-point equation \(Tx = x\) does not possesses a solution, it is contemplated to resolve a problem finding an element

*Corresponding author

Received April 16, 2012
such that \(x \) is in proximity to \(Tx \) in some sense. Best proximity theorems analyze the conditions under which the optimization problem, namely \(\min_{x \in A} d(x, Tx) \) has a solution \([9]\).

Kirk et al. \([7]\) obtained the following interesting fixed point theorem for cyclic mappings.

Theorem 1.1. Let \(A \) and \(B \) be nonempty closed subsets of a complete metric space \(X \) and \(T : A \cup B \to A \cup B \) be a cyclic mapping. Assume that there exists \(\lambda \in (0, 1) \) such that

\[
 d(Tx, Ty) \leq \lambda d(x, y)
\]

(1.1)

for all \(x \in A \) and \(y \in B \). Then \(T \) has a unique fixed point in \(A \cap B \).

The condition (1.1) entails \(A \cap B \) being nonempty. Eldred and Veeramani \([4]\) modified the condition (1.1) for the case \(A \cap B = \emptyset \) as follows:

\[
 d(Tx, Ty) \leq \lambda d(x, y) + (1 - \lambda) d(A, B)
\]

(1.2)

for all \(x \in A \) and \(y \in B \), where \(\lambda \in (0, 1) \). The mapping \(T \) satisfying condition (1.2) is called a cyclic contraction. Eldred and Veeramani \([4, \text{Th. 3.10}]\) obtained a unique best proximity point for the mapping \(T \) in a uniformly convex Banach space setting. Subsequently, a number of extensions and generalizations of their results appeared in \([1, 2, 5, 10]\) and many others.

Recently, Al-Tagafi and Shahzad \([1]\) introduced the notion of cyclic \(\varphi \)-contractions and obtained some existence results for this new class of mappings. In this paper we, extend cyclic \(\varphi \)-contractions and introduce the notion of cyclic \((\psi, \varphi) \)-weakly contractions. Subsequently, this notion is utilized to obtain some fixed and best proximity point theorems which generalize certain results of \([1, 4]\) and \([7]\).

2. Cyclic \((\psi, \varphi)\)-weakly contractions

Throughout this section \(\Phi \) denotes the class of the functions \(\varphi : [0, \infty) \to [0, \infty) \) satisfying:

(a) \(\varphi \) is continuous and monotone nondecreasing,

(b) \(\varphi(t) = 0 \iff t = 0 \).
The function $\varphi \in \Phi$ is also known as altering distance function (see, for instance, [6]).

Now we introduce the following notion of a cyclic (ψ, φ)-weakly contraction mapping.

Definition 2.1. Let A and B be nonempty subsets of a metric space X and $T : A \cup B \to A \cup B$ a cyclic mapping. The mapping T will be called a cyclic (ψ, φ)-weakly contraction if, $\psi, \varphi \in \Phi$ and

$$\psi(d(Tx, Ty)) \leq \psi(d(x, y)) - \varphi(d(x, y)) + \varphi(d(A, B)), \quad (2.1)$$

for all $x \in A$ and $y \in B$ (see also, [3, 8]).

Remark 2.2. We remark that:

1. A cyclic φ-contraction is cyclic (ψ, φ)-weakly contraction with $\psi(t) = t$ for $t \geq 0$.

2. A cyclic contraction is cyclic (ψ, φ)-weakly contraction with $\psi(t) = t$, $\varphi(t) = (1 - \lambda)t$ for $t \geq 0$ and $\lambda \in (0, 1)$.

Recall that, a Banach space X is said to be:

(a) uniformly convex if there exists a strictly increasing function $\delta : (0, 2] \to [0, 1]$ such that the following implication holds for all $x, y, p \in X$, $R > 0$ and $r \in [0, 2R]$:

$$\begin{align*}
\|x - p\| \leq R \\
\|y - p\| \leq R \\
\|x - y\| \geq r
\end{align*} \Rightarrow \left\| \frac{x + y}{2} - p \right\| \leq \left(1 - \delta \left(\frac{r}{2^R}\right)\right) R;
$$

(b) strictly convex if the following implication holds for all $x, y, p \in X$ and $R > 0$:

$$\begin{align*}
\|x - p\| \leq R \\
\|y - p\| \leq R \\
x \neq y
\end{align*} \Rightarrow \left\| \frac{x + y}{2} - p \right\| < R.$$

We begin with the following lemma.

Lemma 2.3. Let A and B be nonempty subsets of a metric space X and $T : A \cup B \to A \cup B$ a cyclic (ψ, φ)-weakly contraction mapping. For $x_0 \in A \cup B$, define $x_{n+1} :=Tx_n$ for each $n \geq 0$. Then for all $x \in A$ and $y \in B$,

(i) $\varphi(d(A, B)) \leq \varphi(d(x, y))$;
(ii) $d(Tx, Ty) \leq d(x, y)$; and

(iii) $d(x_{n+2}, x_{n+1}) = d(Tx_{n+1}, Tx_n) \leq d(x_{n+1}, x_n)$ for each $n \geq 0$.

Proof. (i) Since $d(A, B) = d(x, y)$ for all $x \in A$ and $y \in B$ and $\varphi \in \Phi$, we have $\varphi(d(A, B)) \leq \varphi(d(x, y))$.

(ii) Since T is a cyclic (ψ, φ)-weakly contraction, we have

$$\psi(d(Tx, Ty)) \leq \psi(d(x, y)) - \varphi(d(x, y)) + \varphi(d(A, B))$$

for all $x \in A$ and $y \in B$.

From (i) $\varphi(d(A, B)) \leq \varphi(d(x, y))$, hence

$$\psi(d(Tx, Ty)) \leq \psi(d(x, y)).$$

Since $\varphi \in \Phi$, it follows that $d(Tx, Ty) \leq d(x, y)$.

(iii) Since T is a cyclic (ψ, φ)-weakly contraction, we have

$$\psi(d(x_{n+2}, x_{n+1})) = \psi(d(Tx_{n+1}, Tx_n)) \leq \psi(d(x_{n+1}, x_n)) - \varphi(d(x_{n+1}, x_n)) + \varphi(d(A, B))$$

for all $n \geq 0$. Using (i) and (ii), we get

$$\psi(d(x_{n+2}, x_{n+1})) = \psi(d(Tx_{n+1}, Tx_n)) \leq \psi(d(x_{n+1}, x_n)).$$

Now since $\psi \in \Phi$, it follows that

$$d(x_{n+2}, x_{n+1}) = d(Tx_{n+1}, Tx_n) \leq d(x_{n+1}, x_n).$$

Theorem 2.4. Let A and B be nonempty subsets of a metric space X and $T : A \cup B \to A \cup B$ a cyclic (ψ, φ)-weakly contraction mapping. For $x_0 \in A \cup B$, define $x_{n+1} := Tx_n$ for each $n \geq 0$. Then $\lim_{n \to \infty} d(x_n, Tx_n) = d(A, B)$.

Proof. It follows from Lemma 2.3 (iii) that $\{d(x_n, x_{n+1})\}$ is a decreasing sequence. Thus $\lim_{n \to \infty} d(x_n, x_{n+1}) = r_0$ for some $r_0 \geq d(A, B)$. If $d(x_{n_0}, x_{n_0+1}) = 0$ for some $n_0 \geq 1$ then we
are done. Assume that \(d(x_n, x_{n+1}) > 0 \) for each \(n \geq 1 \). Since \(T \) is a cyclic \((\psi, \varphi)\)-weakly contraction, we have
\[
\psi(d(x_{n+1}, x_{n+2})) \leq \psi(d(x_n, x_{n+1})) - \varphi(d(x_{n+1}, x_{n+2})) + \varphi(d(A, B)) \tag{2.2}
\]
for each \(n \geq 1 \).

Now by Lemma 2.3 (i) and (2.2), we have
\[
\varphi(d(A, B)) \leq \varphi(d(x_n, x_{n+1})) \leq \psi(d(x_n, x_{n+1})) - \psi(d(x_{n+1}, x_{n+2})) + (A, B). \tag{2.3}
\]
Since \(\psi, \varphi \in \Phi \) and \(d(x_n, x_{n+1}) \geq r_0 \geq d(A, B) \), it follows from (2.3) that
\[
\lim_{n \to \infty} \varphi(d(x_n, x_{n+1})) = \varphi(r_0) = \varphi(d(A, B))
\]
for each \(n \geq 1 \). Since \(\varphi \in \Phi \), \(r_0 = d(A, B) \).

In view of Remark 2.2 (1) and (2), Proposition 3.1 of [4] and Theorem 3 of [1] are special cases of Theorem 2.4.

Theorem 2.5. Let \(A \) and \(B \) be nonempty subsets of a metric space \(X \) and \(T : A \cup B \to A \cup B \) a cyclic \((\psi, \varphi)\)-weakly contraction mapping. For \(x_0 \in A \), define \(x_{n+1} := Tx_n \) for each \(n \geq 0 \). If \(\{x_{2n}\} \) has a convergent subsequence in \(A \), then there exists a point \(z \in A \) such that \(d(z, Tz) = d(A, B) \).

Proof. Let \(\{x_{2n_k}\} \) be a subsequence of \(\{x_{2n}\} \) such that \(\lim_{k \to \infty} x_{2n_k} = z \). Since
\[
d(A, B) \leq d(z, x_{2n_k-1}) \leq d(z, x_{2n_k}) + d(x_{2n_k}, x_{2n_k-1})
\]
for each \(k \geq 1 \), it follows from Theorem 2.4 that \(\lim_{k \to \infty} d(x_{2n_k}, x_{2n_k-1}) = d(A, B) \). Since
\[
d(A, B) \leq d(x_{2n_k}, Tz) = d(x_{2n_k-1}, z)
\]
for each \(k \geq 1 \), it follows that \(d(z, Tz) = d(A, B) \).

In view of Remark 2.2 (2), Proposition 3.2 of [4] is a special case of Theorem 2.5.

Corollary 2.6. [1, Theorem 4]. Let \(A \) and \(B \) be nonempty subsets of a metric space \(X \) and \(T : A \cup B \to A \cup B \) a cyclic \(\varphi \)-weakly contraction mapping. For \(x_0 \in A \), define
$x_{n+1} := Tx_n$ for each $n \geq 0$. If $\{x_{2n}\}$ has a convergent subsequence in A, then there exists a point $z \in A$ such that $d(z, Tz) = d(A, B)$.

Proof. It comes from Theorem 2.5, when $\varphi(t) = t$.

Lemma 2.7. Let A and B be nonempty subsets of a uniformly convex Banach space X such that A is convex. Let $T : A \cup B \to A \cup B$ be a cyclic (ψ, φ)-weakly contraction mapping. For $x_0 \in A$, define $x_{n+1} := Tx_n$ for each $n \geq 0$. Then

$$\lim_{n \to \infty} \|x_{2n+2} - x_{2n}\| = 0 \text{ and } \lim_{n \to \infty} \|x_{2n+3} - x_{2n+1}\| = 0.$$

Proof. Suppose that $\lim_{n \to \infty} \|x_{2n+2} - x_{2n}\| > 0$. Then there exists $\varepsilon_0 > 0$ such that for each $k \geq 1$, there is an $n_k \geq k$ satisfying

$$\|x_{2n_k+2} - x_{2n_k}\| \geq \varepsilon_0. \quad (2.4)$$

Choose $0 < \gamma < 1$ such that $\frac{\varepsilon_0}{\gamma} > d(A, B)$ and choose ε such that

$$0 < \varepsilon < \min \left\{ \frac{\varepsilon_0}{\gamma} - d(A, B), \frac{d(A, B)\delta(\gamma)}{1 - \delta(\gamma)} \right\}.$$

By Theorem 2.4, there exist N_1 and N_2 such that

$$\|x_{2n_k+2} - x_{2n_k+1}\| \leq d(A, B) + \varepsilon \text{ and } \|x_{2n_k+1} - x_{2n_k}\| \leq d(A, B) + \varepsilon \quad (2.5)$$

for all $n_k \geq N_1, N_2$. Let $N := \max\{N_1, N_2\}$. It follows from $(2.4), (2.5)$ and the uniform convexity of X that

$$\left\| \frac{x_{2n_k+2} + x_{2n_k}}{2} - x_{2n_k+1} \right\| \leq \left(1 - \delta \left(\frac{\varepsilon_0}{d(A, B) + \varepsilon} \right) \right) (d(A, B) + \varepsilon)$$

for all $n_k \geq N$. As $\frac{x_{2n_k+2} + x_{2n_k}}{2} \in A$, the choice of ε and the fact that δ is strictly increasing imply that

$$\left\| \frac{x_{2n_k+2} + x_{2n_k}}{2} - x_{2n_k+1} \right\| < d(A, B),$$

for all $n_k \geq N$, a contradiction. Therefore $\lim_{n \to \infty} \|x_{2n+2} - x_{2n}\| = 0$. Similarly we can show that $\lim_{n \to \infty} \|x_{2n+3} - x_{2n+1}\| = 0$.

Theorem 2.8. Let A and B be nonempty subsets of a uniformly convex Banach space X such that A is convex. Let $T : A \cup B \to A \cup B$ be a cyclic (ψ, φ)-weakly contraction mapping.
mapping. For $x_0 \in A$ define $x_{n+1} := Tx_n$ for each $n \geq 0$. Then for each $\varepsilon > 0$, there exists a positive integer N_0 such that for all $m > n \geq N_0$
\[\|x_{2m} - x_{2n+1}\| < d(A, B) + \varepsilon. \]

Proof. Suppose the contrary. Then there exists $\varepsilon_0 > 0$ such that for each $k \geq 1$, there exist $m_k > n_k \geq k$ satisfying
\[\|x_{2m_k} - x_{2n_k+1}\| \geq d(A, B) + \varepsilon_0 \quad \text{and} \quad \|x_{2(m_k-1)} - x_{2n_k+1}\| < d(A, B) + \varepsilon_0. \] (2.6)

By the triangle inequality and (2.6), we have
\[
\begin{align*}
d(A, B) + \varepsilon_0 & \leq \|x_{2m_k} - x_{2n_k+1}\| \\
& \leq \|x_{2m_k} - x_{2(m_k-1)}\| + \|x_{2(m_k-1)} - x_{2n_k+1}\| \\
& < \|x_{2m_k} - x_{2(m_k-1)}\| + d(A, B) + \varepsilon_0.
\end{align*}
\]

Making $k \to \infty$ and using Lemma 2.7, we get
\[\lim_{k \to \infty} \|x_{2m_k} - x_{2n_k+1}\| = d(A, B) + \varepsilon_0. \] (2.7)

Since T is a cyclic (ψ, φ)-weakly contraction, by Lemma 2.3 (i) and (ii), and the triangle inequality, we obtain
\[
\begin{align*}
\psi(\|x_{2m_k} - x_{2n_k+1}\|) & \leq \psi(\|x_{2m_k} - x_{2m_k+2}\|) + \psi(\|x_{2m_k+2} - x_{2m_k+3}\|) + \psi(\|x_{2m_k+3} - x_{2n_k+1}\|) \\
& \leq \psi(\|x_{2m_k} - x_{2m_k+2}\|) + \psi(\|x_{2m_k+1} - x_{2m_k+2}\|) + \psi(\|x_{2m_k+3} - x_{2n_k+1}\|) \\
& \leq \psi(\|x_{2m_k} - x_{2m_k+2}\|) + \psi(\|x_{2m_k} - x_{2m_k+1}\|) \\
& \quad - \varphi(\|x_{2m_k} - x_{2m_k+1}\|) + \varphi(d(A, B)) + \psi(\|x_{2m_k+3} - x_{2n_k+1}\|) \\
& \leq \psi(\|x_{2m_k} - x_{2m_k+2}\|) + \psi(\|x_{2m_k} - x_{2m_k+1}\|) + \psi(\|x_{2m_k+3} - x_{2n_k+1}\|). \quad \text{(2.8)}
\end{align*}
\]

Since $\psi \in \Phi$, (2.8) implies that
\[
\begin{align*}
\|x_{2m_k} - x_{2n_k+1}\| & \leq \|x_{2m_k} - x_{2m_k+2}\| + \|x_{2m_k} - x_{2m_k+1}\| - \varphi(\|x_{2m_k} - x_{2m_k+1}\|) \\
& \quad + \varphi(d(A, B)) + \|x_{2m_k+3} - x_{2n_k+1}\| \\
& \leq \|x_{2m_k} - x_{2m_k+2}\| + \|x_{2m_k} - x_{2m_k+1}\| + \|x_{2m_k+3} - x_{2n_k+1}\|.
\end{align*}
\]
Making \(k \to \infty \) and using (2.7) and Lemma 2.7, we get
\[
d(A, B) + \varepsilon_0 \leq d(A, B) + \varepsilon_0 - \lim_{k \to \infty} \varphi\left(\|x_{2m_k} - x_{2m_{k+1}}\|\right) + \varphi(d(A, B)) \\
\leq d(A, B) + \varepsilon_0.
\]
Hence
\[
\lim_{k \to \infty} \varphi\left(\|x_{2m_k} - x_{2m_{k+1}}\|\right) = \varphi(d(A, B)).
\]
(2.9)
Since \(\varphi \in \Phi \), by (2.6) and (2.9)
\[
\varphi(d(A, B) + \varepsilon_0) \leq \lim_{k \to \infty} \varphi\left(\|x_{2m_k} - x_{2m_{k+1}}\|\right) \\
= \varphi(d(A, B)) < \varphi(d(A, B) + \varepsilon_0),
\]
a contradiction and hence the Theorem.

Theorem 2.9. Let \(A \) and \(B \) be nonempty subsets of a uniformly convex Banach space \(X \) such that \(A \) is closed. Let \(T : A \cup B \to A \cup B \) be cyclic \((\psi, \varphi)\)-weakly contraction mapping. For \(x_0 \in A \) define \(x_{n+1} := Tx_n \) for each \(n \geq 0 \). If \(d(A, B) = 0 \), then \(T \) has a unique fixed point \(z \in A \cap B \).

Proof. Let \(\varepsilon > 0 \) be given. By Theorem 2.4, there exists \(N_1 \) such that
\[
\|x_{2n} - x_{2n+1}\| < \varepsilon
\]
for all \(n \geq N_1 \). By Theorem 2.8, there exists \(N_2 \) such that
\[
\|x_{2m} - x_{2m+1}\| < \varepsilon
\]
for all \(m > n \geq N_2 \). Let \(N := \max\{N_1, N_2\} \). Then
\[
\|x_{2m} - x_{2n}\| \leq \|x_{2m} - x_{2n+1}\| + \|x_{2n+1} - x_{2n}\| < 2\varepsilon
\]
for all \(m > n \geq N \). Thus \(\{x_{2n}\} \) is a Cauchy sequence in \(A \). Since \(X \) is complete and \(A \) is closed, it follows that \(x_{2n} \to z \in A \) as \(n \to \infty \). Now by Theorem 2.5, we have
\[
d(z, Tz) = d(A, B) = 0,
\]
and \(z \) is a fixed point of \(T \). The uniqueness of fixed point follows easily.

Corollary 2.10.[1, Theorem 6]. Let \(A \) and \(B \) be nonempty subsets of a uniformly convex Banach space \(X \) such that \(A \) is closed. Let \(T : A \cup B \to A \cup B \) be cyclic \(\varphi \)-weakly
contraction mapping. For \(x_0 \in A \) define \(x_{n+1} := Tx_n \) for each \(n \geq 0 \). If \(d(A, B) = 0 \), then \(T \) has a unique fixed point \(z \in A \cap B \).

Proof. It comes from Theorem 2.9, when \(\psi(t) = t \).

Theorem 2.11. Let \(A \) and \(B \) be nonempty subsets of a uniformly convex Banach space \(X \) such that \(A \) is closed and convex. Let \(T : A \cup B \to A \cup B \) be cyclic \((\psi, \varphi)\)-weakly contraction mapping. For \(x_0 \in A \) define \(x_{n+1} := Tx_n \) for each \(n \geq 0 \). Then \(\{x_{2n}\} \in A \) and \(\{x_{2n+1}\} \in B \) are Cauchy sequences.

Proof. If \(d(A, B) = 0 \), the result follows from Theorem 2.9. So assume that \(d(A, B) > 0 \). Suppose that the sequence \(\{x_{2n}\} \) is not Cauchy. Then there exists \(\varepsilon_0 > 0 \) such that for each \(k \geq 1 \), there exist \(m_k > n_k \geq k \) satisfying

\[
\|x_{2m_k} - x_{2n_k}\| \geq \varepsilon_0. \tag{2.10}
\]

Choose \(0 < \gamma < 1 \) such that \(\frac{\varepsilon_0}{\gamma} > d(A, B) \) and choose \(\varepsilon \) such that

\[
0 < \varepsilon < \min \left\{ \frac{\varepsilon_0}{\gamma} - d(A, B), \frac{d(A, B)\delta(\gamma)}{1 - \delta(\gamma)} \right\}.
\]

By Theorem 2.4, there exists \(N_1 \) such that

\[
\|x_{2n_k} - x_{2n_k+1}\| < d(A, B) + \varepsilon. \tag{2.11}
\]

for all \(n_k \geq N_1 \). By Theorem 2.8, there exists \(N_2 \) such that

\[
\|x_{2m_k} - x_{2n_k+1}\| < d(A, B) + \varepsilon. \tag{2.12}
\]

for all \(n_k \geq N_2 \). Let \(N := \max\{N_1, N_2\} \). It follows from (2.11), (2.12) and the uniform convexity of \(X \) that

\[
\left\| \frac{x_{2n_k+2} + x_{2n_k}}{2} - x_{2n_k+1} \right\| \leq \left(1 - \delta \left(\frac{\varepsilon_0}{d(A, B) + \varepsilon} \right) \right) (d(A, B) + \varepsilon)
\]

for all \(n_k \geq N \). The choice of \(\varepsilon \) and the fact that \(\delta \) is strictly increasing imply that

\[
\left\| \frac{x_{2n_k+2} + x_{2n_k}}{2} - x_{2n_k+1} \right\| < d(A, B),
\]

for all \(n_k \geq N \), a contradiction. Thus \(\{x_{2n}\} \) is a Cauchy sequence in \(A \). Similarly, we can show that \(\{x_{2n+1}\} \) is a Cauchy sequence in \(B \).
Theorem 2.12. Let A and B be nonempty subsets of a uniformly convex Banach space X such that A is closed and convex. Let $T : A \cup B \to A \cup B$ be cyclic (ψ, φ)-weakly contraction mapping. For $x_0 \in A$ define $x_{n+1} := Tx_n$ for each $n \geq 0$. Then there exists a unique $z \in A$ such that $x_{2n} \to z$, $T^2z = z$ and $\|z - Tz\| = d(A, B)$.

Proof. By Theorem 2.11, $\{x_{2n}\}$ is a Cauchy sequence in A and hence $x_{2n} \to z \in A$ as $n \to \infty$. By Theorem 2.5, $\|z - Tz\| = d(A, B)$. To show that z is unique we assume that there exists a $y \in A$ such that $\|y - Ty\| = d(A, B)$ with $T^2y = y$. By Lemma 2.3 (i) and (ii), we have

$$
\|Ty - z\| = \|Ty - T^2z\| \leq \|y - Tz\| \quad \text{and} \quad \|Tz - y\| = \|Tz - T^2y\| \leq \|z - Ty\|.
$$

Thus $\|Tz - y\| = \|z - Ty\|$. In fact $\|z - Ty\| = d(A, B)$; otherwise $\|z - Ty\| > d(A, B)$ and since T is cyclic (ψ, φ)-weakly contraction, it follows that

$$
\psi(\|Tz - y\|) = \psi(\|Tz - T^2y\|)
\leq \psi(\|z - Ty\|) - \varphi(\|z - Ty\|) + \varphi(d(A, B))
< \psi(\|z - Ty\|) - \varphi(A, B) + \varphi(A, B)
= \psi(\|z - Ty\|) = \psi(Tz - y),
$$

a contradiction. Thus $\|z - Ty\| = d(A, B) = \|y - Tz\|$. Now by convexity of A and X

$$
0 < \left\| \frac{y + z}{2} - Ty \right\| = \left\| \frac{y - Ty}{2} + \frac{z - Ty}{2} \right\| < d(A, B),
$$

a contradiction. Thus $y = z$.

In view of Remark 2.2 (1), Theorem 8 of [1] is a special case of Theorem 2.12.

References

