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Abstract. In this paper, we generalize, improve and complement several fixed point results for generalized α∗-ψ-

contraction multivalued mappings in b-metric spaces. We provide some non-standard proof techniques which give

shorter proofs of the obtained results.
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1. Introduction

For a mapping f : X → X , X 6= /0, a point u ∈ X is called a fixed point if f (u) = u. The set of

all fixed points of f is denoted with F ( f ).
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Frechet introduced the concept of metric space in 1905, but the most basic fixed point theorem

in analysis, known as the Banach Contraction Principle, was first stated and proved by Banach

for the contraction maps in the setting of complete normed linear spaces. This remarkable

theorem Banach established in his Ph.D. thesis (1920, published in 1922). Banach Contraction

Principle is one of the most important results of analysis and considered as the main source of

metric fixed point theory.

Theorem 1.1. [5] Let (X ,d) be a complete metric space and let a mapping f : X → X be a

contraction, i.e. there exists a fixed constant q ∈ [0,1) such that d ( f (x) , f (y)) ≤ qd(x,y), for

all x,y ∈ X. Then f has a unique fixed point.

There is vast amount of extensions of this important theorem. On the one side, the usual

contractive condition is replaced by a weakly contractive condition (see for instance [11], [13],

[22]), while, on the other side, the action space is replaced by some generalization of standard

metric space ([4], [6], [10], [20]).

In recent years, various distances are introduced, and relations between these distances are

established. Some significant generalizations are the following.

metric space −→ b-metric space

↓ ↓

rectangular metric space −→ rectangular b-metric space

↓

bv(s)-metric space

In [20], the notion of bv(s)-metric space was introduced and some fixed point theorems for

single-valued mappings in bv(s)-metric spaces were proved.

This concept of b-metric spaces was independently introduced by Baktin (1989) and S. Cz-

erwik (1993) replacing the triangle inequality with the next, more general, condition.

There is a nonnegative number s ≥ 1 such that d (x,z) ≤ s(d (x,y)+d (y,z)) holds for all

x,y,z ∈ X.

The concept of a b-metric space is more general than that of a metric space, because each

metric space is a b-metric space, but the contrary is not true ([1]-[4], [6]-[9], [10], [12], [13],

[15]-[20], [23]-[26]).
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It is worth noting that there is a significant difference between b-metric spaces and standard

metric spaces. If s > 1, the triangle inequality is not satisfied. Also, b-metric is not continu-

ous in general. Furthermore, the open (closed) balls generated by b-metric are not necessarily

open (closed) sets. For further information, we refer the interested readers to the reference list

(especially [13]).

There is vast amount of literature dealing with b-metric spaces with the coefficient s ≥ 1.

Some obtained results generalize those from metric space. However, there are some results

where the cases s > 1 and s = 1 should be considered separately. Because of this, one recent

work will be the main topic of this paper.

2. Preliminaries

We repeat some definitions and results, which will be needed in the sequel.

Definition 2.1. ([4],[6]) Let X be a (non-empty) set and s≥ 1 a given real number. A function

d : X×X → [0,∞) is said to be a b-metric on X if the following conditions are satisfied:

(b1) d (x,y) = 0 if and only if x = y;

(b2) d (x,y) = d (y,x) for all x,y ∈ X;

(b3) d (x,z)≤ s(d (x,y)+d (y,z)) for all x,y,z ∈ X.

The triplet (X ,d,s) is called a b-metric space with the coefficient s.

For more notions such as b-convergence, b-completeness, b-Cauchy sequence in the frame-

work of b-metric spaces, the reader is referred to [1]-[3], [7], [9], [10], [12], [15]-[20], [23]-[26].

The following result is well known and important in the setting of b-metric spaces.

Theorem 2.1. [6] Let (X ,d,s) be a b-complete b-metric space and T : X → X a mapping

satisfying d (T x,Ty)≤ ϕ (d (x,y)), x,y ∈ X, where ϕ : [0,∞)→ [0,∞) is an increasing function

such that limn→∞ ϕn (t) = 0 for each fixed t > 0. Then T has exactly one fixed point z and

limn→∞ d (T nx,z) = 0 for each x ∈ X .

Very recently, R. Miculescu and A. Mihail [19, Lemma 2.2] proved the next result.

Lemma 2.1. [19] Let (X ,d,s) be a b-metric space and {xn} a sequence in X. If there exists

γ ∈ [0,1) such that d (xn+1,xn)≤ γd (xn,xn−1) for all n ∈N, then {xn} is a b-Cauchy sequence.
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Remark 2.1. In the several papers based on b-metric concept, the authors assume that γ ∈ [0, 1
s )

instead of γ ∈ [0,1), which is obviously stronger condition. Under this stronger condition they

show that the corresponding Picard sequence, {xn = T xn−1}n∈N with the initial point x0 ∈ X,

is a b-Cauchy. To prove this they use the following inequality:

d (xm,xn)≤ sd (xm,xm+1)+ s2d (xm+1,xm+2)+ · · ·+ sn−m−1d (xn−2,xn−1)+ sn−m−1d (xn−1,xn) ,

where n,m ∈ N and n > m.

The next lemma play an important role in many papers in the context of b-metric spaces. In

[2], this lemma is also an essential tool for proving that the defined sequence {xn} is a b-Cauchy

sequence.

Lemma 2.2. [1] Let (X ,d) be a b-metric space with s≥ 1, and suppose that {xn} and {yn} are

b-convergent with the limits x and y, respectively. Then we have

1
s2 d (x,y)≤ liminf

n→∞
d (xn,yn)≤ limsup

n→∞

d (xn,yn)≤ s2d (x,y) .

In particular, if x = y, then we have limn→∞ d (xn,yn) = 0. Moreover, for each z ∈ X, we have

1
s

d (x,z)≤ liminf
n→∞

d (xn,z)≤ limsup
n→∞

d (xn,z)≤ sd (x,z) .

Definition 2.2. Let T : X → X be a mapping and α : X ×X → [0,∞) a function. The mapping

T is said to be triangular α-admissible if the following conditions are satisfied:

(T1) T is α-admissible;

(T2) α (x,u)≥ 1 and α (u,y)≥ 1 imply α (x,y)≥ 1.

Definition 2.3. Let T : X → X be a mapping and α : X×X → [0,∞) a function. The mapiing T

is said to be α-orbital admissible if

(T3) α (x,T x)≥ 1 implies α
(
T x,T 2x

)
≥ 1.

Definition 2.4. Let T : X → X be a mapping and α : X ×X → [0,∞) a function. The mapping

T is said to be triangular α-orbital admissible if T is α-orbital admissible an

(T4) α (x,y)≥ 1 and α (y,Ty)≥ 1 imply α (x,Ty)≥ 1.
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Let (X ,d) be a b-metric space. We will denote by CB(X) the family of all bounded and closed

subsets of X . For x ∈ X and A,B ∈CB(X), we define

D(x,A) = inf
a∈A

d (x,a) and D(A,B) = sup
a∈A

D(a,B) .

The mapping H : CB(X)×CB(X)→ [0,∞) defined by

H (A,B) = max
{

sup
x∈A

D(x,B) ,sup
y∈B

D(y,A)
}
, A,B ∈CB(X) ,

is called a Hausdorff-Pompeiu b-metric induced by the b-metric space (X ,d).

For the convenience of the reader, we now repeat some well known results in the context of

b-metric spaces, thus making our exposition self-contained (see [2] and references therein).

Lemma 2.3. Let (X ,d) be a b-metric space. The following properties are satisfied.

1) D(x,B)≤ d (x,b) for all x ∈ X, b ∈ B and B ∈CB(X).

2) D(x,B)≤ H (A,B) for all x ∈ X and A,B ∈CB(X).

3) D(x,A)≤ s(d (x,y)+D(y,B)) for all x,y ∈ X and A,B ∈CB(X).

The next result is well known in the standard metric spaces [21], but for the case of b-metric,

we provide the proof.

Lemma 2.4. Let A and B be nonempty, closed, bounded subsets of a b-metric space (X ,d,s)

and q < 1. Then, for a ∈ A, there exists b ∈ B such that

qd (a,b)≤ H (A,B) . (2.1)

Proof. If H (A,B) = 0, then a ∈ B and so (2.1) holds for b = a.

Suppose that H (A,B) > 0. By the definitions of D(a,B) and H (A,B), for any ε > 0 there

exists b ∈ B such that d (a,b) ≤ D(a,B) + ε ≤ H (A,B) + ε . For ε =
(

1
q −1

)
H (A,B) > 0,

which we may assume, we obtain (2.1). This completes the proof.

Let us note that the proof does not depend on s.

Definition 2.5. [2] Let T : X → CB(X) be a multi-valued mapping and α : X ×X → [0,∞) a

given function. Then T is said to be α∗-admissible if α (x,y)≥ 1 implies α∗ (T x,Ty)≥ 1, where

α∗ (A,B) = inf{α (x,y) | x ∈ A,y ∈ B} .

With Ω will be denoted the class of all functions β : [0,∞)→ [0,1) such that for any bounded

sequence {tn} of positive real numbers, β (tn)→ 1 implies tn→ 0.
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Theorem 2.2. [8] Let (X ,d) be a metric space and T a self mapping of X. Suppose that there

exists β ∈ Ω such that for all x,y ∈ X , holds d (T x,Ty) ≤ β (d (x,y))d (x,y). Then T has a

unique fixed point x∗ ∈ X and {T nx} converges to x∗ for each x ∈ X .

Definition 2.6. [2] Let (X ,d) be a b-metric space and α : X×X → [0,∞) a function. Then X is

said to be α-complete if every b-Cauchy sequence {xn} in X with α (xn,xn+1)≥ 1 for all n ∈N

converges in X .

Definition 2.7. [2] Let (X ,d) be a metric space, T : X→X a mapping and α,η : X×X→ [0,∞)

two functions. We say that T is α-η-continuous mapping on (X ,d) if for given x ∈ X and a

sequence {xn} in X with the properties α (xn,xn+1)≥ 1 for all n ∈ N and xn→ x as n→ ∞, we

have T xn→ T x as n→ ∞.

If η (xn,xn+1) = 1, then T is called an α−continuous mapping.

We follow the notation used in [2] [14] and denote by Ψ the class of the functions ψ : [0,∞)→

[0,∞) satisfying the conditions: ψ is nondecreasing, continuous and ψ (t) = 0 if and only if

t = 0.

To facilitate access to our main results, we repeat some definitions and results from [2].

Definition 2.8. [2] Let S,T : X→CB(X) be two multi-valued mappings and α : X×X→ [0,∞)

a function. The pair (S,T ) is said to be triangular α∗-admissible if the following conditions

hold:

1) (S,T ) is α∗-admissible, that is, α (x,y) ≥ 1 implies α∗ (Sx,Ty) ≥ 1 and α∗ (T x,Sy) ≥ 1,

where α∗ (A,B) = inf{α (x,y) | x ∈ A,y ∈ B},

2) α (x,u)≥ 1 and α (u,y)≥ 1 imply α (x,y)≥ 1.

Definition 2.9. [2] Let S,T : X→CB(X) be two multi-valued mappings and α : X×X→ [0,∞)

a function. The pair (S,T ) is said to be α∗-orbital admissible if the conditions α∗ (x,Sx) ≥ 1

and α∗ (x,T x)≥ 1 imply α∗
(
Sx,T 2x

)
≥ 1 and α∗

(
T x,S2x

)
≥ 1.

Definition 2.10. [2] Let S,T : X → CB(X) be two multi-valued mappings and α : X ×X →

[0,∞) a function. The pair (S,T ) is said to be triangular α∗-orbital admissible, if the following

conditions are satisfied:

(i) (S,T ) is α∗-orbital admissible,

(ii) α (x,y)≥ 1,α∗ (y,Sy)≥ 1 and α∗ (y,Ty)≥ 1 imply α∗ (x,Sy)≥ 1 and α∗ (x,Ty)≥ 1.
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Lemma 2.5. [2] Let S,T : X →CB(X) be two multi-valued mappings such that the pair (S,T )

is triangular α∗-orbital admissible. Assume that there exists x0 ∈ X such that α∗ (x0,Sx0)≥ 1.

Define the sequence {xn} in X by x2n+1 ∈ Sx2n and x2n+2 ∈ T x2n+1, where n ∈ N∪{0}. Then

for n,m ∈ N∪{0} with m > n, we have α (xn,xm)≥ 1.

Definition 2.11. [2] Let (X ,d) be a b-metric space, S : X → CB(X) a multi-valued mapping

and α : X ×X → [0,∞) a function. We say that S is an α-continuous multi-valued mapping on

(CB(X) ,H) if whenever {xn} is a sequence in X with α (xn,xn+1)≥ 1 for all n ∈ N∪{0} and

x ∈ X such that limn→∞ d (xn,x) = 0, then limn→∞ H (Sxn,Sx) = 0.

The next definition from [2] gives a completely new notion in the setting of b-metric spaces.

Definition 2.12. [2] Let (X ,d) be a b-metric space, α : X ×X → [0,∞) a function and S,T :

X→CB(X) two multi-valued mappings. The pair (S,T ) is called a generalized α∗-ψ-Geraghty

contraction type multi-valued mapping if there exist β ∈ Ω and ψ ∈ Ψ such that for x,y ∈ X ,

with α (x,y)≥ 1, the pair (S,T ) satisfies the following inequality:

ψ
(
s3H (Sx,Ty)

)
≤ β (ψ (M (x,y))) ·ψ (M (x,y)) ,

where

M (x,y) = max
{

d (x,y) ,D(x,Sx) ,D(y,Ty) ,
D(x,Ty)+D(y,Sx)

2s

}
.

In [2], the authors also proved the following results, Theorem 2.1 and 2.2. In Theorem 2.2, the

continuity of the mappings S and T (property (v1)) is replaced by the suitable new condition

(property (v2)).

Theorem 2.3. [2] Let (X ,d) be a b-metric space and α : X ×X → [0,∞) a function. Suppose

that S,T : X →CB(X) are two multi-valued mappings satisfying the following conditions.

(i) (X ,d) is an α-complete b-metric space;

(ii) (S,T ) is a generalized α∗-ψ-Geraghty contraction type multi-valued mapping;

(iii) (S,T ) is triangular α∗-orbital admissible;

(iv) There exists x0 ∈ X such that α∗ (x0,Sx0)≥ 1;

(v) (v1) S and T are α-continuous multi-valued mappings;

or

(v2) If {xn} is a sequence in X such that α (xn,xn+1)≥ 1 for all n ∈N∪{0} and xn→ x∗ ∈ X
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as n→ ∞, then there exists a subsequence
{

xn(k)
}

of {xn} such that α
(
xn(k),x∗

)
≥ 1 for all

k ∈ N∪{0} .

Then S and T have a common fixed point.

3. Main results

In this section we give a genuine generalization of the results obtained in [2]. We provide the

much shorter proofs than ones in the recent paper of E. Ammer et al. Essential to our proofs are

the properties of the functions β and ψ as well as Lemma 2.1. Also, we shall use the definitions

of the distances D(a,B) , D(b,A) , H (A,B) . From our proofs, we conclude that the functions β

and ψ in the results obtained in [2] are superfluous. Also, it is sufficient to assume that ε > 1

instead of ε = 3.

Our first result is a generalization of [2, Theorem 2.1.].

Theorem 3.1. Let (X ,d,s > 1) be a b-metric space, α : X ×X → [0,∞) a function and ε > 1.

Let S,T : X →CB(X) be two multi-valued mappings such that for x,y ∈ X , with α (x,y) ≥ 1,

the pair (S,T ) satisfies the inequality

H (Sx,Ty)≤ 1
sε

M (x,y) , (3.1)

where M (x,y) = max
{

d (x,y) ,D(x,Sx) ,D(y,Ty) , D(x,Ty)+D(y,Sx)
2s

}
.

Suppose that the following conditions are satisfied.

(i) (X ,d) is an α-complete b-metric space.

(ii) (S,T ) is triangular α∗-orbital admissible.

(iii) There exists x0 ∈ X such that α∗ (x0,Sx0)≥ 1.

(iv) S and T are α-continuous multi-valued mappings.

Then S and T have a common fixed point.

Proof. From (iii), there exists x1 ∈ Sx0 such that α (x0,x1) ≥ 1 and x1 6= x0. By the inequality

(3.1) and Lemma 2.3, we have

0 < D(x1,T x1)≤ H (Sx0,T x1)≤
1
sε

M (x0,x1) . (3.2)
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Using Lemma 2.4 for q = 1
s < 1, there exists x2 ∈ T x1 such that

1
s

d(x1,x2)≤ H(Sx0,T x1)≤
1
sε

M(x0,x1), (3.3)

where

M (x0,x1) = max
{

d (x0,x1) ,D(x0,Sx0) ,D(x1,T x1) ,
D(x0,T x1)+D(x1,Sx0)

2s

}
= max

{
d (x0,x1) ,D(x1,T x1) ,

D(x0,T x1)+0
2s

}
= max

{
d (x0,x1) ,D(x1,T x1) ,

D(x0,T x1)

2s

}
.

According to Lemma 2.3, we have

D(x0,T x1)

2s
≤ s(d (x0,x1)+D(x1,T x1))

2s
=

d (x0,x1)+D(x1,T x1)

2

≤max{d (x0,x1) ,D(x1,T x1)} ,

and, thus, it follows that M (x0,x1) = max{d (x0,x1) ,D(x1,T x1)}.

If M (x0,x1) = D(x1,T x1), then from (3.2), we obtain 0 < D(x1,T x1)≤ 1
sε D(x1,T x1), a con-

tradiction. Hence, we conclude that max{d(x0,x1),D(x1,T x1)}= d(x0,x1). According to (3.3),

we have d(x1,x2)≤ 1
sε−1 d(x0,x1).

Similarly, for x2 ∈ T x1, Lemma 2.4 gives x3 ∈ Sx2, such that

1
s

d(x2,x3)≤ H(T x1,Sx2)≤
1
sε

M(x1,x2), (3.4)

where

M (x1,x2) =max
{

d (x1,x2) ,D(x1,T x1) ,D(x2,Sx2) ,
D(x1,Sx2)+D(x2,T x1)

2s

}
=max

{
d (x1,x2) ,D(x2,Sx2) ,

D(x1,Sx2)

2s

}
=max{d (x1,x2) ,D(x2,Sx2)} ,

since
D(x1,Sx2)

2s
≤ s(d(x1,x2)+D(x2,Sx2)

2s
=

d(x1,x2)+D(x2,Sx2)

2

≤max{d(x1,x2),D(x2,Sx2)}.

By the inequality (3.1) and Lemma 2.3, we have

0 < D(x2,Sx2)≤ H(T x1,Sx2)≤
1
sε

M(x1,x2). (3.5)
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If M(x1,x2) = D(x2,Sx2), then from (3.5) we obtain 0 < D(x2,Sx2)≤ 1
sε D(x2,Sx2), which is

impossible. This clearly forces max{d (x1,x2) ,D(x2,Sx2)}= d (x1,x2) and by (3.4) we obtain

d(x2,x3)≤
1

sε−1 d(x1,x2).

We continue in this manner. In general, x2n+1 ∈ X is chosen such that x2n+1 ∈ Sx2n and x2n+2 ∈

T x2n+1 for all n ∈ N∪{0}.

Since α∗ (x0,Sx0)≥ 1 and (S,T ) is triangular α∗-orbital admissible, by Lemma 2.5, we have

α (xn,xn+1)≥ 1 for all n ∈ N∪{0}.

For all k ∈ N∪{0}, we have

0 < D(x2k+1,T x2k+1)≤ H(Sx2k,T x2k+1)≤
1
sε

M(x2k,x2k+1), (3.6)

and
1
s

d(x2k+2,x2k+1)≤ H(Sx2k,T x2k+1)≤
1
sε

M (x2k,x2k+1) , (3.7)

where

M (x2k,x2k+1) =max

{
d (x2k,x2k+1) ,D(x2k,Sx2k) ,D(x2k+1,T x2k+1) ,

D(x2k,T x2k+1)+D(x2k+1,Sx2k)

2s

}
.

According to Lemma 2.3, we have

D(x2k,T x2k+1)+D(x2k+1,Sx2k)

2s
=

D(x2k,T x2k+1)+0
2s

=
D(x2k,T x2k+1)

2s

≤ s(d (x2k,x2k+1)+D(x2k+1,T x2k+1))

2s
=

d (x2k,x2k+1)+D(x2k+1,T x2k+1)

2

≤max{d (x2k,x2k+1) ,D(x2k+1,T x2k+1)} .

From what has already been proved and the inequality D(x2k,Sx2k) ≤ d(x2k,x2k+1), it follows

that M (x2k,x2k+1) = max{d (x2k,x2k+1) ,D(x2k+1,T x2k+1)}.

If max{d (x2k,x2k+1) ,D(x2k+1,T x2k+1)}= D(x2k+1,T x2k+1) , then from (3.6), we obtain

0 < D(x2k+1,T x2k+1)≤
1
sε

D(x2k+1,T x2k+1),

which contradicts the fact ε > 1. Hence, M (x2k,x2k+1) = d (x2k,x2k+1) . Further, by (3.7),

we get d (x2k+2,x2k+1) ≤ 1
sε−1 d (x2k+1,x2k). It follows that for all n ∈ N∪{0} the inequality
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d (xn+1,xn+2) ≤ 1
sε−1 d (xn,xn+1) holds. Lemma 2.1 now shows that the sequence {xn} is a b-

Cauchy sequence.

Since (X ,d) is an α-complete b-metric space and α (xn,xn+1) ≥ 1 for all n ∈ N ∪ {0} ,

there exists x∗ ∈ X such that limn→∞ d (xn,x∗) = 0 implies that limk→∞ d (x2k+1,x∗) = 0 and

limk→∞ d (x2k+2,x∗) = 0. The α-continuity of T implies limk→∞ H (T x2k+1,T x∗) = 0. Thus,

D(x∗,T x∗)≤ s(d (x∗,x2k+1)+D(x2k+1,T x∗))

≤ s(d (x∗,x2k+1)+H (T x2k+1,T x∗))

→ s · (0+0) = 0,

and so, x∗ ∈ T x∗. Similarly, we obtain x∗ ∈ Sx∗. Hence, S and T have a common fixed point

x∗ ∈ X .

This completes the proof.

Remark 3.1. It is clear that for 1 < ε ≤ 3 and s > 1 we have

ψ (sH (Sx,Ty))≤ ψ (sεH (Sx,Ty))≤ ψ
(
s3H (Sx,Ty)

)
≤ β (ψ ((M (x,y)))) ·ψ (M (x,y)) ,

where

M (x,y) = max
{

d (x,y) ,D(x,Sx) ,D(y,Ty) ,
D(x,Ty)+D(y,Sx)

2s

}
,

and consequently the condition (2.1) from [2] implies the condition (3.1). We can conclude that

Theorem 3.1 extends the main result, Theorem 2.1, from [2]. It is worth notice that our proof is

much shorter and also all redundant properties are avoided.

In the next result we show that the α-continuity of the mappings S and T can be replaced

with a new suitable condition.

Theorem 3.2. Let (X ,d,s > 1) be a b-metric space, α : X ×X → [0,∞) a function and ε > 1.

Let S,T : X →CB(X) be two multi-valued mappings such that for x,y ∈ X , with α (x,y) ≥ 1,

the pair (S,T ) satisfies the inequality

H (Sx,Ty)≤ 1
sε

M (x,y) , (3.8)

where M (x,y) = max
{

d (x,y) ,D(x,Sx) ,D(y,Ty) , D(x,Ty)+D(y,Sx)
2s

}
.

Suppose, further, that S,T : X →CB(X) satisfy the following conditions:
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(i) (X ,d) is an α-complete b-metric space,

(ii) (S,T ) is triangular α∗-orbital admissible,

(iii) there exists x0 ∈ X such that α∗ (x0,Sx0)≥ 1,

(iv) if {xn} is a sequence in X such that α (xn,xn+1)≥ 1 for all n∈N∪{0} and xn→ x∗ ∈ X

as n→∞, then there exists a subsequence
{

xn(k)
}

of {xn} such that α
(
xn(k),x∗

)
≥ 1 for

all k ∈ N∪{0} .

Then S and T have a common fixed point x∗ ∈ X .

Proof. In the same way as in the proof of Theorem 3.1, we construct the sequence {xn} in

X defined by x2n+1 ∈ Sx2n, x2n+2 ∈ T x2n+1, n ∈ N∪{0}, with the properties α (xn,xn+1) ≥ 1

for all n ∈ N∪{0} and {xn} converges to x∗ ∈ X . By condition (iv), there exists a subsequence{
xn(k)

}
of {xn} such that α

(
xn(k),x∗

)
≥ 1 for all k ∈ N∪{0} . According to Lemma 2.3, we

have
1
s

D(x∗,T x∗)≤ d
(
x∗,x2n(k)+1

)
+D

(
x2n(k)+1,T x

)
≤ d

(
x∗,x2n(k)+1

)
+H

(
Sx2n(k),T x∗

)
≤ d

(
x∗,x2n(k)+1

)
+

1
sε

M
(
x2n(k),x

∗) ,
(3.9)

where

M
(
x2n(k),x

∗)= max
{

d
(
x2n(k),x

∗) ,D(x2n(k),Sx2n(k)
)
,D(x∗,T x∗) ,

D
(
x2n(k),T x∗

)
+D

(
x∗,Sx2n(k)

)
2s

}
.

(3.10)

Since 1
s D
(
x2n(k),T x∗

)
≤ d

(
x2n(k),x∗

)
+D(x∗,T x∗) and D

(
x∗,Sx2n(k)

)
≤ d

(
x∗,x2n(k)

)
, we can

conclude that

limsup
k→∞

D
(
x2n(k),T x∗

)
+D

(
x∗,Sx2n(k)

)
2s

≤ D(x∗,T x∗)
2s

.

Letting k→ ∞ in (3.10), we obtain limk→∞ M
(
x2n(k),x∗

)
= D(x∗,T x∗) .

If we assume that x∗ is not the fixed point of T , i.e. D(x∗,T x∗)> 0, we obtain a contradiction.

Indeed, letting k→ ∞ in (3.9), we get 1
s D(x∗,T x∗) ≤ 1

sε D(x∗,T x∗), which contradicts the fact

that ε > 1. Therefore, x∗ ∈ T x∗, i.e., x∗ is the fixed point of T. Similarly, we can show that

x∗ ∈ Sx∗. Consequently, x∗ ∈ X is the common fixed point of S and T .

This completes the proof.
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Remark 3.2. It is easy to notice that the previous result is a proper generalization of Theorem

2.2 from [2]. Namely, we do not use the Geraghty condition to prove the existence of the fixed

point.

Assuming that S = T and M (x,y) = d (x,y) in Theorem 3.1 and Theorem 3.2, we obtain the

new results which are genuine generalizations of those in [2].

4. Improvement results and remarks on a resent paper

Now, we give some remarks on the results obtained in [2].

1) In Corollary 2.1 and Corollary 2.2, it is not necessary to assume the completeness of X ,

since the condition (i) is then redundant.

2) Considering the result of Theorem 2.3, we can conclude that a very similar approach

would be more illuminating. This result can be generalized with little effort to the cases ε ∈

(1,3] without functions ψ and β . Also, it is clear that a new result can be established if we

replace (v) with the α-continuity of multi-valued mappings S and T . Extending the theorem

in those ways would have a much greater impact. In the both cases, the multivalued mappings

S and T satisfy the contractive condition of the form d (Sx,Ty) ≤ 1
sε M (x,y) , where s > 1 and

M (x,y) = max
{

d (x,y) ,D(x,Sx) ,D(y,Ty) , D(x,Ty)+D(y,Sx)
2s

}
.

3) The authors provide an example on page 14. They say that
(
[0, 1

2),d
)

is a complete b-

metric space. This statement is not correct. Indeed, considering the sequence xn = 1
2 −

1
n+1 ,

n ∈ N, we have xn → 1
2 as n→ ∞ in the b-metric space

(
[0, 1

2),d
)

but the limit 1
2 does not

belong to [0, 1
2). However, it is easy to check that for certain values of ε > 1 and s > 1 and

some ψ and β , the inequality d (Sx,Ty) ≤ 1
sε M (x,y) is satisfied but the following condition

ψ
(
s3d (Sx,Ty)

)
≤ β (ψ (M (x,y)))M (x,y) does not hold.

We think that a different approach would be more useful. The authors should consider T x =
{ 2

245x
}
, if x ∈ [0, 1

2)

{1} , if x ∈ [1
2 ,1]

and Sx = {0} and use Theorem 2.1.

4) It is easy to verify that Section 3 is a direct consequence of the previous section. Indeed,

X can be identify with a proper subset of CB(X) considering {x} instead of x. Then Definition

3.1 becomes a special case of Definition 2.5. Also, Theorem 3.1 and 3.2 can be obtained by
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Theorem 2.1 and 2.2. The same case is with Corollary 3.1. The only conclusion in Section 3

different from Section 2 is the uniqueness of fixed point of S and T .

5) In Section 4, the results are used to establish the existence of a solution for a pair of

ordinary differential equations. We will show that it is not essential to use the b-metric

(x,y) 7→ sup
t∈[a,b]

(x(t)− y(t))2

in the space of continuous functions C [a,b] for solving ordinary differential or integral equa-

tions since we can use the standard metric

(x,y) 7→ sup
t∈[a,b]

|x(t)− y(t)| .

As a mater of fact, if we denote with d a b-metric and with D a metric on C [a,b], then we have

D(x,y) =
√

d (x,y). Since (C [a,b] ,d) is a b-metric space with the coefficient s = 2, then the

condition ψ
(
s3d (Sx,Ty)

)
≤ β (ψ (M (x,y))) ·M (x,y) implies

d (Sx,Ty)≤ 1
8

M (x,y) , (4.1)

where

M (x,y) = max
{

d (x,y) ,d (x,Sx) ,d (y,Ty) ,
d (x,Ty)+d (Sx,y)

4

}
= max

{
|x− y|2 , |x−Sx|2 , |y−Ty|2 , |x−Ty|2 + |Sx− y|2

4

}
.

Since
|x−Ty|2 + |Sx− y|2

4
≤ 1

2
max

{
|x−Ty|2 , |Sx− y|2

}
, from (4.1), we have

|Sx−Ty|2 ≤ 1
8

max

{
|x− y|2 , |x−Sx|2 , |y−Ty|2 , |x−Ty|2

2
,
|Sx− y|2

2

}
.

By taking square roots, we obtain

D(Sx,Ty)≤ 1
2
√

2
max

{
|x− y| , |x−Sx| , |y−Ty| , |x−Ty|√

2
,
|Sx− y|√

2

}
=

1
2
√

2
max

{
D(x,y) ,D(x,Sx) ,D(y,Ty) ,

D(x,Ty)√
2

,
D(Sx,y)√

2

}
.

Now, we derive the following assertion.

Let (X ,D) be a complete metric space and S,T : X → X mappings such that the condition

D(Sx,Ty)≤ 1
2
√

2
max

{
D(x,y) ,D(x,Sx) ,D(y,Ty) ,

D(x,Ty)√
2

,
D(Sx,y)√

2

}
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is satisfied. Then S and T have a unique fixed point.

As a consequence, we can conclude that Theorem 4.1 is an application of the standard metric

D on the space C [a,b] .
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