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Abstract. Let C be a nonempty closed convex subset of a uniformly convex Banach space endowed with a tran-

sitive directed graph G = (V (G),E(G)), such that V (G) = C and E(G) is convex. We introduce the definition of

G-asymptotically nonexpansive self-mapping on C. It is shown that such mappings are G-demiclosed. Finally, we

prove the weak and strong convergence of a sequence generated by a modified Noor iterative process to a com-

mon fixed point of a finite family of G-asymptotically nonexpansive self-mappings defined on C with nonempty

common fixed points set. Our results improve and generalize several recent results in the literature.
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Let C be a nonempty subset of a real normed linear space X . A self-mapping T : C → C is

called asymptotically nonexpansive (Goebel and Kirk [10]) if there exists a sequence {un} ⊂

[0,∞), un→ 0 as n→ ∞ such that ∀x,y ∈C, the following inequality holds:

||T nx−T ny|| ≤ (1+un)||x− y||, ∀n≥ 1.

T is called nonexpansive (Browder [5], Göhde [11], Kirk[16]) if

||T x−Ty|| ≤ ||x− y||, ∀n≥ 1.

Recall that a Banach space X is said to satisfy Opial’s condition (see [20]) if for each sequence

{xn} weakly convergent to x and for y 6= x we have

limsup
n→∞

||xn− x||< limsup
n→∞

||xn− y||.

A point x ∈ X is called a fixed point of a self-mapping T on X if x = T (x). The fixed point

set of a mapping T will be denoted by F(T ).

In 1972, Goebel and Kirk [10], proved the following fundamental theorem for existence of

fixed point of asymptotically nonexpansive mappings:

Theorem 1.1. If C is a nonempty bounded closed convex subset of a real uniformly convex

Banach space X and if T is an asymptotically nonexpansive self-mapping on C, then T has at

least one fixed point.

In 1978, Bose [4] initiated the study of approximation of fixed points of asymptotically non-

expansive mapping and proved that, if C is a nonempty bounded closed convex subset of a uni-

formly convex Banach space X satisfying Opial’s condition and T : C→C is an asymptotically

nonexpansive mapping, then the sequence {T nx} converges weakly to a fixed point of T provid-

ed T is asymptotically regular at x ∈C, i.e., limn→∞ ||T nx−T n+1x|| = 0. In 1982, Passty [22]

proved that the requirement that X satisfies the Opial’s condition can be replaced by the Frechet

differentiable norm. In 1992, Tan and Xu [34] proved that the asymptotic regularity of T at x

can be replaced by weak asymptotic regularity of T at x, i.e., ω− limn→∞(T nx−T n+1x) = 0.



G-ASYMPTOTICALLY NONEXPANSIVE MAPPING 315

In 1991, Schu [27] introduced the modified Mann iteration (see [17]) process:

xn+1 = (1−αn)xn +αnT nxn, n = 1,2,3, · · · (1.1)

where {αn} is a sequence in (0,1) which is bounded away from 0 and 1, i.e., a ≤ αn ≤ b for

all n for some 0 < a ≤ b < 1 to approximate fixed points of aymptotically nonexpansive self-

mappings defined on nonempty bounded closed convex subsets of a Hilbert space. In parallel

publication in 1991, Schu[28] also proved the same result in the setting of a uniformly convex

Banach space which satisfies Opial’s condition.

In 1993, Bruck et al.[6] constructed the following iterative scheme

xi+1 = (1−αi)xi +αiT nixi,

where {αi} is a sequence in (0,1) bounded away from 0 and 1 and {ni} a sequence of nonneg-

ative integers and studied some convergence theorems for asymptotically nonexpansive map-

pings in the setting of Banach spaces with uniform τ−Opail’s property. In 1994, Tan and Xu

[35] studied the modified Ishikawa iteration process and used the method to approximate fixed

points for asymptotically nonexpansive mappings:

xn+1 = (1−αn)xn +αnT n((1−βn)xn +βnT nxn)), n = 1,2,3, · · ·

where {αn} and {βn} are two sequences in (0,1) such that αn is bounded away from 0 and

1 and βn is bounded away from 1. Osilike and Aniagbosor [21] proved that the theorem of

Schu remains true without the boundedness assumption on C provided that the fixed point set

is nonempty. Furthermore, Chang et al.[7] proved convergence theorems for asymptotically

nonexpansive mappings and nonexpansive mappings in Banach spaces without assuming any

of the conditions (a) X satisfies Opial’s condition; (b) T is weak-asymptotically regular; (c) C is

bounded. Khan and Takahashi [15] have approximated common fixed points of two asymptoti-

cally nonexpansive self mappings by using the modified Ishikawa iteration (see [12]) process:

xn+1 = (1−αn)xn +αnT n((1−βn)xn +βnSnxn)), n = 1,2,3, · · ·

where {αn} and {βn} are two sequences in (0,1) such that αn is bounded away from 0 and 1 and

βn is bounded away from 1. Approximating fixed points of nonexpansive and asymptotically
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nonexpansive mappings has been extensively studied by several authors(see, e.g., [19, 21, 25,

30, 32]).

Fixed point theorems for monotone single valued mappings in a metric space endowed with

partial orderings are first considered by Ran and Reurings [24] in 2004 and have been widely

investigated (see, e.g., [2, 9, 18]). The theorem in [24] is a hybrid of the two independent

fundamental theorems: Banach contraction principle [3] and Tarski’s fixed point result [33].

Recently, Reich and Zaslavski in [23] obtained some fixed point results for different classes of

contractive self-mappings in a partially ordered metric spaces.

On the other hand, Jachymski [13], investigated a new approach in metric fixed point theory

by replacing an order structure with a graph structure on metric spaces. In this way, the results

proved in ordered metric spaces are generalized (see for detail [13] and the reference therein).

Recall that a directed graph usually written as digraph is a pair G = (V (G),E(G)) where

V (G) is a nonempty set called vertices of the graph G and E(G) = {(u,v) : u,v ∈ V (G)} is set

of ordered pairs called edges of the graph G. Let C be a nonempty subset of a real Banach space

X and ∆ be the diagonal of C×C. Let G be a digraph such that the set V (G) of its vertices

coincide with C and ∆ ⊆ E(G), i.e., E(G) contains all loops. Assume that G has no parallel

Edges. If x and y are vertices of G, then a path in G from x to y of length k ∈ N is a finite

sequence {xi}k
i=0 of vertices such that x0 = x, xk = y and (xi−1,xi) ∈ E(G), for i = 1,2,3, ...,k.

A directed graph G is said to be transitive if, for any x,y,z ∈V (G) such that (x,y) and (y,z) are

in E(G), we have (x,z) ∈ E(G). For more detail of graph theory refer Diestel [8].

Definition 1.1. [13] A self map T : C→C is called G-contraction if there is a λ ∈ [0,1) such

that

(i) T preserves edges of G, i.e., (x,y) ∈ E(G)⇒ (T x,Ty) ∈ E(G), and

(ii) ||T x−Ty|| ≤ λ ||x− y|| for each (x,y) ∈ E(G).

.

Definition 1.2. [1] A self map T : C→C is called G-nonexpansive if it satisfies the conditions

(i) T preserves edges of G, and

(ii) ||T x−Ty|| ≤ ||x− y|| for each (x,y) ∈ E(G).
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Definition 1.3. [1] Let C be a nonempty subset of a normed space X and let G = (V (G),E(G))

be a digraph such that V (G) =C. Then, C is said to have Property P, if for each sequence {xn}

in C converging weakly to x ∈ C and (xn,xn+1) ∈ E(G), there is a subsequence {xnk} of {xn}

such that (xnk ,x) ∈ E(G) for all k ∈ N.

Remark 1.1. If G is transitive, then Property P is equivalent to the property: if {xn} is a

sequence in C with (xn,xn+1) ∈ E(G) such that for any subsequence {xn j} of the sequence {xn}

converging weakly to x in X , then (xn,x) ∈ E(G) for all n ∈ N.

Definition 1.4. Let C be a nonempty subset of a Banach space X endowed with a digraph

G = (V (G),E(G)) such that V (G) = C and let T : C→ X be a mapping. Then T is said to be

G-demiclosed at y ∈ X , if for any sequence {xn} in C with (xn,xn+1) and (xn,T xn) are in E(G)

such that {xn} converges weakly to x ∈C and {T xn} converges strongly to y imply T x = y.

The concept of Monotone G-nonexpansive self-mappings in a Banach space with topology

τ , which is weaker than the norm topology, is first introduced by Alfraidan [1] in 2015. In [1],

the author studied the τ-convergence of Krasnoselskii sequence to fixed points of such class

of mappings. Tiammee et al.[36] proved Browders theorem and the convergence of Halpern

iteration for a G-nonexpansive mapping in a Hilbert space with a directed graph. In 2016,

Tripak [37] proved weak and strong convergence of the Ishikawa iteration scheme to common

fixed points of a couple of G-nonexpansive mappings in a Banach space with a directed graph.

In [31], the author defined the concept of dominance in the following way.

Definition 1.5. [31] Let x1 ∈V (G) and A a subset of V (G). We say that

(i) A is dominated by x1 if (x1,x) ∈ E(G) for all x ∈ A.

(ii) A dominates x1 if for each x ∈ A, (x,x1) ∈ E(G).

Using the concept of dominance assumptions, the author [37] proved the following convergence

theorems.

Theorem 1.2. [37] Let C be a nonempty closed convex subset of a uniformly convex Ba-

nach space endowed with a transitive directed graph G = (V (G),E(G)), such that V (G) = C

and E(G) is convex. Let Ti(i = 1,2) be G-nonexpansive mappings from C to C with F =
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F(T1)
⋂

F(T2) nonempty. Let {αn}, {βn} ⊂ [δ ,1− δ ] for some δ ∈ (0, 1
2). Let {xn} be a se-

quence generated from arbitrary x0 ∈C given by
xn+1 = (1−αn)xn +αnT1yn

yn = (1−βn)xn +βnT2xn

(1.2)

for n = 0,1,2, .... Suppose that Ti(i = 1,2) satisfy the following conditions:

(1) There exists a nondecreasing function f : [0,∞)→ [0,∞) with f (0) = 0 and f (r)> 0 for

all r > 0 such that, for all x ∈C,

max{||x−T1x||, ||x−T2x||} ≥ f (d(x,F));

(2) F dominates x0;

(3) F is dominated by x0; and

(4) For each z ∈ F and arbitrary x0 ∈C

(x0,z),(y0,z),(z,x0),(z,y0) ∈ E(G).

Then {xn} converges strongly to a common fixed point of Ti.

Definition 1.6. [29] Let C be a subset of a metric space (X ,d). A mapping T : C→C is semi-

compact if for a sequence {xn} in C with lim
n→∞

d(xn,T xn) = 0, there exists a subsequence {xn j}

of {xn} such that xn j → p ∈C as j→ ∞.

Theorem 1.3. [37] Let C be a nonempty closed convex subset of a uniformly convex Ba-

nach space endowed with a transitive directed graph G = (V (G),E(G)), such that V (G) = C

and E(G) is convex. Let Ti(i = 1,2) be G-nonexpansive mappings from C to C with F =

F(T1)
⋂

F(T2) nonempty. Let {αn}, {βn} ⊂ [δ ,1− δ ] for some δ ∈ (0, 1
2). Suppose that F

dominates x0, F is dominated by x0 and (x0,z),(y0,z),(z,x0),(z,y0) ∈ E(G) for each z ∈ F and

arbitrary x0 ∈ C. Suppose that one of Ti(i = 1,2) is semi-compact. Then the sequence {xn}

defined in (1.2) converges strongly to a common fixed point of Ti.

Theorem 1.4. [37] Let C be a nonempty closed convex subset of a uniformly convex Banach

space X endowed with a transitive directed graph G = (V (G),E(G)), such that V (G) =C and

E(G) is convex. Suppose X satisfies the Opial’s property. Let Ti(i = 1,2) be G-nonexpansive
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mappings from C to C with F = F(T1)
⋂

F(T2) nonempty. If I−Ti is G-demiclosed at zero for

each i, F dominates x0, F is dominated by x0 and (x0,z0),(y0,z0),(z0,x0), (z0,y0) ∈ E(G) for

z0 ∈ F and arbitrary x0 ∈ C, then the sequence {xn} defined in (1.2) converges weakly to a

common foxed point of Ti.

In 2002, Xu and Noor [39] used a modified three step iterative method:
zn = (1− γn)xn + γnT nxn,

yn = (1−βn)xn +βnT nzn,

xn+1 = (1−αn)xn +αnT nyn, n = 1,2,3, , · · · .

where {αn},{βn},{γn} are sequences of real numbers in [0,1] to approximate fixed points of

asymptotically nonexpansive mappings in Banach spaces. In 2008, Khan et al.[14] extended the

work of Xu and Noor [39], from one mapping to a finite family of mappings using the modified

Noor iterative method:

xn+1 = (1−αk,n)xn +αk,nT n
k yk−1,n,

yk−1,n = (1−αk−1,n)xn +αk−1,nT n
k−1yk−2,n,

yk−2,n = (1−αk−2,n)xn +αk−2,nT n
k−2yk−3,n,

...

y2,n = (1−α2,n)xn +α2,nT n
2 y1,n,

y1,n = (1−α1,n)xn +α1,nT n
1 xn,

(1.3)

where y0,n = xn for each n ∈ N and arbitrary x1 ∈C.

The purpose of this article is three fold:

(1) To introduce G-asymptotically nonexpansive self-mappings of a closed convex subset

of a Banach space with digraph;

(2) To show that G-asymptotically nonexpansive self-mapping has G-demiclosedness prop-

erty on a closed convex subset of a Banach space with digraph;

(3) To investigate approximations of fixed points of G-asymptotically nonexpansive self-

mappings of a closed convex subset of a Banach space with digraph; in particular to
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study some weak and strong convergence theorems for the sequence generated by the

modified Noor iteration methods to common fixed points of a finite family of such map-

pings in real uniformly convex Banach spaces with digraph.

2. Preliminaries

The following technical Lemmas are crucial in proving our main results of the article.

Lemma 2.1. [7] Let {an} and {bn} be two sequences of nonnegative real numbers with

∑
∞
n=1 bn < ∞. If one of the following conditions is satisfied:

(i) an+1 ≤ an +bn, n≥ 1,

(ii) an+1 ≤ (1+bn)an, n≥ 1,

then limn→∞ an exists.

Lemma 2.2. [40] Let X be a Banach space, and R > 1 be a fixed number. Then X is uni-

formly convex if and only if there exists a continuous, strictly increasing, and convex function

g : [0,∞)→ [0,∞) with g(0) = 0 such that

||λx+(1−λ )y||2 ≤ λ ||x||2 +(1−λ )||y||2−λ (1−λ )g(||x− y||)

for all x,y ∈ BR(0) = {x ∈ X : ||x|| ≤ R} and λ ∈ [0,1].

Lemma 2.3. [27] Let X be a uniformly convex Banach space and {αn} a sequence in [δ ,1−δ ]

for some δ ∈ (0,1). Suppose that sequences {xn} and {yn} in X are such that limsup
n→∞

||xn|| ≤

c , limsup
n→∞

||yn|| ≤ c and lim
n→∞
||αnxn +(1−αn)yn||= c for some c≥ 0 then lim

n→∞
||xn− yn||= 0.

Lemma 2.4. [7] Let X be a uniformly convex Banach space, C be a nonempty bounded convex

subset of X . Then there exists a strictly increasing continuous convex function γ : [0,∞)→ [0,∞)

with γ(0) = 0 such that, for any Lipschitzian mapping T : C→ X with the Lipschitz constant

L ≥ 1, any finite many elements {xi}n
i=1 in C and any finite many nonnegative numbers {ti}n

i=1

with
n

∑
i=1

ti = 1, the following inequality holds:

||T (
n

∑
i=1

tixi)−
n

∑
i=1

tiT xi|| ≤ Lγ
−1 max

1≤i, j≤n
(||xi− x j||−L−1||T xi−T x j||).



G-ASYMPTOTICALLY NONEXPANSIVE MAPPING 321

Lemma 2.5. [26] Let {xn} be a bounded sequence in a reflexive Banach space X . If for any

weakly convergent subsequence {xn j} of {xn}, both {xn j} and {xn j+1} converge weakly to the

same point in X , then the sequence {xn} is weakly convergent.

3. Main results

Throughout this section C denotes a nonempty closed convex subset of a real uniformly

convex Banach space X endowed with a directed graph G = (V (G),E(G)) such that V (G) =C

and E(G) is convex. We also suppose that the graph G is transitive.

Definition 3.1. A self map T : C→C is said to be G-asymptotically nonexpansive if it satisfies

the conditions:

(i) T preserves edges of G, and

(ii) there exists a sequence {kn} ⊂ [1,∞) with ∑
∞
n=1[kn−1]< ∞ and for each (x,y) ∈ E(G)

and n ∈ N

||T nx−T ny|| ≤ kn||x− y||.

Proposition 3.1. Let {Ti}k
i=1 be a family of G-asymptotically nonexpansive mappings on C

such that F =
⋂k

i=1 F(Ti) nonempty. Let z ∈ F be such that (x1,z) and (z,x1) are in E(G) for

arbitrary x1 ∈ C. Then, for a sequence {xn} generated by x1 with iterative scheme defined by

(1.3), we have (xn,z),(z,xn),(xn,yi,n),(yi,n,xn),(z,yi,n), (yi,n,z) and (xn,xn+1) are in E(G) for

each i = 1,2,3, · · · ,k and n = 1,2,3, · · · .

Proof. We proceed by induction. First we let (x1,z) ∈ E(G). Since T1 is edge-preserving, we

have (T1x1,z) ∈ E(G). By the convexity of E(G), we have

(1−α1,1)(x1,z)+α1,1(T1x1,z) = ((1−α1,1)x1 +α1,1T1x1,z) = (y1,1,z),

so that (y1,1,z) ∈ E(G). Since T2 is edge-preserving, (T2y1,1,z) ∈ E(G) and again by the con-

vexity of E(G) we have

(1−α2,1)(x1,z)+α2,1(T2y1,1,z) = ((1−α2,1)x1 +α2,1T2y1,1,z) = (y2,1,z),
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so that (y2,1,z) ∈ E(G). Assume that (yl,1,z) ∈ E(G), for some l ∈ {1,2,3, · · · ,k−2}. As Tl+1

is edge-preserving, (Tl+1yl,1,z) ∈ E(G) and by using the convexity of E(G), we get

(1−αl+1,1)(x1,z)+αl+1,1(Tl+1yl,1,z) = ((1−αl+1,1)x1 +αl+1,1Tl+1yl,1,z) = (yl+1,1,z),

so that (yl+1,1,z) ∈ E(G). Thus (yi,1,z) ∈ E(G) for each i = 1,2,3, · · · ,k−1.

In particular, for i = k−1

(yk−1,1,z) ∈ E(G).

Since Tk is edge-preserving, we have

(Tkyk−1,1,z) ∈ E(G).

Using the convexity of E(G), we have

(1−αk,1)(x1,z)+αk,1(Tkyk−1,1,z) = ((1−αk,1)x1 +αk,1Tkyk−1,1,z) = (x2,z),

so that (x2,z)∈ E(G). Thus, we obtain (yi,1,z)∈ E(G) for i = 1,2,3, · · · ,k−1 and (x2,z) is also

in E(G).

Since {Ti}k
i=1 are edge preserving, {T 2

i }k
i=1 are also edge preserving. Thus, repeating the

previous process for (x2,z) in place of (x1,z) and using the operators T 2
i in place of Ti, we

obtain (yi,2,z) ∈ E(G) for i = 1,2,3, · · · ,k−1 so that (x3,z) is also in E(G).

Assume that (xm,z) ∈ E(G) for some m ∈ N. Since Ti is edge-preserving, we have T m
i are

also edge preserving and hence, we have (T m
1 xm,z)∈ E(G) and by using the convexity of E(G),

we get

(1−α1,m)(xm,z)+α1,m(T m
1 xm,z) = ((1−α1,m)xm +α1,mT m

1 xm,z) = (y1,m,z),

so that (y1,m,z) ∈ E(G). As T m
2 is edge-preserving, (T m

2 y1,m,z) ∈ E(G), as E(G) is convex, we

have

(1−α2,m)(xm,z)+α2,m(T m
2 y1,m,z) = ((1−α2,m)xm +α2,mT m

2 y1,m,z) = (y2,m,z),

so that (y2,m,z) ∈ E(G). By repeating the process, we conclude that (yi,m,z) and (xm+1,z) are in

E(G) for all i = 1,2,3, · · · ,k−1.
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Continuing the process once again for (xm+1,z), we have (yi,m+1,z) ∈ E(G) for all i =

1,2,3, · · · ,k− 1. Therefore, by induction, we conclude that (xn,z),(yi,n,z) ∈ E(G) for all i =

1,2,3, · · · ,k−1 and n = 1,2,3, · · · .

Using a similar argument, we can show that (z,xn),(z,yi,n) ∈ E(G) for all i = 1,2,3, · · · ,k−

1 and n = 1,2,3, · · · , under the assumption that (z,x1) ∈ E(G). The transitivity property of

G implies that (xn,xn+1),(xn,yi,n),(yi,n,xn) are in E(G) for all i = 1,2,3, · · · ,k− 1 and n =

1,2,3, · · · . This completes the proof.

Lemma 3.2. Let {Ti}k
i=1 be a finite family of G-asymptotically nonexpansive mappings on C

such that F =
⋂k

i=1 F(Ti) nonempty. Suppose that for all (x,y) ∈ E(G),

||T n
i x−T n

i y|| ≤ (1+ui,n)||x− y||

where {ui,n} ⊂ [0,∞) with ∑
∞
n=1 ui,n < ∞ for each i ∈ {1,2,3, · · · ,k}. Suppose that (x1,z) and

(z,x1) are in E(G) for arbitrary x1 ∈ C and z ∈ F. If {xn} is the sequence generated by (1.3)

with {αi,n} ⊂ [δ ,1−δ ] for some δ in (0,1), then

(i) limn→∞ ||xn− z|| exists;

(ii) limn→∞ ||xn−T n
i yi−1,n||= 0, for each i = 2,3,4, · · · ,k;

(iii) limn→∞ ||xn−T n
i xn||= 0, for each i = 1,2,3, · · · ,k;

(iv) limn→∞ ||xn−Tixn||= 0, for each i = 1,2,3, · · · ,k.

Proof. First we prove (i). Let x1 ∈C and z∈F be as in the hypothesis and let {xn} be a sequence

generated by (1.3). By Proposition 3.1., (xn,z),(z,xn),(xn,yi,n),(yi,n,xn) and (xn,xn+1) are in

E(G). Set vn = max
1≤i≤k

ui,n, for all n. Since
∞

∑
n=1

ui,n < ∞, for each i, we must have

∞

∑
n=1

vn < ∞. (3.1)

Now by the G-asymptotically nonexpansiveness of T1 and (1.3), we have

||y1,n− z|| ≤ (1−α1,n)||xn− z||+α1,n||T n
1 xn− z||

≤ (1−α1,n)||xn− z||+α1,n(1+u1,n)||xn− z||

= (1+α1,nu1,n)||xn− z0||

≤ (1+ vn)||xn− z||.
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Thus

||y1,n− z|| ≤ (1+ vn)||xn− z||. (3.2)

Assume that, for some m ∈ {1,2,3, · · · ,k−2},

||ym,n− z|| ≤ (1+ vn)
m||xn− z||. (3.3)

By G-asymptotically nonexpansiveness of Tm+1 and using (1.3) and (3.3), we have

||ym+1,n− z|| ≤ (1−αm+1,n)||xn− z||+αm+1,n||T n
m+1ym,n− z||

≤ (1−αm+1,n)||xn− z||+αm+1,n(1+um+1,n)||ym,n− z||

≤ (1−αm+1,n)||xn− z||

+αm+1,n(1+um+1,n)(1+ vn)
m||xn− z||

≤ (1−αm+1,n)||xn− z||+αm+1,n(1+ vm,n)
m+1||xn− z||

= [1−αm+1,n +αm+1,n(1+
m+1

∑
j=1

(
m+1

j

)
v j

n )]||xn− z||

= (1+αm+1,n

m+1

∑
j=1

(
m+1

j

)
v j

n )||xn− z||

≤ (1+
m+1

∑
j=1

(
m+1

j

)
v j

n )||xn− z||

= (1+ vn)
m+1||xn− z||,

where

(
r
s

)
=

r!
(r− s)!s!

.

Thus, for each i = 1,2,3, · · · ,k−1, we have

||yi,n− z|| ≤ (1+ vn)
i||xn− z||. (3.4)
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In particular for i = k−1, we have

||xn+1− z|| = ||(1−αk,n)(xn− z)+αk,n(T n
k yk−1,n− z)||

≤ (1−αk,n)||xn− z||+αk,n(1+uk,n)||yk−1,n− z||

≤ (1−αk,n)||xn− z||+αk,n(1+uk,n)(1+ vn)
k−1||xn− z||

≤ (1−αk,n)||xn− z||+αk,n(1+ vn)
k||xn− z||

= [1−αk,n +αk,n(1+
k

∑
j=1

(
k
j

)
v j

n )]||xn− z||

≤ (1+
k

∑
j=1

(
k
j

)
v j

n )||xn− z||.

Therefore, for each n = 1,2,3, · · · , we have

||xn+1− z|| ≤ (1+
k

∑
j=1

(
k
j

)
v j

n )||xn− z||. (3.5)

If we set bn = ∑
k
j=1
(k

j

)
v j

n, we have

bn =
n

∑
j=1

(
k
j

)
v j

n ≤
n

∑
j=1

(
k
j

)
vn = vn(2k−1). (3.6)

Using (3.1) and (3.6), we obtain that

∞

∑
n=1

bn ≤ (2k−1)
∞

∑
n=1

vn < ∞. (3.7)

Using (3.5), (3.7) to apply (ii) of Lemma 2.1 with an = ||xn−z||, we conclude that lim
n→∞
||xn−z||

exists.

Next, we prove (ii). From (i), we have lim
n→∞
||xn− z|| exists and hence {xn} is a bounded

sequence. Let

lim
n→∞
||xn− z||= c for some c≥ 0. (3.8)

From (3.4), for each m ∈ {1,2,3, · · · ,k−1}, we have

||ym,n− z|| ≤ (1+ vn)
m||xn− z||

and using (3.8), we get

limsup
n→∞

||ym,n− z|| ≤ c. (3.9)
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On the other hand, from (1.3) we have

||xn+1− z|| ≤ (1−αk,n)||xn− z||+αk,n(1+ vn)||yk−1,n− z)||

≤ (1−αk,n)||xn− z||+αk,n(1+ vn)[(1−αk−1,n)||xn− z||

+αk−1,n(1+ vn)||yk−2,n− z||]

= [1−αk,n +αk,n(1+ vn)(1−αk−1,n)]||xn− z||

+αk,nαk−1,n(1+ vn)
2||yk−2,n− z||

= (1−αk,nαk−1,n +αk,nvn−αk,nαk−1,nvn)||xn− z||+

+αk,nαk−1,n(1+ vn)
2||yk−2,n− z||

≤ (1+ vn)[(1−αk,nαk−1,n||xn− z||

+αk,nαk−1,n)(1+ vn)(1−αk−2,n)||xn− z||

+αk−2,n(1+ vn)||yk−3,n− z||]

≤ (1−αk,nαk−1,nαk−2,n)(1+ vn)
2||xn− z||2

+αk,nαk−1,nαk−2,n(1+ vn)
3||yk−3,n− z||.

Continuing the process, we obtain

||xn+1− z|| ≤ (1−αk,nαk−1,n · · ·α j+1,n)(1+ vn)
k− j−1||xn− z||

+αk,nαk−1,n · · ·α j+1,n(1+ vn)
k− j||y j,n− z||

for each j = 1,2,3, · · · ,k−1.

By rearranging, we get

||xn+1− z||
(1+ vn)k− j−1 ≤ (1−αk,nαk−1,n · · ·α j+1,n)||xn− z||+

αk,nαk−1,n · · ·α j+1,n(1+ vn)||y j,n− z||.

Which was simplified to

(
||xn+1− z||

(1+ vn)k− j−1 −||xn− z||) 1
αk,nαk−1,n · · ·α j+1,n

+ ||xn− z|| ≤ (1+ vn)||y j,n− z||.
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Since αi,n ∈ [δ ,1−δ ], the above inequality was further simplified to

(
||xn+1− z||

(1+ vn)k− j−1 −||xn− z||) 1
(1−δ )k− j + ||xn− z||

≤ (1+ vn)||y j,n− z||.
(3.10)

Taking limit inferior of (3.10) and using (3.8), we get

c≤ liminf
n→∞

||y j,n− z||. (3.11)

Thus, from (3.9) and (3.11), we conclude that for each j = 1,2,3, · · · ,k−1

lim
n→∞
||y j,n− z||= c. (3.12)

Thus, for j = 2,3,4, · · · ,k−1, we have

lim
n→∞
||(1−α j,n)(xn− z)+α j,n(T n

j y j−1,n− z)||= c. (3.13)

For j = 2,3,4, · · · ,k−1, we have

||T n
j y j−1,n− z|| ≤ (1+u j,n)||y j−1,n− z||

and hence

limsup
n→∞

||T n
j y j−1,n− z|| ≤ c. (3.14)

Using (3.8), (3.13), (3.14) and apply Lemma 2.3, we have

lim
n→∞
||xn−T n

j y j−1,n||= 0 for j = 2,3,4, · · · ,k−1. (3.15)

For the case j = k, using (3.4) and G-asymptotically nonexpansiveness of Tk, we have

||T n
k yk−1,n− z|| ≤ (1+uk,n)||yk−1,n− z|| ≤ (1+ vn)

k||xn− z||. (3.16)

Taking limit superior of (3.16) and using (3.8), we obtain

limsup
n→∞

||T n
k yk−1,n− z|| ≤ c.

Since

lim
n→∞
‖xn+1− z‖= lim

n→∞
‖(1−αk,n)(xn− z)−αk,n(T n

k yk−1,n− z)‖= c.

Applying Lemma 2.3 once again, we get

lim
n→∞
||xn−T n

k yk−1,n||= 0. (3.17)
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Therefore, from (3.15) and (3.17), for each j = 2,3,4, · · · ,k, we obtain that

lim
n→∞
||xn−T n

j y j−1,n||= 0.

Next, we show (iii). Since for each i = 1,2, · · · ,k−1,

lim
n→∞
||xn− z||= lim

n→∞
||yi,n− z|| = c,

we have {xn} and {yi,n− z} are bounded sequences and hence {T n
i yi,n− z} is also bounded.

Therefore, there is R > 0 such that

k−1⋃
i=1

{xn}
⋃
{yi,n}

⋃
{T n

i yi,n} ⊂ B(z,R).

By Lemma 2.2, there is continuous and strictly increasing convex function g : [0,∞)→ [0,∞)

such that

||y1,n− z||2 ≤ (1−α1,n)||xn− z||2 +α1,n||T n
1 xn− z||2

−α1,n(1−α1,n)g(||xn−T n
1 xn||)

≤ (1−α1,n)||xn− z||2 +α1,n(1+u1,n)
2||xn− z||2

−δ
2g(||xn−T n

1 xn||)

≤ (1+u1,n)
2||xn− z||2−δ

2g(||xn−T n
1 xn||)

On rearranging, we obtain

δ
2g(||xn−T n

1 xn||)≤ (1+u1,n)
2||xn− z||2−||y1,n− z||2. (3.18)

Taking the superior limit of (3.18) and using (3.8) and (3.12) to get

δ
2 limsup

n→∞

g(||xn−T n
1 xn) ≤ 0.

Which gives that

lim
n→∞

g(||xn−T n
1 xn||) = 0.

Since g is continuous and monotonically increasing we conclude that

lim
n→∞
||xn−T n

1 xn||= 0. (3.19)
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Again,

||xn−T n
2 xn|| ≤ ||xn−T n

2 y1,n||+ ||T n
2 y1,n−T n

2 xn||

≤ ||xn−T n
2 y1,n||+(1+u2,n)||y1,n− xn||

= ||xn−T n
2 y1,n||+α2,n(1+u2,n)||xn−T n

1 xn||.

Which implies that

||xn−T n
2 xn|| ≤ ||xn−T n

2 y1,n||+α2,n(1+u2,n)||xn−T n
1 xn||.

Applying (ii) of Lemma 3.2, and applying (3.19) and the fact that the sequence {α2,n(1+u2,n)}

is bounded, we have

lim
n→∞
||xn−T n

2 xn||= 0. (3.20)

Repeatedly we apply Lemma 2.2, for i = 3,4,5, · · · ,k−1 and get

||yi,n− z||2 ≤ (1−αi,n)||xn− z||2 +αi,n||T n
i yi−1,n− z||2

−αi,n(1−αi,n)g(||xn−T n
i yi−1,n||)

≤ (1−αi,n)||xn− z||2 +αi,n||T n
i yi−1,n− z||2

−δ
2g(||xn−T n

i yi−1,n||)

≤ (1−αi,n)||xn− z||2 +αi,n(1+ui,n)
2||yi−1,n− z||2

−δ
2g(||xn−T n

i yi−1,n||).

On rearranging, we obtain

δ
2g(||xn−T n

i yi−1,n||)

≤ (1−αi,n)||xn− z||2−||yi−1,n− z||2−αi,n(1+ui,n)
2||yi−1,n− z||2

= (||xn− z||2−||yi,n− z||2)+αi,n[(1+ui,n)
2||yi−1,n− z||2−||xn− z||2

≤ 2R(||xn− z||− ||yi,n− z||)[1−αi,n(1+ui,n)
2].

(3.21)

Taking limit superior of (3.21) and using (3.8) and (3.12), we get

δ
2 limsup

n→∞

g(||xn−T n
i yi−1,n||)≤ 0.
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Using property of g, we conclude that for each i = 3,4,5, · · · ,k−1,

lim
n→∞
||xn−T n

i yi−1,n||= 0. (3.22)

On the other hand, for i = 3,4,5, · · · ,k, we have

||xn−T n
i xn|| ≤ ||xn−T n

i yi−1,n||+ ||T n
i yi−1,n−T n

i xn||

≤ ||xn−T n
i yi−1,n||+(1+ui,n)||yi−1,n− xn||

= ||xn−T n
i yi−1,n||+(1+ui,n)αi−1,n||T n

i−1yi−2,n− xn||.

This implies that for each i = 3,4,5, · · · ,k

||xn−T n
i xn|| ≤ ||xn−T n

i yi−1,n||+(1+ui,n)αi−1,n||T n
i−1yi−2,n− xn|| (3.23)

Taking limit superior of (3.23) and using (3.22), we get that

limsup
n→∞

||xn−T n
i xn|| ≤0. (3.24)

Which implies that, for each i = 3,4,5, · · · ,k, we have

lim
n→∞
||xn−T n

i xn||= 0. (3.25)

Thus, from (3.19), (3.20) and (3.25), we conclude that for each i = 1,2,3, · · · ,k,

lim
n→∞
||xn−T n

i xn||= 0. (3.26)

Finally, we prove (iv). Fix m ∈ {1,2,3, · · · ,k} but arbitrary. By the G-asymptotically nonex-

pansiveness of Tm we have that

||xn−Tmxn|| ≤ ||xn− xn+1||+ ||xn+1−T n+1
m xn+1||

+||T n+1
m xn+1−T n+1

m xn||+ ||T n+1
m xn−Tmxn||

≤ ||xn− xn+1||+ ||xn+1−T n+1
m xn+1||

+kn+1||xn− xn+1||+ k1||xn−T n
mxn||

= (1+ kn+1)||xn− xn+1||+ k1||xn−T n
mxn||

+||xn+1−T n+1
m xn+1||.
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where kn = max
1≤i≤k

(1+ui,n). This implies that

||xn−Tmxn|| ≤ (1+ kn+1)||xn− xn+1||+ k1||xn−T n
mxn||+ ||xn+1−T n+1

m xn+1||. (3.27)

From (1.3), we have that

||xn+1− xn||= αk,n||xn−T n
k yk−1,n||. (3.28)

Since αk,n ∈ [δ ,1−δ ], using (iii) and (3.28), we obtain

lim
n→∞
||xn− xn+1||= 0. (3.29)

Taking the superior limit of (3.27) and using (3.26) and (3.29), we conclude that

lim
n→∞
||xn−Tmxn||= 0. (3.30)

Since m was arbitrary, we obtain the required result. This completes the proof.

In the next theorem, we proved the G-Demiclosedness principle without assuming the Opial’s

property of the Banach space X .

Theorem 3.3. Suppose that C has Property P : xn ⇀ x and (xn,xn+1) ∈ E(G), there exists a

subsequence {xnk} such that for each k, (xnk ,x) ∈ E(G). Let T be a G-asymptotically nonex-

pansive mapping on C with asymptotic coefficient {kn} such that

∞

∑
n=1

(kn−1)< ∞.

Then I−T is G-demiclosed at 0.

Proof. Let {xn} be a sequence in C with (xn,xn+1) and (xn,T xn) are in E(G) such that xn ⇀

q ∈C as n→∞ and limn→∞ ||xn−T xn||= 0. By Property P, there exists a subsequence {xn j} of

{xn} such that (xn j ,q) ∈ E(G) for all j ∈ N. By Remark 1.1, (xn,q) ∈ E(G) for all n ∈ N.

We claim that, as n→ ∞

T nq → q.
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Note that, for each n ∈ N, we have

||xk−T nxk|| ≤ (1+
n−1

∑
r=1

kr)||xk−T xk||

= (1+
n−1

∑
r=1

(1+ur))||xk−T xk||

= (n+
n−1

∑
r=1

ur)||xk−T xk||

≤ (n+
∞

∑
r=1

ur)||xk−T xk||

≤ (n+M)||xk−T xk||

where, M =
∞

∑
r=1

ur =
∞

∑
r=1

(kr−1)< ∞.

Thus, we have

||xk−T nxk|| ≤ (n+M)||xk−T xk||. (3.31)

Since limk→∞ ||xk−T xk||= 0, we have that, for fixed n∈N, there is a positive integer N =N(n),

such that

k ≥ N⇒||xk−T xk||<
1

(n+M)2 . (3.32)

Hence, from (3.31) and (3.32), we obtain

k ≥ N⇒ ||xk−T nxk||<
1

n+M
.

Therefore,

lim
k
||xk−T nxk|| ≤

1
n+M

. (3.33)

This implies that

lim
n

lim
k
||xk−T nxk||= 0. (3.34)

Therefore, for an arbitrary ε > 0, we can choose n0 such that

limsup
k→∞

||xk−T nxk||< ε, ∀n≥ n0. (3.35)

Since xn ⇀ q, by Mazur’s theorem ( Cf. [38]), for each positive integer k, there exists a convex

combination yk = ∑
p(k)
i=1 t(k)i xi+k with t(k)i ≥ 0 and ∑

p(k)
i=1 t(k)i = 1 such that

||yk−q||< 1
k
. (3.36)
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Since {xn} weakly converges in a uniformly convex Banach space X , it is bounded and hence

there exists r > 0 such that {xn} ⊂ D =: C∩B(q,r). Then D is nonempty closed convex subset

of C. Thus, T : D→C is G-asymptotically nonexpansive mapping. Therefore, T n : D→C is a

Lipschitzian mapping with Lipschitz constant kn ≥ 1.

Again, we have

||T nyk− yk||= ||T nyk−
p(k)

∑
i=1

t(k)i T nxi+k +
p(k)

∑
i=1

t(k)i T nxi+k−
p(k)

∑
i=1

t(k)i xi+k||

≤ ||T nyk−
p(k)

∑
i=1

tiT nxi+k||+ ||
p(k)

∑
i=1

t(k)i T nxi+k−
p(k)

∑
i=1

t(k)i xi+k||

≤ ||T nyk−
p(k)

∑
i=1

t(k)i T nxi+k||+
p(k)

∑
i=1

t(k)i ||T
nxi+k− xi+k||.

(3.37)

From (3.35), we get
p(k)

∑
i=1

t(k)i ||T
nxi+k− xi+k||< ε, ∀ n≥ n0. (3.38)

Using Lemma 2.4, we obtain

||T nyk−
p(k)

∑
i=1

t(k)i T nxi+k|| ≤ knγ
−1{max(||xi+k− xi+p||− k−1

n ||T nxi+k−T nxi+p||)}

≤ knγ
−1{max(2ε +(1− k−1

n )kn||xi+k− xi+p||)}.

Since {xk} ⊂ D, we must have

||xi+k− xi+p|| ≤ 2r,

so that

||T nyk−
p(k)

∑
i=1

t(k)i T nxi+k|| ≤ knγ
−1(2ε +2r(kn−1)). (3.39)

Substituting (3.38) and (3.39) in (3.37), for each k ∈ N and n≥ n0 we obtain

||T nyk− yk|| ≤ knγ
−1(2ε +2r(kn−1))+ ε (3.40)

Thus we have

limsup
k→∞

||T nyk− yk|| ≤ knγ
−1(2ε +2r(kn−1))+ ε. (3.41)

On the other hand, for each n ∈ N, we have

||q−T nq|| ≤ ||q− yk||+ ||yk−T nyk||+ ||T nyk−T nq||. (3.42)
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Since yk→ q as k→ ∞, which gives yk ⇀ q and thus, by Property P and Remark 1.1, we have

(yk,q) ∈ E(G), for all k ∈ N. This in turn gives (T nyk,T nq) ∈ E(G), So that

||T nyk−T nq|| ≤ kn||yk−q||. (3.43)

Substituting (3.43) in (3.42), we obtain

||q−T nq|| ≤ (1+ kn)||yk−q||+ ||yk−T nyk||. (3.44)

From (3.36) and (3.44), we get

||q−T nq|| ≤ 1+ kn

k
+ ||yk−T nyk||. (3.45)

Taking limit superior of (3.44) as k→ ∞, we have

||T nq−q|| ≤ limsup
k→∞

||yk−T nyk||. (3.46)

Combining (3.41) and (3.46), we infer that for all n≥ n0

||T nq−q|| ≤ knγ
−1(2ε +2r(kn−1))+ ε. (3.47)

Taking limit superior of (3.47) as n→ ∞ and using the arbitrariness of ε, we get

limsup
n→∞

||T nq−q|| ≤ γ
−1(0) = 0.

Therefore,

lim
n→∞
||q−T nq||= 0. (3.48)

But,

||q−T q|| ≤ ||q−T n+1q||+ ||T n+1q−T q||. (3.49)

Since T nq→ q as n→∞ and the fact that strong convergence implies weak convergence, we can

obtain that (T nq,q) ∈ E(G), ∀n ∈ N. As T is edge preserving, we have (T n+1q,T q) ∈ E(G),

so that

||T n+1q−T q|| ≤ k1||T nq−q||. (3.50)

From (3.49) and (3.50), we get that

||q−T q|| ≤ ||q−T n+1q||+ k1||q−T nq||. (3.51)
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Taking limit superior of (3.51) and using (3.48), we obtain that

‖q−T q‖ ≤ (1+ k1) limsup
n→∞

‖q−T nq‖= 0.

This shows that

q = T q.

This completes the proof.

Theorem 3.4. Let C be a nonempty closed convex subset of a uniformly convex Banach space X

and suppose that C has Property P. Let {Ti}k
i=1 be a finite family of G-asymptotically nonexpan-

sive mappings on C with the nonempty common fixed points set F =
⋂k

i=1 F(Ti). Let x1 ∈C be

fixed so that (x1,z) and (z,x1) are in E(G) for some z ∈ F. If {xn} is a sequence generated by x1

with iterative scheme (1.3) such that {αi,n} ⊂ [δ ,1−δ ] for some δ ∈ (0, 1
2) and ∑

∞
n=1 ui,n < ∞

for each i = 1,2,3, · · · ,k, then {xn} converges weakly to a common fixed point of the family

{Ti}k
i=1.

Proof. Let z ∈ F such that (x1,z) and (z,x1) are in E(G). By Lemma 3.2, we have

1. lim
n→∞
||xn− z|| exists.

2. lim
n→∞
||xn−T n

i xn||= 0, for i = 1,2,3, · · · ,k.

3. lim
n→∞
||xn−T n

i yi−1,n||= 0, for i = 2,3,4, · · · ,k.

4. lim
n→∞
||xn−Tixn||= 0, for i = 1,2,3, · · · ,k.

(3.52)

From (3.52(1)), we see that {xn} is a bounded sequence in C. Since C is nonempty closed

convex subset of a uniformly convex Banach space X , by the weak compactness of bounded

sets there exists a subsequence {xnh} of the sequence {xn} such that {xnh} converges weakly to

some point p ∈C. It follows from (3.52(2)) that for each i = 1,2,3, · · · ,k,

lim
h→∞
||T nh

i xnh− xnh || = 0.

By Proposition 3.1, we have (xn,xn+1) and (xn,Tixn) are in E(G) for all n ∈ N and hence

(xnh,xnh+1) and (xnh,Tixnh) are also in E(G) for each i = 1,2,3, · · · ,k. Thus, by Theorem 3.3

we conclude that p ∈ F.
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To complete the proof it suffices to show that {xn} converges weakly to p. To this end we need

to show that {xn} satisfies the hypothesis of Lemma 2.5.

Let {xn j} be a subsequence of {xn} which converges weakly to some point q ∈C. By similar

arguments as above q is in F.

Now for each j ≥ 1, we have

xn j+1 = xn j +αk,n j(T
n j

k yk−1,n j − xn j). (3.53)

It follows from (3.52(3)) that

lim
j→∞
||T n j

k yk−1,n j − xn j || = 0.

Since αk,n j ∈ [δ ,1−δ ] for each j ∈ N and δ ∈ (0, 1
2), we have

lim
j→∞

αk,n j ||T
n j

k yk−1,n j − xn j ||= 0. (3.54)

Thus, from (3.53) and (3.54), we conclude that

weak− lim
j→∞

xn j+1 = q.

Therefore, the sequence {xn} satisfies the hypothesis of Lemma 2.5 which in turn implies that

{xn} weakly converges to q so that p = q. This completes the proof.

Theorem 3.5. Let C be a nonempty closed convex subset of a uniformly convex Banach space

X and suppose that C has Property P. Let {Ti}k
i=1 be a family of G-asymptotically nonexpansive

mappings on C with the nonempty common fixed points set F =
⋂k

i=1 F(Ti) and ∑
∞
n=1 ui,n < ∞

for each i = 1,2,3, · · · ,k. Let x1 ∈ C be fixed so that (x1, p) and (p,x1) are in E(G) for some

p ∈ F. If for some l ∈ {1,2,3, · · · ,k}, T m
l is semi-compact for some positive integer m, then the

iteration {xn} generated by x1 with iterative scheme (1.3) such that {αi,n} ⊂ [δ ,1−δ ] for some

δ ∈ (0, 1
2) converges strongly to a common fixed point of the family {Ti}k

i=1.

Proof. Fix m ∈ {1,2,3, · · · ,k} and assume that T s
m is semi-compact for some s ∈ N. Let p ∈ F

such that (x1, p),(p,x1) are in E(G). It follows from (3.52(2)) and (3.52(3)) that {xn} is a

bounded sequence in C and

lim
n→∞
||xn−Tmxn||= 0. (3.55)
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As {xn} is bounded, by the definition of semi-compactness, there exists a subsequence {xn j} of

{xn} such that for some z ∈C,

lim
j→∞
||xn j − z||= 0. (3.56)

Since strong convergence implies weak convergence and using Remark 1.1, we have (xn j ,z) ∈

E(G). Now it is obvious that z is a fixed point of Tm. By the G-asymptotically nonexpansiveness

of Ti for each i ∈ {1,2,3, · · · ,k}, and using (3.53) and (3.56), we have

||Tiz− z|| ≤ ||Tiz−Tixn j ||+ ||Tixn j − xn j ||+ ||xn j − z||

≤ (1+ k1)||z− xn j ||+ ||Tixn j − xn j || → 0 as j→ ∞.
(3.57)

Thus, z is a common fixed point of the family {Ti}k
i=1 so that limn→∞ ||xn− z|| exists. Hence it

must be the case that

lim
n→∞
||xn− z|| = 0.

This completes the proof.

Our results generalize the results in the corresponding literature in two ways: first, Banach

spaces satisfying Opial’s property are very limited so that relaxing this property substantial-

ly generalizes the related results on the space with this condition. secondly, the class of G-

asymptotically nonexpansive mappings are more general than G-nonexpansive mappings as

well as asymptotically nonexpansive mappings.
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