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Abstract. In this paper, we study a modified Halpern-type algorithm for approximating a common fixed point of

demimetric mappings and prove a strong convergence theorem for finding a common element of the set of common

fixed points for a finite family of demimetric mappings in a complete CAT(0) space.
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1. Introduction

Let C be a nonempty, closed and convex subset of a real Hilbert space H and let T be any

mapping on C, denote by F(T ) := {x ∈C : T x = x} the set of all fixed of point of T .

Definition 1.1 A mapping T : C→ H is said to be:

(1) a nonexpansive mapping, if ||T x−Ty|| ≤ ||x− y|| for all x,y ∈C;

(2) a quasi-nonexpansive mapping if F(T ) 6= /0 and ||T x− p|| ≤ ||x− p||, for any x ∈C and

p ∈ F(T );
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(3) a k-strict pseudo-contraction in the sense of Browder and Petryshyn [4] if there exists

k ∈ [0,1) such that

||T x−Ty||2 ≤ ||x− y||2 + k||x−T x− (y−Ty)||2, for all x,y ∈C; (1.1)

(4) a generalized hybrid if there exist α,β ∈ R such that, for all x,y ∈C

α||T x−Ty||2 +(1−α)||x−Ty||2 ≤ β ||T x− y||2 +(1−β )||x− y||2.

Recently, Takahashi [17] introduced the notion of new nonlinear mappings in smooth, strictly

convex and reflexive Banach space as follows:

Definition 1.2 Let E be a smooth, strictly convex and reflexive Banach space, let K be a

nonempty, closed and convex subset of E and let η be a real number with η ∈ (−∞,1). Then a

mapping T : K→ E with F(T ) 6= /0 is called η−demimetric [17] if,

〈x−q,J(x−T x)〉 ≥ 1−η

2
||x−T x||2,

for any x ∈ K and q ∈ F(T ), where J is the duality mapping on E. In a Hilbert space H, the

above definition is as follows: A mapping T : C→ H with F(T ) 6= /0 is called η−demimetric

if

〈x−q,x−T x〉 ≥ 1−η

2
||x−T x||2,

for any x ∈ C and q ∈ F(T ). In [13], Komiya and Takahashi observed that the class of η-

demimetric mapping covers strict pseudo-contraction and generalized hybrid mappings.

Very recently Takahashi et al. [18] proved a strong convergence theorem for finding a common

element of the set of common fixed points for a finite family of these new mappings and the set

of common solutions of variational inequality problems for a finite family of inverse-strongly

monotone mappings in a Hilbert space. Also in 2018, Song [16], studied the infinite family of

demimetric mappings and establish the following Lemma:

Lemma 1.3 (Song [16]) Let H be a Hilbert space and C be nonempty convex subset of H.

Assume that {Ti}∞
i=1 : C→ H be an infinite family of ki− demimetric mappings with sup{k1 :

i ∈ N} < 1 such that
⋂

∞
i=1 F(Ti) 6= /0. Assume that {ηi}∞

i=1 is a positive sequence such that

∑
∞
i=1 ηi = 1. Then ∑

∞
i=1 ηiTi : C→ H is a k-demimetric mapping with k = sup{ki : i ∈ N} and

F(∑∞
i=1 ηiTi) =

⋂
∞
i=1 F(Ti).
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Let (X ,d) be a metric space and x,y ∈ X with d(x,y) = l. A geodesic path from x to y is

an isometry c : [0, l]→ X such that c(0) = x and c(l) = y. The image of a geodesic path is

called a geodesic segment. A metric space X is a (uniquely) geodesic space, if every two

points of X are joined by only one geodesic segment. A geodesic triangle 4(x1,x2,x3) in a

geodesic space X consists of three points x1,x2,x3 of X and three geodesic segments joining

each pair of vertices. A comparison triangle of a geodesic triangle 4(x1,x2,x3) is the triangle

4̄(x1,x2,x3) :=4(x̄1, x̄2, x̄3) in the Euclidean space R2 such that

d(xi,x j) = dR2(x̄i, ȳ j), ∀i, j = 1,2,3.

A geodesic space X is a CAT(0) space, if for each geodesic triangle 4(x1,x2,x3) in X and its

comparison triangle 4̄ :=4(x̄1, x̄2, x̄3) in R2, the CAT(0) inequality d(x,y) ≤ dR2(x̄, ȳ) is sat-

isfied for all x,y ∈4 and x̄, ȳ ∈ 4̄.

A thorough discussion of these spaces and their important role in various branches of Mathe-

matics are given in [3,5]. Let x,y∈ X and λ ∈ [0,1], we write λx⊕(1−λ )y for the unique point

z in the geodesic segment joining from x to y such that

d(z,x) = (1−λ )d(x,y) and d(z,y) = λd(x,y). (1.2)

We also denote by [x,y] the geodesic segment joining from x to y, that is, [x,y] = {λx⊕(1−λ )y :

λ ∈ [0,1]}. A subset C of a CAT(0) space is convex if [x,y] ⊆ C for all x,y ∈ C. Berg and

Nikolaev [2] introduced the concept of quasilinearization in a metric space X . Let denote a

pair (a,b) ∈ X ×X by
−→
ab and call it a vector. The quasilinearization is a map 〈., .〉 : (X ×X)×

(X×X)→ R defined by

〈
−→
ab,
−→
cd〉= 1

2

(
d2(a,d)+d2(b,c)−d2(a,c)−d2(b,d)

)
, ∀a,b,c,d ∈ X . (1.3)

It is easily seen that 〈
−→
ab,
−→
cd〉= 〈

−→
cd,
−→
ab〉,〈

−→
ab,
−→
cd〉=−〈

−→
ba,
−→
cd〉 and 〈−→ax,

−→
cd〉+ 〈

−→
xb,
−→
cd〉= 〈

−→
ab,
−→
cd〉

for all a,b,c,d ∈ X . We say that X satisfies the Cauchy-Schwarz inequality if

〈
−→
ab,
−→
cd〉 ≤ d(a,b)d(c,d) (1.4)

for all a,b,c,d ∈ X . It is known that a geodesically connected metric space is a CAT(0) space

if and only if it satisfies the Cauchy-Schwarz inequality (see [2]).
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Let C be a nonempty subset of a complete CAT(0) space X . Then a mapping T : C→ X is called

k-demicontractive mapping if F(T ) 6= /0 and there exist k ∈ [0,1) such that

d2(T x, p)≤ d(x, p)+ kd2(x,T x), for all x ∈ X and p ∈ F(T ). (1.5)

Using (1.3) and (1.5), Aremu et al. [1] defined demimetric mapping in CAT(0) space as follows:

Let C be a nonempty subset of a complete CAT(0) space X . Then a mapping T : C→ X is called

k-demimetric mapping if F(T ) 6= /0 there exist k ∈ (−∞,1) such that

〈−→xp,
−−→
xT x〉 ≥ 1− k

2
d2(x,T x), for all x ∈ X and p ∈ F(T ). (1.6)

Furthermore, T : C→ X is said to be generalized hybrid mapping, if there exists α,β ∈ R such

that for all x,y ∈C

αd2(T x,Ty)+(1−α)d2(x,Ty)≤ βd2(T x,y)+(1−β )d2(x,y). (1.7)

If F(T ) 6= /0, then for any p ∈ F(T ) and x ∈C from (1.7), we obtain

d2(T x, p)≤ d2(x, p), which implies from (1.3) that

〈−→xp,
−−→
xT x〉 ≥ 1−0

2
d2(x,T x). (1.8)

Hence, every generalized hybrid mapping T on C with F(T ) 6= /0 is 0−demimetric mapping.

Also, a mapping T : C→ H is said to be firmly nonexpansive if

d2(T x,Ty)≤ 〈−→xy,
−−−→
T xTy〉, for all x,y ∈C (1.9)

and if F(T ) 6= /0, then for any p ∈ F(T ) and x ∈C, from (1.9), we obtain

d2(T x, p)≤ 〈−→xp,
−−→
T xp〉, for all x,y ∈C. (1.10)

It follows from (1.10) and properties of quasilinearization that

〈−→xp,
−−→
xT x〉 ≥ 1− (−1)

2
d2(x,T x), (1.11)

(see [1] for more details). Hence, every firmly nonexpansive mapping T on C with F(T ) 6= /0 is

(−1)−demimetric mapping.

Motivated by work of Takahashi et al. [18] and Song [16], we study the version of Lemma 1.3

in CAT(0) space for a finite family of demimetric mappings. Furthermore, we study a modified
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Halpern-type algorithm for approximating a common fixed point of demimetric mappings and

prove a strong convergence theorem for finding a common element of the set of common fixed

points for a finite family of these demimetric mappings in a complete CAT(0) space.

2. Preliminaries

Lemma 2.1 [10] Let X be a CAT(0) space, x,y,z ∈ X and λ ∈ [0,1]. Then

(i) d(λx⊕ (1−λ )y,z)≤ λd(x,z)+(1−λ )d(y,z);

(ii) d2(λx⊕ (1−λ )y,z)≤ λd2(x,z)+(1−λ )d2(y,z)−λ (1−λ )d2(x,y).

Lemma 2.2 [20] Let X be a CAT(0) space. Then for all u,x,y ∈ X , the following inequality

hold:

d2(x,u)≤ d2(y,u)+2〈−→xy,−→xu〉.

Lemma 2.3 [20] Let X be a CAT(0) space. For any u,v,∈ X and t ∈ (0,1), let ut = tu⊕(1− t)v.

Then for all x,y ∈ X ,

(i) 〈−→utx,−→uty〉 ≤ t〈−→ux,−→uty〉+(1− t)〈−→vx,−→uty〉;

(ii) 〈−→utx,−→uy〉 ≤ t〈−→ux,−→uy〉+(1− t)〈−→vx,−→uy〉

and 〈−→utx,−→vy〉 ≤ t〈−→ux,−→vy〉+(1− t)〈−→vx,−→vy〉.

In other to write a finite convex combination of elements in CAT(0) space, Dhompongsa et al.

[7] introduced the following notation in CAT(0) space: Let {xi : i = 1,2, . . . ,N} be points in a

CAT(0) space X and α1,α2, . . . ,αN ∈ (0,1) with ∑
N
i=1 αi = 1, then

N⊕
i=1

αixi := (1−αN)
(

α1

1−αN
x1⊕

α2

1−αN
x2⊕·· ·⊕

αN−1

1−αN
xN−1

)
⊕αNxN

= (1−αN)
N−1⊕
i=1

αi

1−αN
xi⊕αNxN .

(2.1)

Lemma 2.4 [6] Let C be a nonempty, closed and convex subset of CAT(0) space X . Let {xi :

i = 1,2, . . . ,N} be in C, and α1,α2, . . . ,αN ∈ (0,1) such that ∑
N
i=1 αi = 1. Then the following

inequalities hold:

(i) d
(

z,
⊕N

i=1 αixi

)
≤ ∑

N
i=1 αid(z,xi), for all z ∈C.
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(ii) d2
(

z,
⊕N

i=1 αixi

)
≤ ∑

N
i=1 αid2(z,xi)−∑

N
i, j=1,i 6= j αiα jd2(xi,x j), for all z ∈C.

Let {xn} be a bounded sequence in a complete CAT(0) space X . For x ∈ X , we set

r(x,{xn}) = limsup
n→∞

d(x,xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x,{xn}) : x ∈ X},

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x,{xn}) = r({xn})}.

It is well known that in a CAT(0) space, A({xn}) consists of exactly one point see (Proposition

7 of [9]).

Lemma 2.5 [12] Every bounded sequence in a complete CAT(0) space always has a4−convergent

subsequence.

Lemma 2.6 [8] If C is a nonempty, closed and convex subset of a complete CAT(0) space and

if {xn} is a bounded sequence in C, then the asymptotic center of {xn} is in C.

Lemma 2.7 [15] If C is a nonempty, closed and convex subset of a complete CAT(0) space X

and {xn} be a bounded sequence in C. Then4− lim
n→∞

xn = p implies that {xn}⇀ p.

Lemma 2.8 [11] Let X be a complete CAT(0) space, {xn} be a sequence in X and x ∈ X . Then

{xn} 4−converges to x if and only if limsupn→∞〈
−→xxn,
−→xy〉 ≤ 0 for all y ∈C.

Lemma 2.9 [1] Let X be a CAT(0) space and T : X → X be a k-demimetric mapping with

k ∈ (−∞,λ ) and λ ∈ (0,1) such that F(T ) 6= /0. Suppose that Tλ x := (1−λ )x⊕λT x. Then Tλ

is quasi-nonexpansive mapping and F(Tλ ) = F(T ).

Lemma 2.10 [14] Let {an} be a sequence of real numbers such that there exists a subsequence

{ni} of {n} such that ani < ani+1 for all i ∈ N. Then there exists a nondecreasing sequence

{mk} ⊂N such that mk→ ∞ and the following properties are satisfied by all (sufficiently large)

numbers k ∈ N.

amk ≤ amk+1 and ak ≤ amk+1.
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In fact, mk = max{ j ≤ k : a j < a j+1}.

Lemma 2.11 (Xu, [19]) Let {an} be a sequence of nonnegative real numbers satisfying the

following relation:

an+1 ≤ (1−αn)an +αnσn + γn,n≥ 0,

where, (i) {αn} ⊂ [0,1], ∑αn = ∞; (ii) limsup σn ≤ 0; (iii) γn ≥ 0; (n≥ 0),

∑γn < ∞. Then, an→ 0 as n→ ∞.

3. Main results

Lemma 3.1. Let C be a nonempty, convex subset of CAT(0) space X . Let {ui : i= 1,2, . . . ,N}⊂

C, and α1,α2, . . . ,αN ∈ (0,1) such that ∑
N
i=1 αi = 1. Then the following inequalities hold:

〈

−−−−−→
N⊕

i=1

αiuix,−→xy〉 ≤
N

∑
i=1

αi〈−→uix,−→xy〉+ 1
2

( N

∑
i=1

αid2(ui,x)−d2(
N⊕

i=1

αiui,x)
)

≤
N

∑
i=1

αi〈−→uix,−→xy〉+ 1
2

N

∑
i=1

αid2(ui,x).

(3.2)

Proof. From (1.3) and Lemma 2.4, we obtain

2〈

−−−−−→
N⊕

i=1

αiuix,−→xy〉= d2(
N⊕

i=1

αiui,y)+d2(x,x)−d2(
N⊕

i=1

αiui,x)−d2(x,y)

≤
N

∑
i=1

αid2(u,y)−
N

∑
i, j=1,i 6= j

αiα jd2(ui,u j)

−d2(
N⊕

i=1

αiui,x)−d2(x,y)

=
N

∑
i=1

αi[d2(ui,y)−d2(ui,x)−d2(x,y)]

−
N

∑
i, j=1,i 6= j

αiα jd2(ui,u j)−d2(
N⊕

i=1

αiui,x)

≤ 2
N

∑
i=1

αi〈−→uix,−→xy〉+
N

∑
i=1

αid2(ui,x)−d2(
N⊕

i=1

αiui,x)
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therefore

〈

−−−−−→
N⊕

i=1

αiuix,−→xy〉 ≤
N

∑
i=1

αi〈−→uix,−→xy〉+ 1
2

( N

∑
i=1

αid2(ui,x)−d2(
N⊕

i=1

αiui,x)
)

≤
N

∑
i=1

αi〈−→uix,−→xy〉+ 1
2

N

∑
i=1

αid2(ui,x).

Lemma 3.2. Let X be a CAT(0) space and C a nonempty convex subset of X . Assume that

{Ti}N
i=1 : C → X is a finite family of ki− demimetric mappings with ki ∈ (−∞,1) for each

i ∈ {1,2, . . . ,N} such that
⋂N

i=1 F(Ti) 6= /0. Let {αi}N
i=1 be a positive sequence with ∑

N
i=1 αi = 1.

Then
⊕N

i=1 αiTi : C→ X is a k-demimetric mapping if k := max{ki : i = 1,2, . . . ,N} ≤ 0 and

F(
⊕N

i=1 αiTi) =
⋂N

i=1 F(Ti).

Proof. Let x ∈ C and WNx :=
⊕N

i=1 αiTix, with ∑
N
i=1 αi = 1. For any p ∈

⋂N
i=1 F(Ti), from

Lemma 3.1, (1.6) and Lemma 2.4, we obtain

〈−−−→xWNx,−→xp〉=−〈−−−→WNxx,−→xp〉

≥ −
( N

∑
i=1

αi〈
−−→
Tixx,−→xp〉+ 1

2

N

∑
i=1

αid2(Tix,x)−
1
2

d2(WNx,x)
)

≥
N

∑
i=1

αi〈
−−→
xTix,−→xp〉− 1

2

N

∑
i=1

αid2(Tix,x)+
1
2

d2(WNx,x)

≥
N

∑
i=1

αi
1− ki

2
d2(x,Tix)−

1
2

N

∑
i=1

αid2(Tix,x)+
1
2

d2(WNx,x)

≥
N

∑
i=1

αi
1− k

2
d2(x,Tix)−

1
2

N

∑
i=1

αid2(Tix,x)+
1
2

d2(WNx,x)

=
−k
2

N

∑
i=1

αid2(Tix,x)+
1
2

d2(WNx,x)

≥ −k
2

d2(WNx,x)+
1
2

d2(WNx,x)

=
1− k

2
d2(WNx,x).

Therefore

〈−−−→xWNx,−→xp〉 ≥ 1− k
2

d2(WNx,x).

Hence, WN is a k−demimetric mapping with k := max{ki : i = 1,2, . . . ,N} ≤ 0.

Next, we show that F(WN) =
⋂N

i=1 F(Ti). Let x =WNx, it suffices to show that x ∈
⋂N

i=1 F(Ti).
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Then, for any p ∈
⋂N

i=1 F(Ti), from Lemma 3.1 and (1.6), we obtain

d2(x, p) = 〈−→px,−→xp〉= 〈−−−→WNxx,−→xp〉

= 〈−−−→WNxx,−→xp〉+ 〈−→xp,−→xp〉

≤ d2(x, p)+
N

∑
i=1

αi〈
−−→
Tixx,−→xp〉+ 1

2

N

∑
i=1

αid2(Tix,x)−
1
2

d2(WNx,x)

≤ d2(x, p)+
N

∑
i=1

αi
ki−1

2
d2(Tix,x)+

1
2

N

∑
i=1

αid2(Tix,x)

≤ d2(x, p)+
N

∑
i=1

αi
ki

2
d2(Tix,x)

≤ d2(x, p)+
k
2

N

∑
i=1

αid2(Tix,x).

Therefore

−k
2

N

∑
i=1

αid2(Tix,x)≤ 0.

Since, k = max{ki : 1≤ i≤ N} ≤ 0, we obtain that x = Tix for each

i ∈ {1,2, . . . ,N}. Hence x ∈
⋂N

i=1 F(Ti).

Theorem 3.3. Let X be a complete CAT(0) space and let C be a nonempty, closed and convex

subset of X. Let {Ti}N
i=1 :C→X be a finite family of ki−demimetric mapping and4−demiclosed

at 0 with ki ∈ (−∞,1) for each i ∈ {1,2, . . . ,N} and k = max{ki : 1 ≤ i ≤ N} ≤ 0. Assume

Γ :=
⋂N

i=1 F(Ti) is nonempty and u ∈ C is fixed, let {αi} for each i ∈ {1,2, . . . ,N} and {βn},

{γn} be sequences in (0,1) and suppose that the following conditions are satisfied:

(C1) lim
n→∞

βn = 0 and ∑
∞
n=1 βn = ∞;

(C2) ∑
N
i=1 αi = 1;

(C3) γn ∈ [a,b] for all n≥ 1 and for some a,b ∈ (0,1).

For some fixed δ ∈ (0,1), let {xn}∞
n=1 be a sequence defined iteratively by chosen x1 ∈C arbi-

trarily and 
zn = (1− γn)xn⊕ γn

⊕N
i=1 αiTixn;

xn+1 = βnu⊕ (1−δ )(1−βn)xn⊕δ (1−βn)zn, n≥ 1.
3.2

Then, {xn}∞
n=1 converges strongly to a point in Γ.
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Proof. Let WN :=
⊕N

i=1 αiTi, from Lemma 3.2, WN is k−demimetric mapping and VN := (1−

γn)I⊕γnWN . Then from Lemma 2.9, VN is quasi-nonexpansive mapping and F(VN) = F(WN) =⋂N
i=1 F(Ti). Therefore, for any p ∈ Γ, from (3.2) and Lemma 2.4, we obtain

d(xn+1, p) = d(βnu⊕ (1−δ )(1−βn)xn⊕δ (1−βn)zn, p)

≤ βnd(u, p)+(1−δ )(1−αn)d(xn, p)+δ (1−βn)d(zn, p)

= βnd(u, p)+(1−δ )(1−αn)d(xn, p)+δ (1−βn)d(VNxn, p)

≤ βnd(u, p)+(1−δ )(1−αn)d(xn, p)+δ (1−βn)d(xn, p)

= βnd(u, p)+(1−βn)d(xn, p)

≤max{d(u, p),d(xn, p)}.

By induction, we obtain

d(xn, p)≤max{d(u, p),d(x1, p)}.

Therefore, {xn} is bounded, hence {zn} and {Tixn} are bounded for each

i ∈ {1,2, . . . ,N}. Now, from Lemma 2.4, we obtain

d2(xn+1, p)≤ βnd2(u, p)+(1−δ )(1−βn)d2(xn, p)

+δ (1−βn)d2(zn, p)−δ (1−δ )(1−βn)
2d2(xn,zn)

≤ βnd2(u, p)+(1−δ )(1−βn)d2(xn, p)

+δ (1−βn)d2(xn, p)−δ (1−δ )(1−βn)
2d2(xn,zn)

≤ βnd2(u, p)+(1−βn)d2(xn, p)

−δ (1−δ )(1−βn)
2d2(xn,zn).

Therefore

δ (1−δ )(1−βn)
2d2(xn,zn)≤ d2(xn, p)−d2(xn+1, p)+βnd2(u, p).

Since δ (1−δ )(1−βn)
2 > 0, then

d2(xn,zn)≤ d2(xn, p)−d2(xn+1, p)+βnd2(u, p). (3.3)
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Now, we will consider two cases to complete the proof.

Case 1: Assume that {d2(xn, p)}∞
n=1 is a non-increasing sequence of real numbers. Since {xn}

is bounded, then lim
n→∞

d2(xn, p) exists and from (3.3) and (C1), we obtain

lim
n→∞

d(xn,zn) = 0. (3.4)

Also from (3.2), we obtain

d(xn+1,xn)≤ βnd(u,xn)+(1−δ )(1−βn)d(xn,xn)+δ (1−βn)d(zn,xn)

hence, it follows from (C1) and (3.4) that

lim
n→∞

d(xn+1,xn) = 0. (3.5)

Furthermore, since Ti is ki−demimetric mapping for each i ∈ {1,2, . . . ,N} with k = max{ki} ≤

0, then from (3.2), Lemma 2.3, 3.1 and (1.6), for any p ∈ Γ, we obtain

〈−−→xnzn,
−→xn p〉=−〈−−→znxn,

−→xn p〉

=−〈
−−−−−−−−−−−−−−−−→
((1− γn)xn⊕ γnWNxn)xn,

−→xn p〉

≥ −(1− γn)〈−−→xnxn,
−→xn p〉− γn〈

−−−−→
WNxnxn,

−→xn p〉

≥ −γn〈
−−−−→
WNxnxn,

−→xn p〉

=−γn〈

−−−−−−−→
N⊕

i=1

αiTixnxn,
−→xn p〉

≥ −γn

N

∑
i=1

αi〈
−−−→
Tixnxn,

−→xn p〉− 1
2

γn

N

∑
i=1

αid2(Tixn,xn)

≥ γn

N

∑
i=1

1− ki

2
αid2(Tixn,xn)−

1
2

γn

N

∑
i=1

αid2(Tixn,xn)

=
−ki

2
γn

N

∑
i=1

αid2(Tixn,xn)

≥ −k
2

γn

N

∑
i=1

αid2(Tixn,xn).
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Therefore

−k
2

γn

N

∑
i=1

αid2(Tixn,xn)≤ 〈−−→xnzn,
−→xn p〉 ≤ d(xn,zn)d(xn, p) (3.6)

since {xn} is bounded, k ≤ 0, and γn,αi ∈ (0,1) for all n ≥ 1 and i ∈ {1,2, . . . ,N}, then from

(3.4) and (3.6), we obtain

lim
n→∞

d(Tixn,xn) = 0, for each i ∈ {1,2, . . . ,N}. (3.7)

Since {xn} is bounded and X is a complete CAT(0) space, then from Lemma 2.5, there exists

a subsequence {xn j} of {xn} such that 4− lim xn j = z ∈ X . From (3.7) and fact that Ti is

4−demiclosed at 0 for each i ∈ {1,2, . . . ,N}, we obtain z ∈ Γ and from Lemma 2.8, we have

limsup
n→∞

〈−→uz,−→xnz〉 ≤ 0. (3.8)

Furthermore, from (3.5) and (3.8), we obtain

limsup
n→∞

〈−→uz,−−−→xn+1z〉= limsup
n→∞

〈−→uz,−−−−→xn+1xn〉+ limsup
n→∞

〈−→uz,−→xnz〉

≤ d(u,z)d(xn+1,xn)+ limsup
n→∞

〈−→uz,−→xnz〉 ≤ 0.
(3.9)

Finally, we show that xn→ z. Let yn := βnz⊕(1−δ )(1−βn)xn⊕δ (1−βn)zn, then from Lemma

2.2, 2.3 and Lemma 2.4, we obtain

d2(xn+1,z)≤ d2(yn,z)+2〈−−−−→xn+1yn,
−−−→xn+1z〉

≤ (1−δ )(1−βn)d2(xn,z)+δ (1−βn)d2(zn,z)+2〈−−−−→xn+1yn,
−−−→xn+1z〉

≤ (1−βn)d2(xn,z)+2
(

βn〈−→uyn,
−−−→xn+1z〉+(1−δ )(1−βn)〈−−→xnyn,

−−−→xn+1z〉

+δ (1−βn)〈−−→znyn,
−−−→xn+1z〉

)
≤ (1−βn)d2(xn,z)+2βn

(
βn〈−→uz,−−−→xn+1z〉+(1−δ )(1−βn)〈−→uxn,

−−−→xn+1z〉

+δ (1−βn)〈−→uzn,
−−−→xn+1z〉

)
+2(1−δ )(1−βn)

(
βn〈−→xnz,−−−→xn+1z〉

+(1−δ )(1−βn)〈−−→xnxn,
−−−→xn+1z〉+δ (1−βn)〈−−→xnzn,

−−−→xn+1z〉
)
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+2δ (1−βn)
(

βn〈−→znz,−−−→xn+1z〉+(1−δ )(1−βn)〈−−→znxn,
−−−→xn+1z〉

+δ (1−βn)〈−−→znzn,
−−−→xn+1z〉

)
= (1−βn)d2(xn,z)+2β

2
n 〈−→uz,−−−→xn+1z〉+2(1−δ )(1−βn)βn〈−→uxn,

−−−→xn+1z〉

+2δ (1−βn)βn〈−→uzn,
−−−→xn+1z〉

+2(1−δ )(1−βn)βn〈−→xnz,−−−→xn+1z〉+2δ (1−δ )(1−βn)
2〈−−→xnzn,

−−−→xn+1z〉

(1−βn)βn〈−→znz,−−−→xn+1z〉−2δ (1−δ )(1−βn)
2〈−−→xnzn,

−−−→xn+1z〉

= (1−βn)d2(xn,z)+2β
2
n 〈−→uz,−−−→xn+1z〉+2(1−δ )(1−βn)βn[〈−→uz,−−−→xn+1z〉

+ 〈−→zxn,
−−−→xn+1z〉]+2δβn(1−βn)[〈−→uz,−−−→xn+1z〉+ 〈−→zzn,

−−−→xn+1z〉]

−2(1−δ )(1−βn)βn〈−→zxn,
−−−→xn+1z〉−2δβn〈−→zzn,

−−−→xn+1z〉

= (1−βn)d2(xn,z)+2βn〈−→uz,−−−→xn+1z〉.

Therefore

d2(xn+1,z)≤ (1−βn)d2(xn,z)+2βn〈−→uz,−−−→xn+1z〉. (3.10)

It follows from (3.9) and Lemma 2.11 that d(xn,z)→ 0 as n→ ∞, that is xn→ z as n→ ∞.

Case 2: Assume that {d2(xn,z)}∞
n=1 is non-decreasing sequence. Now, there exists a subse-

quence n j of {n} such that

d(x j,z)< d(xn j+1)

for all j ∈ N by Lemma 2.10, there exists an increasing sequence {mτ}τ≥1 such that mτ → ∞,

d(xmτ
,z)≤ d(xmτ+1,z) and d(xτ ,z)≤ d(xmτ+1,z) for all τ ≥ 1. Also from (3.3), we have

d2(xmτ
,zmτ

)≤ d2(xmτ
,z)−d2(xmτ+1,z)+βmτ

d2(u,z)

using the fact that βmτ
→∞, we obtain d(xmτ

,xmτ
)→ 0 as τ→∞. Thus as in Case 1, we obtain

d(xmτ
,Tixmτ

)→ 0 as τ → ∞ for each i ∈ {1,2, . . . ,N}. Following arguments similar to those in

the proof of Case 1, we get limsup〈−→uz,−−−−→xmτ+1z〉 ≤ 0. Also from from (3.10), we obtain

d2(xmτ+1,z)≤ (1−βmτ
)d2(xmτ

,z)+2βmτ
〈−→uz,−−−−→xmτ+1z〉 (3.11)

it follows that

βmτ
d2(xmτ

,z)≤ d2(xmτ
,z)−d2(xmτ+1)+2βmτ

〈−→uz,−−−−→xmτ+1z〉.
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Since d2(xmτ
,z)≤ d2(xmτ+1) and βmτ

> 0, then

d2(xmτ
,z)≤ 2〈−→uz,−−−−→xmτ+1z〉.

Using limsup〈−→uz,−−−−→xmτ+1z〉 ≤ 0, we obtain d(xmτ
,z)→ 0 as τ → ∞. So from (3.11) , we have

d(xmτ+1,z)→ 0. But d(xτ ,z)≤ d(xmτ+1), for all τ ≥ 0. Thus, we obtain xτ → z as τ → ∞.

This completes the proof.

Corollary 3.4. Let X be a complete CAT(0) space and let C be a nonempty, closed and con-

vex subset of X. Let {Ti}N
i=1 : C → X be a finite family of generalized hybrid mapping and

4−demiclosed at 0 for each i ∈ {1,2, . . . ,N}. Assume Γ :=
⋂N

i=1 F(Ti) is nonempty and u ∈C

is fixed, let {αi} for each i ∈ {1,2, . . . ,N} and {βn} be sequences in (0,1) and suppose that the

following conditions are satisfied:

(C1) lim
n→∞

βn = 0 and ∑
∞
n=1 βn = ∞;

(C2) ∑
N
i=1 αi = 1;

For some fixed δ ∈ (0,1), let {xn}∞
n=1 be a sequence defined iteratively by chosen x1 ∈C arbi-

trarily and 
zn =

⊕N
i=1 αiTixn;

xn+1 = βnu⊕ (1−δ )(1−βn)xn⊕δ (1−βn)zn, n≥ 1.

Then, {xn}∞
n=1 converges strongly to a point in Γ.

Corollary 3.5. Let X be a complete CAT(0) space and let C be a nonempty, closed and convex

subset of X. Let {Ti}N
i=1 : C→ X be a finite family of nonexpansive mapping and4−demiclosed

at 0 for each i ∈ {1,2, . . . ,N}. Assume Γ :=
⋂N

i=1 F(Ti) is nonempty and u ∈ C is fixed, let

{αi} for each i ∈ {1,2, . . . ,N} and {βn} be sequences in (0,1) and suppose that the following

conditions are satisfied:

(C1) lim
n→∞

βn = 0 and ∑
∞
n=1 βn = ∞;

(C2) ∑
N
i=1 αi = 1;
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For some fixed δ ∈ (0,1), let {xn}∞
n=1 be a sequence defined iteratively by chosen x1 ∈C arbi-

trarily and 
zn =

⊕N
i=1 αiTixn;

xn+1 = βnu⊕ (1−δ )(1−βn)xn⊕δ (1−βn)zn, n≥ 1.

Then, {xn}∞
n=1 converges strongly to a point in Γ.
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