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Abstract. In this paper, we first give a necessary and sufficient condition for convergence of P-iteration to a fixed

point of continuous functions on an arbitrary interval and prove equivalence of P-iteration, Noor and SP-iteration.

We also compare the convergence speed of Noor, SP-iteration and P-iteration. It is proved that the P-iteration con

verges faster than Noor and SP-iterations. Moreover, we also present numerical examples for the P-iteration to

compare with the Noor and SP-iterations.
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1. INTRODUCTION

Let E be a closed interval on the real line and f : E→ E be a continuous function. A point p ∈ E is a fixed point

of f if f (p) = p.The set of all fixed points of f is denoted by F( f ). There are many fixed point iterations used for

approximating a fixed point of a continuous mapping f : E→ E. The Mann iteration (see [1]) is defined by v1 ∈ E

and

(1.1) vn+1 = (1−αn)vn +αn f (vn)
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for all n ≥ 1, where {αn}∞

n=1 is sequences in [0,1], and will be denoted by M(v1,αn, f ). The Ishikawa iteration

(see [2]) is defined by q1 ∈ E and

(1.2)


hn = (1−βn)gn +βn f (gn)

gn+1 = (1−αn)gn +αn f (hn)

for all n ≥ 1, where {αn}∞

n=1, {βn}∞

n=1 are sequences in [0,1], and will be denoted by I(g1,αn,βn, f ).The Noor-

iteration (see [3]) is defined by s1 ∈ E and

(1.3)


un = (1− γn)sn + γn f (sn)

tn = (1−βn)sn +βn f (un)

sn+1 = (1−αn)sn +αn f (tn)

for all n≥ 1, where {αn}∞

n=1, {βn}∞

n=1 and {γn}∞

n=1 are sequences in [0,1], and will be denoted by N(x1,αn,βn,γn, f ).

The SP-iteration (see [4]) is defined by w1 ∈ E and

(1.4)


rn = (1− γn)wn + γn f (wn)

qn = (1−βn)rn +βn f (rn)

wn+1 = (1−αn)qn +αn f (qn)

for all n≥ 1, where {αn}∞

n=1, {βn}∞

n=1 and {γn}∞

n=1 are sequences in [0,1], and will be denoted by SP(x1,αn,βn,γn, f ).

The P-iteration (see [5])is defined by x1 ∈ E and

(1.5)


zn = (1− γn)xn + γn f (xn)

yn = (1−βn)zn +βn f (zn)

xn+1 = (1−αn) f (zn)+αn f (yn)

for all n≥ 1, where {αn}∞

n=1, {βn}∞

n=1 and {γn}∞

n=1 are sequences in [0,1], and will be denoted by P(x1,αn,βn,γn, f ).

In 2005,Soltuz [6] showned that Mann and Ishikawa iterations are equivalent for the class of Zamfirescu op-

erators. After that Babu and Prasad [7] showed that in the class of Zamfirescu operators, Mann iteration converges

faster than Ishikawa iteration, but the claim is false,see Qing and Rhoades [8]. In 2011, Phuengrattana-Suantai [4]

showed that the SP-iteration converges faster than the Mann, Ishikawa and Noor iterations on an arbitrary interval.

In 2013, Kosol [9] showed that the S-iteration converges faster than the Ishikawa iteration. Recently, Sainuan [5]

showed that the P-iteration converges faster than the Ishikawa and S-iterations.

In this paper, we give a necessary and sufficient condition for the convergence of the P-iteration of continu-

ous non-decreasing functions on an arbitrary interval. We also prove that if the SP-iteration converges, then the
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P-iteration converges and converges faster than Noor and the SP-iterations for the class of continuous and non-

decreasing functions. Morover, we present the numerical examples for the P-iteration to compare with the Noor

and SP-iterations.

2. PRELIMINARIES

In this section we recall some lemmas, definitions, theorems and known results which will be used for our main

results.

Lemma 2.1. ([4],Lemma 3.2) Let E be a closed interval on the real line and f : E→ E be a continuous function.

Let {αn}∞

n=1, {βn}∞

n=1and {γn}∞

n=1 be sequences in [0,1). Let {sn}∞

n=1 , {wn}∞

n=1 be defined by Noor and SP-

iterations, respectively. Then the following hold:

(i) If f (s1)< s1, then f (sn)≤ sn for all n≥ 1 and {sn}∞

n=1 is non-increasing.

(ii) If f (s1)> s1, then f (sn)≥ sn for all n≥ 1 and {sn}∞

n=1 is non-decreasing.

(iii) If f (w1)< w1, then f (wn)≤ wn for all n≥ 1 and {wn}∞

n=1 is non-increasing.

(iv) If f (w1)> w1, then f (wn)≥ wn for all n≥ 1 and {wn}∞

n=1 is non-decreasing.

Lemma 2.2. ([5],Lemma 3.1) Let E be a closed interval on the real line and f : E→ E be a continuous and non-

decreasing function. Let {αn}∞

n=1, {βn}∞

n=1and {γn}∞

n=1 be sequences in [0,1]. For x1 ∈ E, let {xn}∞

n=1 be defined

by P-iteration. Then the following hold:

(i) If f (x1)< x1, then f (xn)≤ xn for all n≥ 1 and {xn}∞

n=1 is non-increasing.

(ii) If f (x1)> x1, then f (xn)≥ xn for all n≥ 1 and {xn}∞

n=1 is non-decreasing.

Theorem 2.3. ([5],Theorem 3.2) Let E be a closed interval on the real line and f : E → E be a continuous and

non-decreasing function. For x1 ∈ E, let {xn}∞

n=1 be defined by (1.5), where {αn}∞

n=1, {βn}∞

n=1and {γn}∞

n=1 are

sequences in [0,1] and limn→∞ βn = limn→∞ γn = 0. Then {xn}∞

n=1 is bounded if and only if {xn}∞

n=1 converges to a

fixed point of f .

Lemma 2.4. ([5],Lemma 3.3) Let E be a closed interval on the real line and f : E → E be a continuous and

non-decreasing function. For x1 ∈ E, let {xn}∞

n=1 be the P-iteration defined by (1.5), where {αn}∞

n=1, {βn}∞

n=1and

{γn}∞

n=1 are sequences in [0,1]. Then we have the following :

(i) If p ∈ F( f ) with x1 > p, then xn ≥ p for all n≥ 1.

(ii) If p ∈ F( f ) with x1 < p, then xn ≤ p for all n≥ 1.

Lemma 2.5. (([4],Lemma 3.4) Let E be a closed interval on the real line and f : E → E be a continuous and

non-decreasing function.Let {αn} , {βn} and {γn} be sequences in [0,1). For v1 = g1 = s1 = w1 ∈ E, let {vn}∞

n=1,

{gn}∞

n=1, {sn}∞

n=1, {wn}∞

n=1 be the sequences defined by (1.1) - (1.4), respectively.Then the following are satisfied:
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(i) If f (v1)< v1, then wn ≤ sn ≤ gn ≤ vn for all n≥ 1.

(ii) If f (v1)> v1, then wn ≥ sn ≥ gn ≥ vn for all n≥ 1.

Proposition 2.6. ([4],Proposition3.5) Let E be a closed interval on the real line and f : E → E be a continuous

and non-decreasing function such that F( f ) is nonempty and bounded with x1 > sup{p ∈ E : p = f (p)}. Let {αn}

, {βn} and {γn} be sequences in [0,1). If f (x1) > x1, then the sequence {xn} defined by one of the following

iteration methods: M(x1,αn, f ), I(x1,αn,βn, f ), N(x1,αn,βn,γn, f ) and SP(x1,αn,βn,γn, f ) does not converge to a

fixed point of f .

Proposition 2.7. ([4],Proposition 3.6) Let E be a closed interval on the real line and f : E → E be a continuous

and non-decreasing function such that F( f ) is nonempty and bounded with x1 < inf{p ∈ E : p = f (p)}. Let {αn}

, {βn} and {γn} be sequences in [0,1]. If f (x1) < x1, then the sequence {xn} defined by one of the following

iteration methods: M(x1,αn, f ), I(x1,αn,βn, f ), N(x1,αn,βn,γn, f ) and SP(x1,αn,βn,γn, f ) does not converge to a

fixed point of f .

Proposition 2.8. ([5],Proposition 3.5) Let E be a closed interval on the real line and f : E → E be a continuous

and non-decreasing function such that F( f ) is nonempty and bounded with x1 < inf{p ∈ E : p = f (p)}. Let {αn} ,

{βn} and {γn} be sequences in [0,1]. If f (x1)< x1, then the sequence {xn} defined by P-iteration does not converge

to a fixed point of f .

Proposition 2.9. ([5],Proposition 3.6) Let E be a closed interval on the real line and f : E → E be a continuous

and non-decreasing function such that F( f ) is nonempty and bounded with x1 > sup{p ∈ E : p = f (p)}. Let

{αn} , {βn} and {γn} be sequences in [0,1]. If f (x1)> x1, then the sequence {xn} defined by P-iteration does not

converge to a fixed point of f .

For comparision the rate of convergence, we employ the concept given by Rhoades [10] as follows.

Definition 2.10. ([10]) Let E be a closed interval on the real line and f : E → E be a continuous function.

Suppose that {xn}∞

n=1 and {yn}∞

n=1 are two iterations which converge to the fixed point p of f . Then {xn}∞

n=1 is said

to converge faster than {yn}∞

n=1 if |xn− p| ≤ |yn− p| for all n≥ 1.

In 2011, Phuengrattana and Suantai use above concept for comparing rate of convergence between SP and

Noor iterations.

Theorem 2.11. ([4],Theorem 3.7) Let E be a closed interval on the real line and f : E → E be a continuous

and non-decreasing function such that F( f ) is nonempty and bounded. For s1 = w1 ∈ E, let {sn} and {wn} be

the sequences defined by (1.3) and (1.4), respectively. If the Noor-iteration {sn} converges to p ∈ F( f ), then the

SP-iteration {wn} converges to p. Moreover, the SP-iteration converges faster than the Noor- iteration.
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3. MAIN RESULTS

We first give some useful facts for our main results.

Lemma 3.1. Let E be a closed interval on the real line and f : E → E be a continuous and non-decreasing

function. For x1 ∈ E, let {αn}∞

n=1, {βn}∞

n=1and {γn}∞

n=1 be sequences in [0,1]. For x1 = w1 ∈ E, let {wn}∞

n=1 and

{xn}∞

n=1 be sequences defined by (1.4) and (1.5) respectively. Then we have the following :

(i) If f (w1)< w1 , then xn ≤ wn for all n≥ 1.

(ii) If f (w1)> w1 , then xn ≥ wn for all n≥ 1.

Proof. (i) Let f (w1)< w1. Since x1 = w1, we get f (x1)< x1. First, we show that xn ≤ wn for all n≥ 1.

From (1.5), we get f (x1)≤ z1 ≤ x1. Since f is non-decreasing, we have

f (z1)≤ f (x1)≤ z1 ≤ x1.

By (1.5), we have f (z1)≤ y1 ≤ z1. Since f is non-decreasing, we obtain

f (y1)≤ f (z1)≤ y1 ≤ z1 ≤ x1.

From (1.4) and (1.5), we get z1− r1 = (1− γ1)(x1−w1)+ γ1( f (x1)− f (w1)) = 0, that is z1 = r1.

By (1.4) and (1.5), we get y1−q1 = (1−β1)(z1− r1)+β1( f (z1)− f (r1)) = 0. Thus y1 = q1.

Since x2 = (1−α1) f (z1)+α1 f (y1), it follows that

x2−w2 = (1−α1)( f (z1)−q1)]+α1[ f (y1)− f (q1)]≤ 0.

Thus x2 ≤ w2. Assume that xk ≤ wk. Thus f (xk)≤ f (wk). By Lemma 2.1, f (wk)≤ wk and Lemma 2.2 f (xk)≤ xk.

By (1.4),(1.5), we get f (wk)≤ rk ≤wk and f (xk)≤ zk ≤ xk. Since f is non-decreasing, we have f (rk)≤ f (wk)≤ rk

and f (zk)≤ f (xk)≤ zk, it follows that

zk− rk = (1− γk)(xk−wk)+ γk( f (xk)− f (wk))≤ 0.

Thus zk ≤ rk. Since f is non-decreasing, we have f (zk) ≤ f (rk). By (1,4),(1.5), we get f (rk) ≤ qk ≤ rk and

f (zk) ≤ yk ≤ zk. Since f is non-decreasing, we obtain f (qk) ≤ f (rk) ≤ qk ≤ rk and f (yk) ≤ f (zk) ≤ yk ≤ zk. It

follows that

yk−qk = (1−βk)(zk− rk)+βk( f (zk)− f (rk))≤ 0, that is yk ≤ qk.

Since f is non-decreasing, we get f (yk)≤ f (qk).

By (1.5), again xk+1 = (1−αk) f (zk)+αk f (yk)≤ (1−αk)yk +αk f (yk).

It follows that xk+1−wk+1 ≤ (1−αk)(yk−qk)+αk( f (yk)− f (qk))≤ 0, that is xk+1 ≤ wk+1.

By Mathematical induction, we obtain xn ≤ wn for all n≥ 1.

(ii) By using the same argument as in (i), we obtain the desired result.

�

Lemma 3.2. Let E be a closed interval on the real line and f : E → E be a continuous and non-decreasing

function. For x1 ∈ E, let {αn}∞

n=1, {βn}∞

n=1and {γn}∞

n=1 be sequences in [0,1]. For x1 = s1 ∈ E, let {sn}∞

n=1 and

{xn}∞

n=1 be sequences defined by (1.3) and (1.5), respectively. Then we have the following :
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(i) If f (s1)< s1 , then xn ≤ sn for all n≥ 1.

(ii) If f (s1)> s1 , then xn ≥ sn for all n≥ 1.

Proof. (i) and (ii) follows directly By Lemma 2.5, and using the same proof as in Lemma 3.1, we obtain the desired

result. �

Theorem 3.3. Let E be a closed interval on the real line and f : E → E be a continuous and non-decreasing

function such that F( f ) is nonempty and bounded. For w1 = x1 ∈ E, let {wn} and {xn} be the sequences defined by

(1.4) and (1.5), respectively. If the SP-iteration {wn} converges to p ∈ F( f ), then the P-iteration {xn} converges

to p. Moreover, the P-iteration converges faster than the SP- iteration.

Proof. Suppose the SP-iteration {wn} converges to p ∈ F( f ). Put l = inf{x ∈ E : x = f (x)} and u = sup{x ∈

E : x = f (x)}. We devide our proof into the following three cases: Case 1: w1 = x1 > u. By Proposition

2.6 and Proposition 2.9, we get f (w1) < w1 and f (x1) < x1. By Lemma 3.1 (i), we have xn ≤ wn for all n ≥ 1.

By continuity of f , we have f (u) = u, so u = f (u) ≤ f (x1) < x1. This implies by (1.5) that f (x1) ≤ z1 ≤ x1, so

u ≤ z1 ≤ x1. Since f is non-decreasing, we have u = f (u) ≤ f (z1) ≤ f (x1) ≤ z1 ≤ x1. It follows by (1.5), that

y1 = (1− β1)z1 + β1 f (z1) ≤ z1. Since f is non-decreasing, we have u ≤ f (y1) ≤ f (z1) ≤ f (x1) ≤ z1 ≤ x1 and

u ≤ f (y1) ≤ x2 ≤ f (z1). By mathematical induction, it can be shown that u ≤ xn for all n ≥ 1. Hence , we have

p≤ xn ≤wn for all n≥ 1, which implies |xn− p| ≤ |wn− p| for all n≥ 1. Thus xn→ p and the P-iteration converges

to p faster than the SP- iteration.

Case 2: w1 = x1 < l. By Proposition 2.7 and Proposition 2.8 , we get f (w1)> w1 and f (x1)> x1. By Lemma

3.1 (ii), we have xn ≥ wn for all n ≥ 1. We note that x1 < l , by (1.5) and mathematical induction, we can show

that xn < l for all n ≥ 1. So wn ≤ xn ≤ p for all n ≥ 1. Hence |xn− p| ≤ |wn− p|. It follows that xn→ p and the

P-iteration converges to p faster than the SP-iteration.

Case 3: l < w1 = x1 < u. Suppose that f (x1) 6= x1. If f (x1) < x1, by Lemma 2.1(iv), we have that {wn} is

non-increasing. It follows that p ≤ wn for all n ≥ 1. By Lemma 2.4 (i) and Lemma 3.1 (ii) , we get p ≤ xn ≤ qn

for all n≥ 1, This implies |xn− p| ≤ |wn− p|. It follows that xn→ p and the P-iteration converges to p faster than

the SP-iteration.

If f (x1)> x1, by Lemma 2.1 (iv), we have that {wn} is non-decreasing. This implies wn ≤ p for all n≥ 1. By

Lemma 2.4 (ii) and Lemma 3.1 (ii) , we get wn ≤ xn ≤ p for all n ≥ 1. It follows that |xn− p| ≤ |wn− p| for all

n≥ 1. Hence xn→ p and the P-iteration converges to p faster than the SP-iteration.

�

Theorem 3.4. Let E be a closed interval on the real line and f : E → E be a continuous and non-decreasing

function such that F( f ) is nonempty and bounded. For s1 = x1 ∈ E, let {sn} and {xn} be the sequences defined by

(1.3) and (1.5), respectively. If the Noor-iteration {sn} converges to p ∈ F( f ), then the P-iteration {xn} converges

to p. Moreover, the P-iteration converges faster than the Noor- iteration.
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Proof. By Theorem 2.11 and Theorem 3.3, we obtain the desired result. �

Example 3.5. Let f : [0,2]→ [0,2] be a function defined by f (x) = x2+3
4 . Then f is a continuous and non-

decreasing function. The comparisons of the convergence of the Noor iteration , SP-iteration and the P-iteration

to the exact fixed point p = 1 are given in the following table with the initial point x1 = w1 = s1 = 2 and αn =
n

n+3 ,

βn =
1
n , γn =

1
n+3 .

Noor SP-iteration P-iteration

n sn wn xn | f (xn)− xn|

7 1.36586986 1.034490736 1.007754827 0.008446877

8 1.086867017 1.019853146 1.003546709 0.003862379
...

...
...

...
...

27 1.000001719 1.000000193 1.000000003 0.000000003

28 1.000000929 1.000000102 1.000000001 0.000000001

29 1.000000500 1.000000054 1.000000001 0.000000001

30 1.000000269 1.000000029 1.000000000 0.000000000

Table 1:

Comparison of rate of convergence of Noor iteration, SP-iteration and P-iteration for the given function

in Example 3.5 are shown in Table 1. We see that the P-iteration converges to p = 1 faster than the Noor and

SP-iterations.

Example 3.6. Let f : [0,5]→ [0,5] be a function defined by f (x) = 3√x2 +4. Then f is a continuous and non-

decreasing function. The comparisons of the convergence of the Noor iteration, SP-iteration and the P-iteration to

the exact fixed point p = 2 are given in the following table with the initial point x1 = w1 = s1 = 4 and αn =
1

n+2 ,

βn =
1
n2 , γn =

1
n2 .

Noor SP-iteration P-iteration

n sn wn xn | f (xn)− xn|

1 3.361458263 2.193800565 2.193800565 1.285582383

2 3.119954578 2.112579385 2.052307422 0.128242874
...

...
...

...
...

16 2.421482182 2.026681996 2.000000008 0.000000017

17 2.406891324 2.025628291 2.000000003 0.000000006

18 2.393506001 2.024673170 2.000000001 0.000000002

19 2.381173994 2.023802621 2.000000000 0.000000001

Table 2:
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Table 2 shows comparison of rate of convergence of Noor iteration, SP-iteration and P-iteration for the

given function in Example 3.6. We see that the P-iteration converges to p = 2 faster than the Noor and SP-

iterations.
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