
Available online at http://scik.org

Adv. Fixed Point Theory, 9 (2019), No. 2, 146-164

https://doi.org/10.28919/afpt/4026

ISSN: 1927-6303

BEST PROXIMITY POINT THEOREMS FOR Fρ -PROXIMAL CONTRACTION IN
MODULAR FUNCTION SPACES

SARTAJ ALI1,∗, MUJAHID ABBAS1,2, SAFEER HUSSAIN KHAN3

1Department of Mathematics, Government College University, Lahore, Pakistan

2Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, South Africa

3Department of Mathematics, Statistics and Physics, Qatar University, Doha 2713, Qatar

Copyright c© 2019 the authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we introduce Wardowski’s F -contractions in the context of modular function spaces. We

also introduce the concept of Fρ -proximal contraction and prove some best proximity point theorems by unifying

and generalizing some recent results in modular function spaces. Moreover, we discuss some illustrative examples

to highlight the realized improvements.
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1. INTRODUCTION

The study of modular function spaces has recently attracted a good attention of researchers

since its initiation by Nakano [1] in connection with the theory of order spaces. In particular, the

fixed point theory in such spaces has got a remarkable treatment by researchers like Benavides

[2], Khamsi et al. [3], Kozlowski [4] and Khan and Abbas [5].
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Best proximity point results are the ones that provide sufficient conditions for the existence of

a best proximity point and algorithms for finding best proximity points (see Definition 2). It is

interesting to note that best proximity point results extend fixed point results in a natural fashion.

Indeed, if the mapping under consideration is a self-mapping, a best proximity point problem

becomes a fixed point problem. Banach contraction principle is of paramount importance in

metrical fixed pint theory and it has been generalized by many mathematicians in different

directions. One of these generalizations is its extension to the case of nonself mappings. In

fact, given nonempty closed subsets A and B of a complete metric space (X ,d), a contractive

nonself mapping T : A→B does not necessarily have a fixed point. Eventually, it is quite natural

to find an element x such that d(x,T x) is minimum over a set A which implies that x and T x are

in close proximity to each other. A best proximity point theorem for contractive mappings has

been detailed in Basha [6]. Eldred et al. [7] have elicited a best proximity point theorem for

relatively nonexpansive mappings, an alternative treatment to which has been focused in [8].

Recently, Omidvari et at. [9] proved the existence of a best proximity point for F-contraction

nonself mappings in complete metric spaces. Also they defined F-proximal contractions of

first and second kind and extended some comparable best proximity theorems and improved

the recent results. Latif et al. [10] proved coincidence best proximity point results for Fg-weak

contractive mappings in ordered metric spaces. Jleli et al. [11] introduced the class of proximal

quasi contractions for nonself mappings in modular spaces, and provided sufficient conditions

assuring the existence and uniqueness of the best proximity point in modular spaces with Fatou

property.

Motivated by the above results, we first present some best proximity point results for Fρ -

proximal contractions in modular function spaces. Then we give some sufficient conditions

guaranteeing the existence and uniqueness of best proximity points for nonself Ciric type gen-

eralized Fρ -proximal contractions in modular function spaces.

2. PRELIMINARIES

Some basic facts and notation about modular spaces are recalled here from Kozlowski [4].

We refer the reader to Kilmer et al. [12] and the references therin for an exposition of the theory.
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Definition 2.1. Let X be an arbitrary vector space over K =R or C. A functional ρ : X→ [0,∞]

is called modular if, for any x,y in X , the following hold:

(m1) ρ(x) = 0 if and only if x = 0.

(m2) ρ(αx) = ρ(x) for every scalar α with |α|= 1.

(m3) ρ (αx+βy)≤ ρ(x)+ρ(y), provided that α +β = 1, and α,β ≥ 0.

If (m3) is replaced by ρ (αx+βy) ≤ αρ(x)+βρ(y), if α +β = 1, and α,β ≥ 0, then ρ is

called a convex modular.

The vector space Xρ given by

Xρ = {x ∈ X : ρ(λx)→ 0 as λ → 0}

is called a modular space.

Generally, the modular ρ is not subadditive and therefore does not behave as a norm or a

distance. Consistent with Kilmer et al. [13], the ρ-distance of x∈ Xρ from a set D⊂ Xρ is given

as follows:

dρ(x,D) = inf{ρ(x−h) : h ∈ D}.

Definition 2.2. Let Xρ be a modular space. The sequence {xn} ⊂ Xρ is called:

(i) ρ-convergent to x ∈ Xρ if ρ(xn− x)→ 0 as n→ ∞.

(ii) ρ-Cauchy, if ρ(xn− xm)→ 0 as n, m→ ∞.

Note that, ρ-convergence does not imply ρ-Cauchy since ρ does not satisfy the triangle

inequality.

Definition 2.3. A subset D⊂ Xρ is called

(i) ρ-closed if the ρ-limit of a ρ-convergent sequence of D always belongs to D.

(ii) ρ-a.e. closed if the ρ-a.e. limit of a ρ-a.e. convergent sequence of D always belongs to

D.

(iii) ρ-compact if every sequence in D has a ρ-convergent subsequence in D.

(iv) ρ-a.e. compact if every sequence in D has a ρ-a.e. convergent subsequence in D.

(v) ρ-bounded if

diamρ(D) = sup{ρ(x− y) : x,y ∈ D}< ∞.
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Definition 2.4. Let z be the collection of all mappings F : R+ → R that satisfy the following

conditions:

(C1) F is strictly increasing, i.e. for all α,β ∈R such that α < β implies that F ( α)<F (β ) ;

(C2) For any sequence {αn}n∈N of positive numbers, limn→∞ αn = 0 if and only if limn→∞ F (αn)=

−∞;

(C3) There exists k ∈ (0,1) such that limα→0+ αkF (α) = 0.

Recently, Wardowski [14] introduced a new type of contraction called F-contraction. We

now reformulate it in the context of modular function spaces as follows.

Definition 2.5. Let ρ be a modular and Xρ be a modular function space. A self mapping T on

Xρ is called Fρ -contraction if there exist F ∈z and τ > 0 such that

τ +F (ρ (c(T x−Ty)))≤ F (ρ (x− y)) ,

for all x,y ∈ Lρ with ρ (T x−Ty)> 0, where c, l ∈ R+ with c > l.

We also reshape Mınak et al. [15] definition of Ciric type generalized F-contraction in the

context of modular function spaces as below:

Definition 2.6. Let z and Xρ be same as in the above definition. A self mapping T on Xρ is

called Ciric type generalized Fρ -contraction if there exist F ∈z and τ > 0 such that

τ +F (ρ (c(T x−Ty)))≤ F (M (x,y))

where, M (x,y)=max
{

ρ (x− y) ,ρ (x−T x) ,ρ (y−Ty) , 1
2 [ρ (x−Ty)+ρ (y−T x)]

}
, for all x,y∈

Xρ with ρ (c(T x−Ty))> 0, and c, l ∈ R+ with c > l.

Khamsi [16] introduced the concept of self-mappings in modular spaces. We extend Khamsi’s

definition to Fρ -quasi contraction as below:

Definition 2.7. Considering the same family z of mappings as in Definition 2. Let Xρ be a

modular function space with modular ρ . A self mapping T on Xρ is called Fρ -quasicontraction

if there exist F ∈z and τ > 0 such that

τ +F (ρ (c(T x−Ty)))≤ F (M (x,y))

where, M (x,y) = max{ρ (x− y) ,ρ (x−T x) ,ρ (y−Ty) ,ρ (x−Ty) ,ρ (y−T x)}, for all x,y ∈

Xρ with ρ (c(T x−Ty))> 0 and c, l ∈ R+ with c > l.
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It is remarked that, by considering F(α) = lnα in above definitions, a Ciric type generalized

Fρ -contraction reduces to Ciric type generalized ρ-contraction and an Fρ -contraction becomes

a ρ-contraction. Note also that every ρ-quasicontraction is an Fρ -quasicontraction.

Let (A,B) be a pair of nonempty ρ-closed subsets of a modular function space Xρ . Then we

have the following notation and notions which are to be used in the subsequent sections.

dρ (A,B) : = inf{ρ (x− y) : x ∈ A and y ∈ B}

A0 : = {x ∈ A : ρ(x− y) = dρ(A,B) for some y ∈ B},

B0 : = {y ∈ B : ρ(x− y) = dρ(A,B) for some x ∈ A}.

Definition 2.8. Let (A,B) be a pair of nonempty subsets of a modular function space Xρ .

A point x ∈ A is said to be a best proximity point of the mapping T : A→ B if ρ (x−T x) =

dρ (A,B) . It can be observed that a best proximity reduces to a fixed point for self mappings.

Definition 2.9. Let (A,B) be a pair of nonempty subsets of a modular function space Xρ . Then

(A,B) is said to have the P−property if and only if

ρ (x1− y1) = dρ (A,B)

ρ (x2− y2) = dρ (A,B)

⇒ ρ (x1− x2) = ρ (y1− y2) ,

where x1,x2 ∈ A0 and y1,y2 ∈ B0.

Definition 2.10. A is said to be approximately ρ-compact with respect to B if every sequence

{xn} of A satisfying the condition ρ(y− xn)→ ρ(y−A) for some y in B has a ρ-convergent

subsequence.

We now first introduce the concept of Fρ -proximal contractions of the first and the second

kind in the setting of modular function spaces. By doing so, we actually generalize the concepts

of F−proximal contraction of the first and the second kind due to Omidvari et at. [9].

Definition 2.11. Let A and B be two ρ-closed subset of Xρ . A mapping T : A→ B is said to

be a Fρ -proximal contraction of first kind if there exists F ∈z and τ > 0 such that

ρ (u1−T x1) = d (A,B)

ρ (u2−T x2) = d (A,B)

ρ (u1−u2)> 0,ρ (x1− x2)> 0

⇒ τ +F (ρ (c(u1−u2)))≤ F (ρ (l (x1− x2)))
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where u1,u2,x1,x2 ∈ A and c, l ∈ R+ with c > l.

Definition 2.12. Let A and B be two ρ-closed subset of Xρ . A mapping T : A→ B is said to

be a Fρ -proximal contraction of the second kind if there exists F ∈z and τ > 0 such that

ρ (u1−T x1) = dρ (A,B)

ρ (u2−T x2) = dρ (A,B)

ρ (Tu1−Tu2)> 0,ρ (T x1−T x2)> 0

⇒ τ+F (ρ (c(Tu1−Tu2)))≤F (ρ (l (T x1−T x2)))

where u1,u2,x1,x2 ∈ A and c, l ∈ R+ with c > l.

Next, we present the concept of Ciric type generalized Fρ -proximal contraction which a mod-

ular extension of an Fρ -proximal contraction.

Definition 2.13. Let Xρ be modular function space and (A, B) a pair of nonempty ρ-closed

subset of Xρ . A nonself mapping T : A→ B is said to be Ciric type generalized Fρ -proximal

contraction if there exists F ∈z and τ > 0 such that

ρ (u1−T x1) = distρ (A,B)

ρ (u2−T x2) = distρ (A,B)

 ,

implies

τ +F (ρ (c(u1−u2)))

≤ F

max

 ρ (l (x1− x2)) ,ρ (l (x1−u1)) ,ρ (l (x2−u2)) ,

1
2

{
ρ
( l

2 (x1−u2)
)
+ρ

( l
2 (x2−u1)

)}

(1)

for all x1,x2,u1,u2 ∈ A, where c, l ∈ R+ with c > l .

We also need the following.

Definition 2.14. Given that T : A→ B and an isometry g : A→ A, the mapping T is said to be

modular ρ isometric with respect to g if the following holds:

ρ (T gx1−T gx2) = ρ (T x1−T x2) , for all x1,x2 ∈ A.
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3. SOME BEST PROXIMITY POINT RESULTS

We divide this section into several subsections dealing with best proximity point results of

different kinds of proximal contractions.

3.1. Fρ -proximal contractions. Here we deal with Fρ -proximal contractions. First we present

some results on existence and uniqueness of best proximity points and then examples to testify

our results. We start with the following result.

Theorem 3.1. Suppose that the pair (A,B) of nonempty ρ-closed subsets of a modular func-

tion space Xρ has the P−property. Also, it is supposed that A0 is nonempty. If T : A→ B is

Fρ -proximal contraction such that T (A0) ⊆ B0. Then there exists a unique x∗ in A such that

ρ (x∗−T x∗) = dρ (A,B) , that is, x∗ is a best proximity point of T.

Proof. Let x0 ∈ A0. Since T x0 ∈ T (A0) ⊆ B0, there exists x1 in A0 such that ρ (x1−T x0) =

dρ (A,B) . Moreover, T x1 ∈T (A0)⊆B0 implies the existence of an x2 ∈A0 such that ρ (x2−T x1)=

dρ (A,B) . Continuing in this way, we obtain a sequence {xn} in A0 such that

(2) ρ (xn+1−T xn) = dρ (A,B) , for all n ∈ N.

Since pair (A,B) has the P−property, from (2) we have,

(3) ρ (xn− xn+1) = ρ (T xn−1−T xn) , for all n ∈ N.

We now prove that the sequence {xn} is ρ-convergent in A0.If there exists n0 ∈ N such that

ρ (T xn0−1−T xn0) = 0, then ρ (xn0− xn0+1) = 0⇔ xn0−xn0+1 = 0⇔ xn0 = xn0+1 by (3) . Thus

(4) T xn0 = T xn0+1⇔ T xn0−T xn0+1 = 0⇔ ρ (T xn0−T xn0+1) = 0.

From (3) and (4) , we obtain

ρ (xn0+2− xn0+1) = ρ (T xn0+1−T xn0) = 0⇒ xn0+2 = xn0+1.

Thus xn = xn0 for all n≥ n0 and hence {xn} is ρ-convergent in A0.

Next let ρ (T xn−1−T xn) 6= 0 for all n ∈ N. Then, for any positive integer n, using (3) , we

have

τ +F (ρ (c(T xn−T xn−1)))≤ F (ρ (l (xn− xn−1))) .
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because T is an Fρ -contraction and this implies that

F (ρ (c (xn+1− xn))) ≤ F (ρ (l (xn− xn−1)))− τ

F (ρ (c (xn+1− xn))) ≤ F (ρ (c(xn− xn−1)))− τ

F (ρ (c(xn+1− xn))) ≤ F (ρ (l (xn−1− xn−2)))−2τ

≤ F (ρ (c(xn−2− xn−3)))−3τ ≤ ...≤ F (ρ (c(x1− x0)))−nτ.(5)

Denote βn := (ρ (c(xn+1− xn))) . Then by ( 5) , limn→∞ F (βn) = −∞. Appealing to (C2) , we

get

(6) lim
n→∞

βn = lim
n→∞

ρ ( xn+1− xn) = 0.

A use of (C3) guarantees the existence of a k ∈ (0,1) such that

(7) lim
n→∞

β
k
n F (βn) = 0,

and so by (5) , for all n ∈ N, we have

β
k
n (F (βn)−F (β0))≤−β

k
n nτ ≤ 0.

Reading (6) and (7) together, we get

lim
n→∞

nβ
k
n = 0.

Hence there exists n1 ∈ N such that nβ k
n ≤ 1 for all n≥ n1. That is, for all n≥ n1,

(8) βn ≤
1

n
1
k
,

or

(9) ρ ( xn− xn+1 )≤
1

n
1
k
.

Similarly, there exists n2 ∈ N such that

ρ ( xn− xn+2 ) ≤ ω (2) [ρ ( xn− xn+1 )+ρ ( xn+1− xn+2 )]

≤ ω (2)

(
1

n
1
k
+

1

(n+1)
1
k

)

≤ ω (2)

n
1
k

.
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This implies that

(10) ρ ( xn− xn+2 )≤
ω (2)

n
1
k

.

Now we have the following two cases.

CASE 1: If m > 2 is odd, then m = 2L+1, L≥ 1, using (9) for all n≥ h, h = max(n0,n1)

ρ (xn− xn+m) ≤ ω (2L+1) [ρ (xn− xn+1)+ρ (xn+1− xn+2)+ ...+ρ (xn+2L− xn+2L+1)]

≤ ω (2L+1)

[
1

n
1
k
+

1

(n+1)
1
k
+ ...+

1

(n+2L)
1
k

]

≤ ω (2L+1)
∞

∑
i=n

1

i
1
k
.

CASE 2: If m> 2 is even, then m= 2L ,L≥ 2, using (9) and (10) for all n≥ h, h=max(n0,n1)

ρ (xn− xn+m) ≤ ω (2L ) [ρ (xn− xn+2)+ρ (xn+2− xn+3)+ ...+ρ (xn+2L−1− xn+2L )]

≤ ω (2L )

[
1

n
1
k
+

1

(n+2)
1
k
+ ...+

1

(n+2L−1)
1
k

]

≤ ω (2L )
∞

∑
i=n

1

i
1
k
.

Combining these two cases, we have

ρ (xn− xn+m)≤
∞

∑
i=n

1

i
1
k

for all n≥ h,m ∈ N.

Since the series ∑
∞
i=n

1

i
1
k

is convergent
(
as 1

k > 1
)
, we deduce that {xn} is a Cauchy sequence.

Now Xρ is complete and A is a ρ-closed subset of Xρ , there exists x∗ ∈ A such that limn→∞ xn =

x∗. Since T is ρ-continuous, T xn is ρ-convergent to T x∗ . Hence the continuity of the modular

ρ implies that ρ (xn+1−T xn) ρ−converges to ρ (x∗−T x∗) and by (2) ,we have

ρ (x∗−T x∗) = dρ (A,B) .

That is, x∗ is a best proximity point of T.

Next, we show the uniqueness of the best proximity point. Let us suppose that T has two best

proximity points x1 and x2 ∈ A, such that x1 6= x2 and ρ (x1−T x1) = ρ (x2−T x2) = dρ (A,B) .
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Then by the P−property of (A,B) , we have ρ (x1− x2)= ρ (T x1−T x2) . Note that ρ (x1− x2)>

0 as x1 6= x2, T is Fρ -contraction and ρ is an increasing function, thus

F (ρ (c(x1− x2))) = F (ρ (c(T x1−T x2)))≤ F (ρ (l ( x1− x2)))− τ

≤ F (ρ (c( x1− x2)))− τ < F (ρ (c( x1− x2))) ,

which is a contradiction. Hence the best proximity point is unique. �

In support of our above theorem (T heorem 3.1) ,we give the following example.

Example 3.1. Let Xρ = R, A =
{

x ∈ Xρ :−1≤ x≤ 1
}
= A0, B =

{
x ∈ Xρ : −2≤ x≤ 2

}
=

B0,T : A→ B be defined by T (x) = |x|
2 + 1

2 ,ρ (x) = |x| , Fρ (α) = lnα,τ = ln(2) . Then there ex-

ists a unique best proximity point x= 1∈A, such that ρ (1−T (1)) = dρ (A,B) .ClearlyT (A0)⊆

B0. Next

ρ (T x−Ty) = |T x−Ty|

=

∣∣∣∣ |x|2 − |y|2
∣∣∣∣≤ 1

2
|x− y|= 1

2
ρ (x− y) .

Taking ln on both side, we have ln(ρ (T x−Ty))≤ ln
(1

2ρ (x− y)
)
= ln

(1
2

)
+ ln(ρ (x− y)) . This

yields Fρ (ρ (T x−Ty)) ≤ Fρ (ρ (x− y))− τ, showing that T is Fρ−contraction

Further note that dρ (A,B) = 0.To verify property P, let x1 = −1 ∈ A0, y1 = −1 ∈ B0. Then

ρ (x1− y1) = |−1+1|= 0= dρ (A,B) . Next let x2 = 1∈ A0 and y2 = 1∈ B0.Then ρ (x2− y2) =

|1−1| = 0 = dρ (A,B) and ρ (x−T x) = |1−T (1)| =
∣∣∣1−( |1|2 + 1

2

)∣∣∣ = 0 = dρ (A,B) . That is

ρ (x1− x2) = |−1−1|= 2 = ρ (y1− y2) = |−1−1|= 2. Implies that ρ (x1− x2) = ρ (y1− y2) .

If we define T ( f ) in a different way, we will have a different unique best proximity point

such as for T ( f ) = | f |
2 +1,T ( f ) = | f |

2 + 3
4 , best proximity points are 0 and 1

4 respectively.

If we put A = B in Theorem 3.1, we get the following important corollary where the best

proximity points become fixed points.

Corollary 3.1. Let Xρ be a modular function space, and A a nonempty ρ-closed subset of Xρ .

Let T : A→ A be Fρ−contractive self map. Then T has a unique fixed point x∗in A.

We give the following example to validate the above corollary.

Example 3.2. Let Xρ =R,A = [−2,3] ,ρ (x) =
√

x,T (x) = |x|+1
2 ,τ = 1

2 ln2, F (α) = lnα, then

ρ (T x−Ty)=
√
(T x−Ty)=

√( |x|
2 −

|y|
2

)
≤
√(1

2 |x− y|
)
. That is, ρ (T x−Ty)≤

√1
2ρ (x− y) .
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By taking ln both sides, we have ln(ρ (T x−Ty))≤ ln
(√1

2ρ (x− y)
)
= ln

(√1
2

)
+ln(

√
ρ (x− y)) .

That is, ln(ρ (T x−Ty))≤ ln(ρ (x− y))− 1
2 ln(2) . This implies that

F (ρ (T x−Ty)) ≤ F (ρ (x− y))− τ. Next, 1 ∈ A is the unique fixed point of T.

If we put F (α) = lnα in Corollary 3.1, we will get

Theorem(5.7) on page187 of Almezel et al [?].as special case in the form of the following

corollary.

Corollary 3.2. Consider a modular, ρ and take C ⊆ Xρ such that C be nonempty, ρ-closed

and ρ-bounded. Let T : C→ C be a ρ-contraction. Then, T has a unique fixed point x̃ ∈ C.

Moreover, for any x ∈C, ρ (T n(x)− x̃)→ 0 as n→ ∞, where T n is the n-th iterate of T.

3.2. Fρ -proximal contractions of first kind. In this part of the paper, we present a result us-

ing Fρ -proximal contractions of first kind. It actually deals with the coincidence best proximity

point of two mappings.

Theorem 3.2. Let A and B be nonempty ρ-closed subsets of a modular function spaces Xρ .

Also, it is supposed that A0 is nonempty. Let T : A→ B be a ρ-continuous Fρ -proximal con-

traction of first kind such that T (A0) ⊆ B0. Let g : A→ A be an isometry with A0 ⊆ g(A0).

Then there exists a unique element x ∈ A such that ρ (gx−T x) = dρ (A,B) .That is, x is the

coincidence best proximity point of T and g.

Proof. Let x0 ∈ A0. Since T x0 ∈ T (A0) ⊆ B0, and A0 ⊆ g(A0) , there exists x1 in A0 such that

ρ (gx1−T x0) = dρ (A,B) . If x0 = x1 then put xn := x1 for all n≥ 2. Also, since T x1 ∈ T (A0)⊆

B0, and A0 ⊆ g(A0) , there exists x2 in A0 such that ρ (gx2−T x1) = dρ (A,B) . If x1 = x2, then

put xn := x2 for all n≥ 3. Going on in this way, we get a sequence {xn} in A0 such that

(11) ρ (gxn+1−T xn) = dρ (A,B) for all n ∈ N.

We now prove that the sequence {xn} is ρ-convergent in A0. Without loss of real generality,

we can assume that ρ (gxn−gxn+1) 6= 0 for all n ∈ N . Since T is a ρ-continuous Fρ -proximal

contraction of the first kind, for any positive integer n, by(11) , we have

τ +F (ρ (c(gxn−gxn+1)))≤ F (ρ (l (xn−1− xn))) ,
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or

F (ρ (c(xn− xn+1))) ≤ F (ρ (l (xn−1− xn)))− τ

≤ F (ρ (c(xn−1− xn)))− τ

≤ F (ρ (l (xn−1− xn)))−2τ.

Inductively, we reach at

(12) F (ρ (c(xn− xn+1)))≤ F (ρ (l (x0− x1)))−nτ.

Following the techniques similar to Theorem 3.1, it follows that {xn} is a ρ−Cauchy sequence

in A. Thus limn→∞ xn = x for some x ∈ A from the assumptions on Xρ and A. Now continuity

of ρ,T and g implies that ρ (gxn+1−T xn) ρ−converges to ρ (gx−T x) . Thus from (11) , we

achieve

ρ (gx−T x) = dρ (A,B) .

That is, x is the coincidence best proximity point of T and g.

To show the uniqueness of the coincidence best proximity point, suppose that T and g has

two coincidence best proximity points x1 and x2 ∈ A. Let x1 6= x2 so ρ (x1− x2)> 0. Exploiting

the facts that T is an Fρ -proximal contraction of first kind and g is an isometry, we can write

F (ρ (x1− x2)) = F (ρ (gx1−gx2))≤ F (ρ ( x1− x2))− τ < F (ρ ( x1− x2)) .

This is a contradiction. Hence the coincidence best proximity point of T and g is unique. �

If g is the identity mapping, then we get the following corollary.

Corollary 3.3. Let A and B be nonempty ρ-closed subsets of a modular function spaces Xρ

such that A is approximately ρ-compact with respect to B. Further, suppose that A0 is nonempty.

If T : A→ B is a ρ-continuous Fρ -proximal contraction with T (A0)⊆ B0. Then T has a unique

best proximity point in A.

3.3. Ciric type generalized Fρ -proximal contractions. Here we extend our idea of Fρ -proximal

contraction to Ciric type generalized Fρ -proximal contraction and prove some related results.

Our first result in this direction reads as follows.
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Theorem 3.3. Let Xρ be a complete modular function space and A,B nonempty ρ-closed subset

of Xρ . Further, let T : A→ B be a continuous Ciric type generalized Fρ -proximal contraction

with T (A0) ⊆ B0. Let g : A→ A be an isometry with A0 ⊆ g(A0) . Then, there exists a unique

element x in A such that ρ(gx−T x) = dρ(A,B).

Proof. Let x0 ∈ A0. Since T x0 ∈ T (A0) ⊆ B0 and A0 ⊆ g(A0) , there exists x1 ∈ A0 such that

ρ (gx1−T x0) = dρ (A,B) . Put xn := x1 for all n ≥ 2 if x0 = x1. Since T x1 ∈ T (A0) ⊆ B0

and A0 ⊆ g(A0) , there exists x2 ∈ A0 such that ρ (gx2−T x1) = dρ (A,B) . If x1 = x2, then put

xn := x2 for all n≥ 3. A sequence {xn} in A0 can be obtained in this way such that

(13) ρ (gxn+1−T xn) = dρ (A,B) for all n ∈ N.

If ρ (gxn0−gxn0+1) = 0 for some n0 ∈N such that, then it is clear that the sequence {xn} is ρ-

convergent. We thus prove that the sequence {xn} is ρ-convergent in A0 when ρ (gxn−gxn+1) 6=

0 for all n ∈ N. As g is an isometry, T is a ρ-continuous generalized Fρ -proximal contraction,

by (13), we get

τ + F (ρ (c(xn− xn+1))) = τ +F (ρ (c(gxn−gxn+1)))

≤ F

max

 ρ (l (xn−1− xn)) ,ρ (l (xn−1− xn)) ,ρ (l (xn− xn+1)) ,

1
2

{
ρ
( l

2 (xn−1− xn+1)
)
+ρ

( l
2 (xn−un)

)}

 ,

for all n ∈ N. That is

τ +F (ρ (c(xn− xn+1)))

≤ F

max

 ρ (l (xn−1− xn)) ,ρ (l (xn− xn+1)) ,

1
2

{
ρ
( l

2 (xn−1− xn+1)
)}


 ,(14)

for all n ∈ N. Noting

(15)
1
2

{
ρ

(
l
2
(xn−1− xn+1)

)}
≤ 1

2
{ρ (l (xn−1− xn )+ρ (l (xn− xn+1)))}

and using (14), we can write

τ +F (ρ (c(xn− xn+1)))

≤ F

max

 ρ (l (xn−1− xn)) ,ρ (l (xn− xn+1)) ,

1
2 {ρ (l (xn−1− xn )+ρ (l (xn− xn+1)))}


 .
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That is to say

τ +F (ρ (c(xn− xn+1)))≤ F ( ρ (l (xn−1− xn))) .

This implies that

F (ρ (c(xn− xn+1))) ≤ F ( ρ (l (xn−1− xn)))− τ

≤ F ( ρ (c(xn−1− xn)))− τ

≤ F ( ρ (l (xn−2− xn−1)))−2τ

≤ F ( ρ (c(xn−2− xn−1)))−2τ.

Inductively, we get

F (ρ (c(xn− xn+1)))≤ F ( ρ (l (x0− x1)))−nτ.

Now walking on the foot steps of Theorem (3.1) , we can reach the fact that {xn} is a ρ−Cauchy

sequence in A. Since Xρ is ρ-complete and A is a ρ-closed subset of Xρ , there exists x ∈ A such

that limn→∞ xn = x. Now making use of continuity of ρ,T and g, we can say ρ (gxn+1−T xn)

ρ-converges to ρ (gx−T x) . In turn, by (13), we have

ρ (gx−T x) = dρ (A,B) .

Hence x is the coincidence best proximity point of T and g.

Next let us suppose that T and g has two coincidence best proximity point x1 and x2 ∈ A with

x1 6= x2 so that ρ (x1− x2)> 0. Since T is a generalized Fρ -proximal contraction, we have

F (ρ (x1− x2)) = F (ρ (gx1−gx2))

≤ F

max

 ρ (l ( x1− x2)) ,ρ (l ( x1− x1)) ,ρ (l ( x2− x2)) ,

1
2

{
ρ
( l

2 ( x1− x2)+ρ
( l

2 ( x2 − x1)
))}


−τ < F (ρ ( x1− x2)) ,

which is a contradiction. Hence the coincidence best proximity point of T and g is unique. �

If g is the identity mapping, the following is immediate.

Corollary 3.4. Let Xρ be a complete modular function space and A,B be nonempty ρ-closed

subset of Xρ . Further, suppose that there exists a∈A0. Let T : A→B be a continuous generalized
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Fρ -proximal contraction such that T (A0)⊆ B0. Then, there exists a unique element x in A such

that

ρ(x−T x) = dρ(A,B).

If we choose F (α) = ln(α) in Theorem 3.3, then Ciric type generalized Fρ -proximal con-

traction becomes a Ciric type generalized ρ-proximal contraction and we get the following

corollary

Corollary 3.5. Let Xρ be a complete modular function space and A,B be nonempty ρ-closed

subset of Xρ . Further, let T : A→ B be continuous Ciric type generalized ρ−proximal con-

traction with T (A0)⊆ B0, and g : A→ A be an isometry with A0 ⊆ g(A0) . Then there exists a

unique x ∈ A such that

ρ(gx−T x) = dρ(A,B).

3.4. Fρ -proximal-quasi contractions. This portion of the paper is dedicated to the best prox-

imity point results of Fρ -proximal-quasi contractions in modular function spaces. Before pro-

ceeding to our main target, we need to gather some basics as follows.

Lemma 3.1. [11] Let T : A→ B be a nonself mapping with T (A) ⊆ B0. Suppose that A0 6=

φ .Then, for any a ∈ A0, there exists a sequence {xn} ⊂ A0 such that x0 = a and

(16) ρ (xn+1−T xn) = distρ(A,B) for all n ∈ N.

Proof. Let a∈A0, then T (a)∈B0. Thus there exists x1 ∈A0 such that ρ(x1−T (a))= distρ(A,B)

owing to B0. Again, we have T (x1) ∈ B0, which implies that there exists x2 ∈ A0 such that

ρ(x2−T (x1)) = distρ(A,B). Continuing this process, we obtain a sequence {xn} ⊂ A0 satisfy-

ing ρ (xn+1−T xn) = distρ(A,B) for all n ∈N.The sequence {xn} ⊂ A0 satisfying (16) is called

a proximal Picard sequence associated to a ∈ A0. We denote by PP(a) the set of all proximal

sequences associated to a ∈ A0. The set A0 is called proximal T−orbitally ρ−complete if every

ρ−Cauchy sequence {xn} ∈ PP(a) for some a ∈ A0 ρ-convergence to an element in A0. Let

a ∈ A0 and {xn} ∈ PP(a). For all n ∈ N, we denote

(17) δρ(xn) := sup{ρ (xn+s− xn+r) : r,s ∈ N} .
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Since x0 = a, we have

(18) δρ(a) := sup{ρ (xs− xr) : r,s ∈ N} .

�

Theorem 3.4. Let Xρ be a complete modular function space and A,B be nonempty ρ-closed

subset of Xρ . Further, let T : A→B be a continuous Fρ -proximal-quasicontraction with T (A0)⊆

B0. Let g : A→ A be an isometry with A0 ⊆ g(A0) . Suppose further that there exists a ∈ A0

such that δρ (a)< ∞. Then there exists a unique element x in A such that

ρ(gx−T x) = dρ(A,B).

Proof. Let xn ∈ PP(a) and (s,r) ∈ N2. From the definition of PP(a) , for all n≥ 1, we have

ρ (xn+s−T xn−1+s) = ρ (gxn+s−T xn−1+s) = distρ(A,B),

and

ρ (xn+r−T xn−1+r) = ρ (gxn+r−T xn−1+r) = distρ(A,B).

Because of the fact that T is Fρ -proximal-quasi contraction, we have for all n≥ 1 and (s,r) ∈

N2,

F (ρ (xn+s− xn+r))− τ = F (ρ (gxn+s−gxn+r))− τ

≤ F(max{ρ (xn−1+s− xn−1+r) ,ρ (xn−1+s− xn+s) ,

ρ (xn−1+r− xn+r) ,ρ (xn−1+s− xn+r)+ρ (xn−1+r− xn+s)}).

Since F is strictly increasing, we deduce that

ρ (xn+s− xn+r) ≤ max{ρ (xn−1+s− xn−1+r) ,ρ (xn−1+s− xn+s) ,

ρ (xn−1+r− xn+r) ,ρ (xn−1+s− xn+r)+ρ (xn−1+r− xn+s)}.

This implies that

ρ (xn+s− xn+r)≤ δρ (xn−1) ,

and consequently

τ +F
(
δρ (xn)

)
≤ F

(
δρ (xn−1)

)
, for all n≥ 1.
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That is,

F
(
δρ (xn)

)
≤ F

(
δρ (xn−1)

)
− τ, for all n≥ 1.

Hence for any n ∈ N,we have

F
(
δρ (xn)

)
≤ F

(
δρ (a)

)
−nτ

and so

lim
n→+∞

F
(
δρ (xn)

)
=−∞.

By property (C1) of Definition 2,we get that limn→+∞

(
δρ (xn)

)
= 0. It is not hard now to prove

that {xn} is a ρ−Cauchy sequence in A on the lines similar to Theorem 3.1. Since T is contin-

uous, we have T xn→ x. Also by continuity of ρ and g,

ρ (gxn+s−T xn−1+s)→ ρ (gx−T x) .

ans so by 13, we have

ρ (gx−T x) = distρ(A,B).

Uniqueness: Let us suppose that x∗ ∈ A is another best proximity point of T such that

ρ (gx∗−T x∗) = distρ (A−B) ,

Since x∗ 6= x so ρ (x− x∗) 6= 0. Now g is an isometry, T is Fρ -proximal-quasi contraction, so we

obtain the following:

F (ρ (x− x∗)) = F (ρ (gx−gx∗))

≤ F (max(ρ (x− x∗) ,ρ (x− x) ,ρ (x∗− x∗) ,ρ (x− x∗)+ρ (x∗− x)))− τ.

This yields a contradiction on rewriting it as

F (ρ (x− x∗))≤ F (ρ (x− x∗))− τ.

Hence the uniqueness. �
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If we take g as the identity map in Theorem 3.4, we get the following corollary.

Corollary 3.6. Let Xρ be a complete modular function space and A,B be nonempty ρ-closed

subset of Xρ . Suppose that there exists a ∈ A0 such that δρ (a) < ∞. Further, let T : A→ B be

a continuous Fρ -proximal-quasi contraction satisfying T (A0)⊆ B0. Then, there exists a unique

element x in A such that

ρ(x−T x) = dρ(A,B).

If we put F (α) = lnα in Corollary 3.4, then we get the following corollary which is Theorem

10 of Jleli et al. [11]

Corollary 3.7. Let Xρ be a complete modular function space and A,B be nonempty ρ-closed

subset of Xρ . Suppose that there exists a ∈ A0 such that δρ (a) < ∞. Further, let T : A→ B be

a continuous ρ-proximal-quasi contraction satisfying T (A0) ⊆ B0. Then, there exists a unique

element x in A such that

ρ(x−T x) = dρ(A,B).

Remark 3.1 In case A = B, a best proximity point of T : A→ B becomes a fixed point of the

self-mapping T. If we put A = B in Corollary 3.4, we get Khamsi [16] result. This means that

our results are more general than Khamsi [16], Jleli et al. [11], Omidvari et at. [9], etc. Both

Khamsi [16] and Jleli et al. [11] have used Fatou property, but we have successfully avoided

this property by involving Fρ -contractions
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