SIMULTANEOUS EXTRAGRADIENT ITERATIVE METHOD TO A SPLIT EQUALITY VARIATIONAL INEQUALITY PROBLEM AND A MULTIPLE-SETS SPLIT EQUALITY FIXED POINT PROBLEM FOR MULTI-VALUED DEMICONTRACTIVE MAPPINGS

KALEEM RAZA KAZMI¹,², MOHD FURKAN², REHAN ALI³,*

¹Department of Mathematics, Faculty of Science and Arts- Rabigh, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia

²Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India

³Department of Mathematics, Jamia Millia Islamia, New Delhi-110025, India

Copyright © 2019 the authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. This paper deals with a strong convergence theorem for a simultaneous extragradient iterative method to approximate a common solution to a split equality variational inequality problem and a multiple-sets split equality fixed point problem for two countable families of multi-valued demicontractive mappings in real Hilbert spaces. Further, we give a numerical example to justify the main result. The method and results presented in this paper extend and unify some recent known results in the literature.

Keywords: split equality variational inequality problem.; multiple-sets split equality fixed point problem; multi-valued demicontractive mapping; simultaneous extragradient iterative method; monotone mapping.

2010 AMS Subject Classification: 47H05, 47H09, 47J25, 49J40, 90C25.

*Corresponding author
E-mail address: rehan08amu@gmail.com
Received January 23, 2019
1. **Introduction**

Let H_1, H_2 and H_3 be real Hilbert spaces, let $C \subseteq H_1$ and $Q \subseteq H_2$ be nonempty, closed and convex sets. We denote the inner products and induced norms of H_1, H_2 and H_3 by notations $\langle \cdot, \cdot \rangle$ and $\| \cdot \|$, respectively.

The split feasibility problem (in short, S\textsubscript{p}FP) is to find:

(1) \[x^* \in C \text{ such that } Ax^* \in Q, \]

where $A : H_1 \to H_2$ is a bounded linear operator. The S\textsubscript{p}FP(1) in finite dimensional Hilbert spaces was introduced by Censor and Elfving [5] for modeling inverse problem which arises from retrievals and in medical image reconstruction [4]. Since then various iterative methods have been proposed to solve S\textsubscript{p}FP(1); see for instance [1, 3, 12, 21].

Censor et al. [7] proposed the following multiple-sets split feasibility problem (in short, MSS\textsubscript{p}FP), which arises in applications such as intensity modulated radiation therapy [20]:

(2) \[x^* \in \bigcap_{i=1}^{N} C_i \text{ such that } Ax^* \in \bigcap_{j=1}^{M} Q_j, \]

where N and M are positive integers, for each i, j, $C_i \subset H_1$ and $Q_j \subset H_2$ are nonempty, closed and convex sets.

A mapping $F_1 : H_1 \to H_1$ is said to be firmly quasi-nonexpansive if $\text{Fix}(F_1) \neq \emptyset$ and

(3) \[\|F_1 x - x^*\|^2 \leq \|x - x^*\|^2 - \|x - F_1 x\|^2, \forall x^* \in \text{Fix}(F_1), x \in H_1, \]

where $\text{Fix}(F_1) := \{ x \in H_1 : x = F_1 x \}$, the set of fixed points of F_1.

A mapping $F_1 : C \to C$ is said to be k-demicontractive if $\text{Fix}(F_1) \neq \emptyset$ and there exists a constant $k \in (0, 1)$ such that

(4) \[\|F_1 x - x^*\|^2 \leq \|x - x^*\|^2 + k \|x - F_1 x\|^2, \forall x^* \in \text{Fix}(F_1), x \in C. \]

Evidently, the class of demicontractive mappings properly includes the class of firmly quasi-nonexpansive mappings.

Remark 1.1. [8] For negative values of k the class of demicontractive mappings is diminished to a great extent. Such class with negative value of k was considered under the name of strongly
attracting mapping. In particular, the mapping F_1 which satisfies (4) with $k = -1$ is called pseudo-contractive. Note that a mapping F_1 satisfying (4) with $k = 1$ is usually called hemicontractive and used in connection with the strong convergence of the implicit Mann-type iteration method.

Example 1.1. [11] Let f be a real function defined by $f(x) = -x^2 - x$; it can be seen that $f: [-2, 1] \rightarrow [-2, 1]$. This function is demicontractive on $[-2, 1]$ and continuous. It is not quasi-nonexpansive and is not pseudo-contractive on $[-2, 1]$.

Rest of the paper, unless specified, let $A: H_1 \rightarrow H_2$ and $B: H_2 \rightarrow H_3$ be bounded linear operators.

In 2013, Moudafi et al. [17] introduced and studied the following split equality fixed point problem (in short, S_pEFPP) which is a generalization of S_pFP (1): Find $x^* \in C$ and $y^* \in Q$ such that

Definition 1.1. Let $T_1: H_1 \Rightarrow CB(H_1)$ be a multi-valued mapping. $x^* \in H_1$ is said to be fixed point of T_1 if $x^* \in T_1 x^*$. We denote by $\text{Fix}(T_1)$, the set of fixed points of T_1 defined by

$$\text{Fix}(T_1) = \{ x \in H_1 : x \in T_1 x \}.$$

Definition 1.2. A multi-valued mapping $T_1: \mathcal{D}(T_1) \subset H_1 \Rightarrow CB(H_1)$ is said to be:

(i) nonexpansive if

$$D(T_1 x, T_1 y) \leq \| x - y \|, \forall x, y \in \mathcal{D}(T_1);$$
(ii) quasi-nonexpansive if \(\text{Fix}(T_1) \neq \emptyset \) and

\[
D(T_1 x, T_1 x^*) \leq \|x - x^*\|, \forall x^* \in \text{Fix}(T_1), x \in \mathcal{D}(T_1);
\]

(iii) \(k \)-demicontractive if \(\text{Fix}(T_1) \neq \emptyset \) and there exists a constant \(k \in (0, 1) \) such that

\[
(D(T_1 x, T_1 x^*))^2 \leq \|x - x^*\|^2 + k(D(x, T_1 x))^2, \forall x^* \in \text{Fix}(T_1), x \in \mathcal{D}(T_1),
\]

where \(\mathcal{D}(T_1) \) denotes the domain of \(T_1 \).

Evidently, the class of multi-valued demicontractive mappings properly includes the class of multi-valued quasi-nonexpansive mappings. The class of demicontractive mappings is important because several common types of operators arising in optimization problems belong to this class, see for example, Chidume and Maruster [8], Maruster and Popirlan [16] and references therein.

Example 1.2. Let \(H_1 = \mathbb{R} \), the set of all real numbers, \(T_1 : \mathbb{R} \to CB(\mathbb{R}) \) be defined by \(T_1(x) = \{-2x\}, \forall x \in \mathbb{R} \). We have that \(\text{Fix}(T_1) = \{0\} \) and \(T_1 \) is a multi-valued demicontractive mapping which is not quasi-nonexpansive. In fact, for each \(x \in \mathbb{R} \), we have

\[
(D(T_1 x, T_1 0))^2 = 4|x - 0|^2,
\]

which implies that \(T_1 \) is not quasi-nonexpansive. Also we have

\[
(D(T_1 x, T_1 0))^2 = |x - 0|^2 + \frac{1}{3}(d(x, T_1 x))^2.
\]

This implies that \(T_1 \) is demicontractive with \(k = \frac{1}{3} \).

In 2014, Wu et al. [23] introduced and studied the following multiple-sets split equality problem for finite families of multi-valued quasi-nonexpansive mappings:

\[
\text{Find } x^* \in \bigcap_{i=1}^{N} \text{Fix}(T_i) \text{ and } y^* \in \bigcap_{i=1}^{N} \text{Fix}(S_i) \text{ such that } Ax^* = By^*,
\]

where \(N \) is a positive integer, and \(\{T_i\}_{i=1}^{N} : H_1 \rightrightarrows CB(H_1), \{S_i\}_{i=1}^{N} : H_2 \rightrightarrows CB(H_2) \) are families of multi-valued quasi-nonexpansive mappings.
Very recently, Chidume [11] introduced and studied the following multiple-sets split equality fixed point problem (in short, MSS\(_p\)EFPP) for countable families of multi-valued demi-contractive mappings:

\[
\text{Find } x^* \in \bigcap_{i=1}^{\infty} \text{Fix}(T_i) \text{ and } y^* \in \bigcap_{i=1}^{\infty} \text{Fix}(S_i) \text{ such that } Ax^* = By^*,
\]

where \(\{T_i\}_{i=1}^{\infty} : H_1 \rightrightarrows \text{CB}(H_1)\) and \(\{S_i\}_{i=1}^{\infty} : H_2 \rightrightarrows \text{CB}(H_2)\) are countable families of multi-valued demicontractive mappings.

We consider the following split equality variational inequality problem (in short, S\(_p\)EVIP):

Find \(x^* \in C\) and \(y^* \in Q\) such that

\[
\langle f(x^*), x - x^* \rangle \geq 0, \forall x \in C
\]

(9)

\[
\langle g(y^*), y - y^* \rangle \geq 0, \forall y \in Q
\]

(10)

and \(Ax^* = By^*\),

where \(f : C \to H_1\) and \(g : Q \to H_2\) be single-valued mappings. When looked separately, (9) is called variational inequality problem (in short, VIP) and its solution set is denoted by \(\text{Sol}(\text{VIP}(9))\). The solution set of S\(_p\)EVIP(9)-(10) is denoted by \(\text{Sol}(\text{S}\(_p\)EVIP(9)-(10)) = \{(x^*, y^*) \in C \times Q : x^* \in \text{Sol}(\text{VIP}(9)), y^* \in \text{Sol}(\text{VIP}(10)) \text{ and } Ax^* = By^*\}\). S\(_p\)EVIP(9)-(10) generalizes split variational inequality problem (in short, S\(_p\)VIP) studied by Censor et al. [6].

In 1976, Korpelevich [13] introduced the following iterative method which is known as extragradient iterative method:

\[
\begin{align*}
 x_0 & \in C, \\
 y_n & = P_C(x_n - \lambda f x_n), \\
 x_{n+1} & = P_C(x_n - \lambda f y_n), \quad n \geq 0,
\end{align*}
\]

(11)

where \(\lambda > 0\) is a fixed number, \(f\) is a monotone and Lipschitz continuous mapping and \(P_C\) is the metric projection of \(H_1\) onto \(C\); and proved that if the \(\text{Sol}(\text{VIP}(9))\) is nonempty then, under some suitable conditions, the sequence \(\{x_n\}\) generated by algorithm (11) converges to a solution of variational inequality (9). Since then a number of generalizations of extragradient iterative
method has been studied for various important classes of problems, see for instance [15, 18, 22] and the relevant references therein.

Motivated by the ongoing research work in this direction, we propose and analyze a simultaneous extragradient iterative method to approximate a common solution to S_pEVIP(9)-(10) and MSS_pEFPP(8) for countable families of multi-valued demicontractive mappings in real Hilbert spaces. Further, we give a numerical example to justify the main result. The method and results presented in this paper extend and unify some recent known results in the literature; see for instance [6, 9, 11, 17, 24].

2. Preliminaries

We recall some definitions and results which are needed in sequel. Let \to and \rightharpoonup denote the strong and weak convergence, respectively and \mathbb{N} denote the set of natural numbers.

For every point $x \in H_1$, there exists a unique nearest point in C denoted by $P_C x$ such that

$$\|x - P_C x\| \leq \|x - y\|, \forall y \in C.$$

The mapping P_C is called the metric projection of H_1 onto C. It is known that P_C is nonexpansive and satisfies

$$\langle x - y, P_C x - P_C y \rangle \geq \|P_C x - P_C y\|^2, \forall x \in H_1.$$

Moreover, $P_C x$ is characterized by the fact that $P_C x \in C$ and

$$\langle x - P_C x, y - P_C x \rangle \leq 0, \forall y \in C$$

which implies that

$$\|x - y\|^2 \geq \|x - P_C x\|^2 + \|y - P_C x\|^2, \forall x \in H_1, y \in C.$$

Definition 2.1. A mapping $f : C \to H_1$ is said to be:

(i) monotone, if

$$\langle fx - fy, x - y \rangle \geq 0, \forall x, y \in H_1;$$
(ii) \(\alpha \)-inverse strongly monotone, if there exists a constant \(\alpha > 0 \) such that
\[
\langle f(x) - f(y), x - y \rangle \geq \alpha \| f(x) - f(y) \|^2, \quad \forall x, y \in H_1;
\]

(iii) \(\beta \)-Lipschitz continuous, if there exists a constant \(\beta > 0 \) such that
\[
\| f(x) - f(y) \| \leq \beta \| x - y \|, \quad \forall x, y \in H_1.
\]

We note that if \(f \) is \(\alpha \)-inverse strongly monotone mapping, then \(f \) is monotone and \(\frac{1}{\alpha} \)-Lipschitz continuous but converse need not be true. For \(\alpha = 1 \), \(\alpha \)-inverse strongly monotone mapping \(f \) is called firmly nonexpansive mapping.

Definition 2.2. A mapping \(T_1 : H_1 \rightarrow H_1 \) is said to be:

(i) demiclosed at zero if for any sequence \(\{x_n\} \subset H_1 \), with \(x_n \rightharpoonup x^* \) and \(\| x_n - T_1x_n \| \rightarrow 0 \), we have \(x^* = T_1x^* \).

(ii) semicompact if for any bounded sequence \(\{x_n\} \subset H_1 \), with \(\| x_n - T_1x_n \| \rightarrow 0 \), there exists a subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) such that \(\{x_{n_k}\} \) converges strongly to some \(x^* \in H_1 \).

Definition 2.3. [2]. A multi-valued mapping \(T_1 : H_1 \rightrightarrows 2^{H_1} \) is said to be:

(i) monotone if
\[
\langle u - v, x - y \rangle \geq 0, \text{ whenever } u \in T_1(x), \ v \in T_1(y);
\]

(ii) maximal monotone if \(T_1 \) is monotone and the graph, \(\text{graph}(T_1) := \{(x,y) \in H_1 \times H_1 : y \in T_1(x)\} \), is not properly contained in the graph of any other monotone mapping.

It is well known that for each \(x \in H_1 \) and \(\lambda > 0 \) there is a unique \(z \in H_1 \) such that \(x \in (I + \lambda T_1)z \).

The mapping \(J^T_{\lambda} := (I + \lambda T_1)^{-1} \) is called the resolvent of \(T_1 \). It is a single-valued and firmly nonexpansive mapping defined on \(H_1 \).

Definition 2.4. A multi-valued mapping \(T_1 : H_1 \rightrightarrows CB(H_1) \) is said to be:

(i) demiclosed at zero if for any sequence \(\{x_n\} \subset H_1 \), with \(x_n \rightharpoonup x^* \) and \(d(x_n, T_1x_n) \rightarrow 0 \), we have \(x^* \in T_1x^* \).

(ii) hemicompact if for any bounded sequence \(\{x_n\} \subset H_1 \), with \(d(x_n, T_1x_n) \rightarrow 0 \), there exists a subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) such that \(\{x_{n_k}\} \) converges strongly to some \(x^* \in H_1 \).
Lemma 2.1. [11] Let \(C \) be a nonempty subset of a real Hilbert space \(H \) and let \(T_1 : C \rightrightarrows CB(C) \) be a multi-valued \(k \)-demiccontractive mapping. Let for every \(z \in \text{Fix}(T_1) \), \(T_1z = \{z\} \). Then there exists \(L > 0 \) such that

\[
D(T_1x, T_1z) \leq L\|x - z\|, \quad \forall x \in C, \ z \in \text{Fix}(T_1).
\]

Lemma 2.2. For all \(x, y \in H \), we have

(i) \(\|x - y\|^2 = \|x\|^2 - \|y\|^2 - 2\langle x - y, y \rangle \);

(ii) \(2\langle x, y \rangle = \|x\|^2 + \|y\|^2 - \|x - y\|^2 = \|x + y\|^2 - \|x\|^2 - \|y\|^2 \).

Lemma 2.3. [19] (Opial’s lemma) Let \(\{\mu_n\} \) be a sequence in Hilbert space \(H \), such that there exists a nonempty set \(W \subset H \) satisfying:

(i) For every \(\mu^* \in W \), \(\lim_{n \to \infty} \|\mu_n - \mu^*\| \) exists.

(ii) Any weak-cluster point of the sequence \(\{\mu_n\} \) belongs to \(W \);

Then there exists \(\mu^* \in W \) such that \(\{\mu_n\} \) weakly converges to \(\mu^* \).

Lemma 2.4. [10] Let \(\{x_i\}_{i=1}^m \) be a set in Hilbert space \(H \). For \(\{\alpha_i\}_{i=1}^m \subset (0, 1) \) such that \(\sum_{i=1}^m \alpha_i = 1 \). Then the following identity holds:

\[
\left\| \sum_{i=1}^m \alpha_i x_i \right\|^2 = \sum_{i=1}^m \alpha_i \|x_i\|^2 - \sum_{1 \leq i < j \leq m} \alpha_i \alpha_j \|x_i - x_j\|^2.
\]

Remark 2.1. It follows from Lemma 2 that the following identity holds:

\[
\left\| \sum_{i=1}^\infty \alpha_i x_i \right\|^2 = \sum_{i=1}^\infty \alpha_i \|x_i\|^2 - \sum_{i,j=1, i \neq j}^\infty \alpha_i \alpha_j \|x_i - x_j\|^2.
\]

for \(\sum_{i=1}^\infty \alpha_i = 1 \), provided that \(\{x_i\} \) is bounded.

3. Simultaneous Extragradient Iterative Algorithms

We propose the following simultaneous extragradient iterative algorithm to approximate a common solution of \(S_p\text{EVIP}(9) - (10) \) and \(MSS_p\text{EFPP}(8) \).
Algorithm 3.1. Let \((x_1, y_1) \in H_1 \times H_2\) be given. The iteration sequences \(\{x_n, y_n\}\) be generated by the schemes:

\[
\begin{align*}
p_n &= P_C(x_n - \gamma_n A^*(Ax_n - By_n)); \\
u_n &= P_C(I - \lambda_n f)p_n; \\
c_n &= P_C(p_n - \lambda_n f u_n); \\
x_{n+1} &= \alpha_0 c_n + \sum_{i=1}^{\infty} \alpha_i w_{i,n}, w_{i,n} \in T_ic_n; \\
q_n &= P_Q(y_n + \gamma_n B^*(Ax_n - By_n)); \\
v_n &= P_Q(I - \lambda_n g)q_n; \\
e_n &= P_Q(q_n - \lambda_n g v_n); \\
y_{n+1} &= \alpha_0 e_n + \sum_{i=1}^{\infty} \alpha_i z_{i,n}, z_{i,n} \in S_ie_n,
\end{align*}
\]

(15)

where \(\alpha_0 \in (k, 1), \alpha_i \in (0, 1)\), for each \(i \in \mathbb{N}\) such that \(\sum_{i=0}^{\infty} \alpha_i = 1\) and the step size \(\gamma_n\) is chosen in such a way that for some \(\varepsilon > 0\),

\[
\gamma_n \in (\varepsilon, \mu_n - \varepsilon), \ n \in \Lambda,
\]

(16)

otherwise \(\gamma_n = \gamma (\gamma \geq 0)\), where \(\mu_n := \frac{2\|Au_n - Bv_n\|^2}{\|A^*(Au_n - Bv_n)\|^2 + \|B^*(Au_n - Bv_n)\|^2}\) and the index set \(\Lambda = \{n : Ax_n - By_n \neq 0\}\).

Remark 3.1. \([24]\) It follows from condition (16) that \(\inf_{n \in \Lambda} \{\mu_n - \gamma_n\} > 0\). Since \(\|A^*(Au_n - Bv_n)\| \leq \|A^n\|\|Au_n - Bv_n\|\) and \(\|B^*(Au_n - Bv_n)\| \leq \|B^n\|\|Au_n - Bv_n\|\), we observe that \(\{\mu_n\}\) is bounded below by \(\frac{2}{\|A^n\| + \|B^n\|}\) and so \(\inf_{n \in \Lambda} \mu_n < +\infty\). Consequently \(\sup_{n \in \Lambda} \gamma_n < +\infty\) and hence \(\{\gamma_n\}\) is bounded.

For each \(i \in \mathbb{N}\), if \(T_i\) and \(S_i\) are single-valued demicontractive mappings then Algorithm 3.1 is reduced to the following simultaneous extragradient iterative algorithm to approximate a common solution of \(S_p\text{EVIP}(9)-(10)\) and \(S_p\text{EFPP} (5)\):
Algorithm 3.2. Let \((x_1, y_1) \in H_1 \times H_2\) be given. The iteration sequences \(\{(x_n, y_n)\}\) be generated by the schemes:

\[
\begin{align*}
 p_n &= P_C(x_n - \gamma_n A^*(Ax_n - By_n)); \\
 u_n &= P_C(I - \lambda_n f)p_n; \\
 c_n &= P_C(p_n - \lambda_n fu_n); \\
 x_{n+1} &= \alpha_0 c_n + \sum_{i=1}^{\infty} \alpha_i T_i c_n; \\
 q_n &= P_Q(y_n + \gamma_n B^*(Ax_n - By_n)); \\
 v_n &= P_Q(I - \lambda g)q_n; \\
 e_n &= P_Q(q_n - \lambda_n g v_n); \\
 y_{n+1} &= \alpha_0 e_n + \sum_{i=1}^{\infty} \alpha_i S_i e_n,
\end{align*}
\]

(17)

where \(\alpha_0 \in (k, 1), \alpha_i \in (0, 1)\), for each \(i \in \mathbb{N}\) such that \(\sum_{i=0}^{\infty} \alpha_i = 1\) and the step size \(\gamma_n\) is chosen in such a way that for some \(\epsilon > 0\),

\[
\gamma_n \in (\epsilon, \mu_n - \epsilon), \quad n \in \Lambda,
\]

(18)

otherwise \(\gamma_n = \gamma (\gamma \geq 0)\), where \(\mu_n := \frac{2\|Au_n - Bv_n\|^2}{\|A^*(Au_n - Bv_n)\|^2 + \|B^*(Au_n - Bv_n)\|^2}\) and the index set \(\Lambda = \{n : Ax_n - By_n \neq 0\}\).

4. Main results

We prove a strong convergence theorem to approximate a common solution to \(S_p\text{EVIP}(9)-(10)\) and \(\text{MS}_p\text{EFPP}(8)\) for countable families of multi-valued demicontractive mappings by selecting the step size in such a way that the implementation of the algorithm does not require the calculation or estimation of the operator norms.

Theorem 4.1. Let \(H_1, H_2\) and \(H_3\) be real Hilbert spaces and \(C \subset H_1\), \(Q \subset H_2\) be nonempty, closed and convex sets. Let \(A : H_1 \to H_3\), \(B : H_2 \to H_3\) be bounded linear operators with their adjoint operators \(A^*\) and \(B^*\), respectively. Let \(f : C \to H_1\) be monotone and \(\alpha\)-Lipschitz continuous mapping and let \(g : Q \to H_2\) be monotone and \(\beta\)-Lipschitz continuous mapping. Let \(\{T_i\}_{i=1}^{\infty} : H_1 \rightrightarrows CB(H_1)\) and \(\{S_i\}_{i=1}^{\infty} : H_2 \rightrightarrows CB(H_2)\) be families of multi-valued demicontractive mappings with demicontractive constants \(k_i\) and \(s_i\), respectively and let \(k_1 = \sup_{i \geq 1} \{k_i\} \in (0, 1)\)
and $k_2 = \sup\{s_i\} \in (0, 1)$. For each $i \in \mathbb{N}$, let T_i and S_i be demiclosed at 0. Assume that for $x \in \bigcap_{i=1}^{\infty} \text{Fix}(T_i)$, $T_i x = \{x\}$ and for $y \in \bigcap_{i=1}^{\infty} \text{Fix}(S_i)$, $S_i y = \{y\}$, for each $i \in \mathbb{N}$. Assume that

$$\Gamma := \text{Sol}(S_p\text{EVIP}(9) - (10)) \bigcap \left(\bigcap_{i=1}^{\infty} \text{Fix}(T_i) \times \bigcap_{i=1}^{\infty} \text{Fix}(S_i) \right) \neq \emptyset.$$ If the sequence $\{\lambda_n\}_{n \in \mathbb{N}} \subset [a, b]$, for some a and b with $0 < a < b < \frac{1}{\min\{\alpha, \beta\}}$ and $k \in (0, 1)$ where $k = \max\{k_1, k_2\}$, then the sequence $\{(x_n, y_n)\}$ generated by Algorithm 3.1 converges weakly to $(\bar{x}, \bar{y}) \in \Gamma$. In addition, if for each $i \in \mathbb{N}$, T_i and S_i are hemicompact, then $\{(x_n, y_n)\}$ converges strongly to $(\bar{x}, \bar{y}) \in \Gamma$.

Proof. Let $(x, y) \in \Gamma$, i.e., for each $i \in \mathbb{N}$, $x \in T_i(x)$, $y \in S_i(y)$, $x \in \text{Sol}(\text{VIP}(9))$, $y \in \text{Sol}(\text{VIP}(10))$ and $Ax = By$. First, we prove that $\{w_{i,n}\}_{i=0}^{\infty}$ is bounded. Indeed, it follow from Lemma 2.1 that

$$\|w_{i,n} - x\| \leq D(T_i c_n, T_i x) \leq \frac{1 + \sqrt{k_1}}{1 - \sqrt{k_1}} \|c_n - x\| := M_n.$$ This implies that $\{w_{i,n}\}_{i=0}^{\infty}$ is bounded. Similarly, we obtain that $\{z_{i,n}\}_{i=0}^{\infty}$ is bounded.

We estimate

$$
\|p_n - x\|^2 = \|P_C(x_n - \gamma_n A^*(Ax_n - By_n)) - x\|^2 \\
\leq \|x_n - \gamma_n A^*(Ax_n - By_n) - x\|^2 \\
\leq \|x_n - x\|^2 - 2\gamma_n \langle x_n - x, A^*(Ax_n - By_n) \rangle + \gamma_n^2 \|A^*(Ax_n - By_n)\|^2 \\
(19) \leq \|x_n - x\|^2 - 2\gamma_n \langle Ax_n - Ax, Ax_n - By_n \rangle + \gamma_n^2 \|A^*(Ax_n - By_n)\|^2 \\
(20) \leq \|x_n - x\|^2 + 2\gamma_n \|Ax_n - Ax\| \|Ax_n - By_n\| + \gamma_n^2 \|A^*(Ax_n - By_n)\|^2.
$$

Using Lemma 2.2 (ii) in (19), we get

$$\|p_n - x\|^2 \leq \|x_n - x\|^2 - \gamma_n \|Ax_n - Ax\|^2 - \gamma_n \|Ax_n - By_n\|^2 + \gamma_n \|By_n - Ax\|^2 \\
+ \gamma_n^2 \|A^*(Ax_n - By_n)\|^2. \quad (21)$$

Similarly, we obtain

$$\|q_n - y\|^2 \leq \|y_n - y\|^2 - \gamma_n \|By_n - By\|^2 - \gamma_n \|Ax_n - By_n\|^2 + \gamma_n \|Ax_n - By\|^2 \\
+ \gamma_n^2 \|B^*(Ax_n - By_n)\|^2. \quad (22)$$
Adding (21) and (22), and using the fact that $Ax = By$, we get

$$
\|p_n - x\|^2 + \|q_n - y\|^2 \leq \|x_n - x\|^2 + \|y_n - y\|^2 - \gamma_n [2\|Ax_n - By_n\|^2 - \gamma_n (\|A^*(Ax_n - By_n)\|^2 + \|B^*(Ax_n - By_n)\|^2)].
$$

(23)

From condition (16) on γ, we obtain from (23) that

$$
\|p_n - x\|^2 + \|q_n - y\|^2 \leq \|x_n - x\|^2 + \|y_n - y\|^2.
$$

(24)

Since $c_n = P_C (p_n - \lambda_n f u_n)$, it follows from (14) that

$$
\|c_n - x\|^2 = \|P_C (p_n - \lambda_n f u_n) - x\|^2
\leq \|p_n - \lambda_n f u_n - x\|^2 - \|p_n - \lambda_n f u_n - c_n\|^2
\leq \|p_n - x\|^2 - \|p_n - c_n\|^2 + 2\lambda_n \langle f u_n, x - c_n \rangle
\leq \|p_n - x\|^2 - \|p_n - c_n\|^2 + 2\lambda_n [\langle f u_n - fx, x - u_n \rangle + \langle fx, x - u_n \rangle + \langle f u_n, u_n - c_n \rangle]
$$

(25)

Since f is monotone and the fact that $x \in \text{Sol}(\text{VIP}(9))$, we obtain from (25) that

$$
\|c_n - x\|^2 \leq \|p_n - x\|^2 - \|p_n - c_n\|^2 + 2\lambda_n \langle f u_n, u_n - c_n \rangle
\leq \|p_n - x\|^2 - \|p_n - u_n\|^2 - \|u_n - c_n\|^2 + 2\lambda_n \langle p_n - \lambda_n f u_n - u_n, c_n - u_n \rangle
$$

(26)

From (13), we have

$$
\langle p_n - \lambda_n f u_n - u_n, c_n - u_n \rangle = \langle p_n - \lambda_n f p_n - u_n, c_n - u_n \rangle + \lambda_n \langle f p_n - f u_n, c_n - u_n \rangle
\leq \lambda_n \langle f p_n - f u_n, c_n - u_n \rangle
$$

(27)

Since f is α-Lipschitz-continuous, we obtain

$$
2 \langle p_n - \lambda_n f u_n - u_n, c_n - u_n \rangle \leq 2 \lambda_n \|f p_n - f u_n\| \|c_n - u_n\|
\leq 2 \lambda_n \alpha \|p_n - u_n\| \|c_n - u_n\|
\leq (\lambda_n \alpha)^2 \|p_n - u_n\|^2 + \|c_n - u_n\|^2.
$$

(28)

(29)
Hence, from (26) and (29), we obtain

\begin{equation}
\|c_n - x\|^2 \leq \|p_n - x\|^2 - (1 - (\lambda_n \alpha)^2) \|p_n - u_n\|^2
\end{equation}

Similarly, we obtain

\begin{equation}
\|e_n - y\|^2 \leq \|q_n - y\|^2 - (1 - (\lambda_n \beta)^2) \|q_n - v_n\|^2
\end{equation}

On adding (30) and (31), we get

\begin{equation}
\|c_n - x\|^2 + \|e_n - y\|^2 \leq \|p_n - x\|^2 + \|q_n - y\|^2 - (1 - (\lambda_n \eta)^2)(\|p_n - u_n\|^2 + \|q_n - v_n\|^2),
\end{equation}

where \(\eta = \min\{\alpha, \beta\} \). Next, we estimate

\[
\|x_{n+1} - x\|^2 = \left\| \alpha_0 c_n + \sum_{i=1}^{\infty} \alpha_i w_{i,n} - x \right\|^2 \\
= \left\| \alpha_0 (c_n - x) + \sum_{i=1}^{\infty} \alpha_i (w_{i,n} - x) \right\|^2 \\
= \left\| \alpha_0 (c_n - x) + (1 - \alpha_0) \sum_{i=1}^{\infty} \frac{\alpha_i}{1 - \alpha_0} (w_{i,n} - x) \right\|^2 \\
= \alpha_0 \|c_n - x\|^2 + (1 - \alpha_0) \left(\left\| \sum_{i=1}^{\infty} \frac{\alpha_i}{1 - \alpha_0} (w_{i,n} - x) \right\|^2 \\
- \alpha_0 (1 - \alpha_0) \left\| \sum_{i=1}^{\infty} \frac{\alpha_i}{1 - \alpha_0} (w_{i,n} - c_n) \right\|^2 \right) \\
= \alpha_0 \|c_n - x\|^2 + (1 - \alpha_0) \left[\left\| \sum_{i=1}^{\infty} \frac{\alpha_i}{1 - \alpha_0} w_{i,n} - x \right\|^2 \\
- \sum_{i,j=1, i \neq j}^{\infty} \frac{\alpha_i \alpha_j}{1 - \alpha_0} \|w_{i,n} - w_{j,n}\|^2 \right] - \alpha_0 (1 - \alpha_0) \sum_{i=1}^{\infty} \frac{\alpha_i}{1 - \alpha_0} \|w_{i,n} - c_n\|^2
\]
\[
\begin{align*}
= \alpha_0 \|c_n - x\|^2 + \sum_{i=1}^{\infty} \alpha_i \|w_{i,n} - x\|^2 \\
- \sum_{i=1}^{\infty} \alpha_0 \alpha_i \|c_n - w_{i,n}\|^2 - \sum_{i,j=1, i \neq j}^{\infty} \alpha_i \alpha_j \|w_{i,n} - w_{j,n}\|^2 \\
\leq \alpha_0 \|c_n - x\|^2 + \sum_{i=1}^{\infty} \alpha_i D^2(T_i c_n, T_i x) - \sum_{i=1}^{\infty} \alpha_0 \alpha_i d^2(c_n, T_i c_n) \\
\leq \alpha_0 \|c_n - x\|^2 + \sum_{i=1}^{\infty} \alpha_i \|c_n - x\|^2 \\
+ \sum_{i=1}^{\infty} \alpha_i k_i d^2(c_n, T_i c_n) - \sum_{i=1}^{\infty} \alpha_0 \alpha_i d^2(c_n, T_i c_n) \\
\leq \|c_n - x\|^2 - \sum_{i=1}^{\infty} \alpha_i (\alpha_0 - k_i) d^2(c_n, T_i c_n)
\end{align*}
\]

Similarly, we obtain

\[
\|y_{n+1} - y\|^2 \leq \|e_n - y\|^2 - (\alpha_0 - k_1) \sum_{i=1}^{\infty} \alpha_i d^2(e_n, S_i e_n).
\]

On adding the inequalities (34), (35) and using \(k = \max\{k_1, k_2\}\), we get

\[
\|x_{n+1} - x\|^2 + \|y_{n+1} - y\|^2 \leq \|x_n - x\|^2 + \|e_n - y\|^2 - (\alpha_0 - k) \left(\sum_{i=1}^{\infty} \alpha_i d^2(e_n, S_i e_n) + \sum_{i=1}^{\infty} \alpha_i d^2(e_n, S_i e_n) \right).
\]

On using (23) and (32) in (36), we obtain

\[
\|x_{n+1} - x\|^2 + \|y_{n+1} - y\|^2 \leq \|x_n - x\|^2 + \|y_n - y\|^2 - (1 - (\lambda_n \eta)^2) (\|p_n - u_n\|^2 + \|q_n - v_n\|^2) \\
- \gamma_n [2\|Ax_n - By_n\|^2 - \gamma_n (\|A^* (Ax_n - By_n)\|^2 + \|B^* (Ax_n - By_n)\|^2)] \\
- (\alpha_0 - k) \left(\sum_{i=1}^{\infty} \alpha_i d^2(c_n, T_i c_n) + \sum_{i=1}^{\infty} \alpha_i d^2(e_n, S_i e_n) \right).
\]
Now, setting $\rho_n(x,y) := \|x_n - x\|^2 + \|y_n - y\|^2$ in (37), we obtain

\[
\rho_{n+1}(x,y) \leq \rho_n(x,y) - (1 - (\lambda_n \eta)^2)(\|p_n - u_n\|^2 + \|q_n - v_n\|^2)
- \gamma_n[2\|Ax_n - By_n\|^2 - \gamma_n(\|A^*(Ax_n - By_n)\|^2 + \|B^*(Ax_n - By_n)\|^2)]
\]

\[
= -(\alpha_0 - k)\left(\sum_{i=1}^{\infty} c_i d^2(c_n, T_i c_n) + \sum_{i=1}^{\infty} d^2(e_n, S_i e_n)\right).
\]

(38)

Since $\lambda_n < \frac{1}{n}$ and $\alpha_0 \in (k, 1)$ then $(\alpha_0 - k) > 0$ and hence it follows from condition (16) on γ_n that

\[
\rho_{n+1}(x,y) \leq \rho_n(x,y).
\]

This implies that the sequence $\{\rho_n(x,y)\}$ is non-increasing and bounded below and hence it converges to $\rho(x,y)$ (say). Thus, condition (i) of Lemma 2.3 is satisfied with $\mu_n = (x_n, y_n)$, $\mu^* = (x, y)$ and $W := \Gamma \subset H = H_1 \times H_2$ with norm $\|(x,y)\| = (\|x\|^2 + \|y\|^2)^{\frac{1}{2}}$.

Since $\|x_n - x\|^2 \leq \rho_n(x,y)$, $\|y_n - y\|^2 \leq \rho_n(x,y)$ and $\lim_{n \to \infty} \rho_n(x,y)$ exists, we observe that $\{x_n\}$ and $\{y_n\}$ are bounded and $\limsup_{n \to \infty} \|x_n - x\|$ and $\limsup_{n \to \infty} \|y_n - y\|$ exist. Also, $\limsup_{n \to \infty} \|Ax_n - Ax\|$ and $\limsup_{n \to \infty} \|By_n - By\|$ exist. Further, from (24) and (32), we easily observe that the sequences $\{c_n\}, \{e_n\}, \{p_n\}$ and $\{q_n\}$ are bounded.

Now, since $\{\gamma_n\}$ is bounded, $(1 - (\lambda_n \eta)^2) > 0$ and $(\alpha_0 - k) > 0$ then it follows from the convergence of the sequence $\{\rho_n(x,y)\}$ and (38) that

\[
\lim_{n \to \infty} (\|p_n - u_n\|^2 + \|q_n - v_n\|^2) = 0,
\]

(39)

\[
\lim_{n \to \infty} (d^2(c_n, T_i c_n) + d^2(e_n, S_i e_n)) = 0, \quad \text{for each } i \in \mathbb{N},
\]

(40)

and

\[
\lim_{n \to \infty} (\|A^*(Ax_n - By_n)\|^2 + \|B^*(Ax_n - By_n)\|^2) = 0.
\]

(41)

Note that $Ax_n - By_n = 0$, if $n \notin \Lambda$. Hence, we obtain

\[
\lim_{n \to \infty} \|p_n - u_n\| = \lim_{n \to \infty} \|q_n - v_n\| = 0,
\]

(42)

\[
\lim_{n \to \infty} d(c_n, T_i c_n) = 0, \quad \text{for each } i \in \mathbb{N},
\]

(43)
\[\lim_{n \to \infty} d(e_n, S_ie_n) = 0, \text{ for each } i \in \mathbb{N}, \]

and

\[\lim_{n \to \infty} \|Ax_n - By_n\| = 0. \tag{45} \]

Let \(\bar{x}, \bar{y} \) be weak cluster points of the bounded sequences \(\{x_n\}, \{y_n\} \), respectively. It follows from Lemma 2.2 (i) that

\[\|x_{n+1} - x_n\|^2 = \|x_{n+1} - x - x_n + x\|^2 \]
\[= \|x_{n+1} - x\|^2 - \|x_n - x\|^2 - 2 \langle x_{n+1} - x_n, x_n - x \rangle \]
\[= \|x_{n+1} - x\|^2 - \|x_n - x\|^2 - 2 \langle x_{n+1} - \bar{x}, x_n - x \rangle + 2 \langle x_n - \bar{x}, x_n - x \rangle. \tag{46} \]

Since \(\limsup_{n \to \infty} \|x_n - x\| \) exists, it follows from (46) that

\[\limsup_{n \to \infty} \|x_{n+1} - x_n\| = 0. \]

Consequently,

\[\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0. \tag{47} \]

Similarly, we obtain

\[\lim_{n \to \infty} \|y_{n+1} - y_n\| = 0. \tag{48} \]

Since \(P_C \) is firmly nonexpansive, we have

\[\|p_n - x\|^2 = \|P_C(x_n - \gamma_n A^*(Ax_n - By_n)) - x\|^2 \]
\[\leq \langle p_n - x, x_n - \gamma_n A^*(Ax_n - By_n) - x \rangle \]
\[= \frac{1}{2} \left\{ \|p_n - x\|^2 + \|x_n - \gamma_n A^*(Ax_n - By_n) - x\|^2 \right. \]
\[- \|p_n - x_n + \gamma_n A^*(Ax_n - By_n)\|^2 \right\}. \]
which implies that
\[
\| p_n - x \|^2 \leq \| x_n - x \|^2 - 2\gamma_n \langle x_n - x, A^* (Ax_n - By_n) \rangle + \gamma_n^2 \| A^* (Ax_n - By_n) \|^2 - 2\gamma_n \langle p_n - x_n, A^* (Ax_n - By_n) \rangle \\
\leq \| x_n - x \|^2 + 2\gamma_n \| Ax_n - Ax \| \| Ax_n - By_n \| - \| p_n - x_n \|^2
\]
(49)
\[
+ 2\gamma_n \| Ap_n - Ax_n \| \| Ax_n - By_n \|.
\]

Since (33) can also be written as
\[
\| x_{n+1} - x \|^2 \leq \| c_n - x \|^2 + \sum_{i=1}^{\infty} \alpha_i k_i d^2 (c_n, T_i c_n).
\]
(50)
Using (30) and (49) in (50), we get
\[
\| x_{n+1} - x \|^2 \leq \| x_n - x \|^2 + 2\gamma_n \| Ax_n - Ax \| \| Ax_n - By_n \| - \| p_n - x_n \|^2 \\
+ 2\gamma_n \| Ap_n - Ax_n \| \| Ax_n - By_n \| + \sum_{i=1}^{\infty} \alpha_i k_i d^2 (c_n, T_i c_n), \\
-(1 - (\lambda_n \alpha)^2) \| p_n - u_n \|^2,
\]
which, in turn, implies that
\[
\| p_n - x_n \|^2 \leq (\| x_n - x \| + \| x_{n+1} - x \|) \| x_{n+1} - x_n \| + 2\gamma_n \| Ax_n - Ax \| \| Ax_n - By_n \| \\
+ 2\gamma_n \| Ap_n - Ax_n \| \| Ax_n - By_n \| + \sum_{i=1}^{\infty} \alpha_i k_i d^2 (c_n, T_i c_n).
\]
(51)

Since \{p_n\}, \{x_n\} are bounded and A is a bounded linear operator, then \{Ap_n - Ax_n\} is bounded. Now, using (45), (43) and (47) in (51), we have
\[
\lim_{n \to \infty} \| p_n - x_n \| = 0.
\]
(52)
Since
\[
\| u_n - x_n \| \leq \| u_n - p_n \| + \| p_n - x_n \|,
\]
(53)
using (42), (52) in (53), we have
\[
\lim_{n \to \infty} \| u_n - x_n \| = 0.
\]
(54)
Similarly, we obtain

\[(55) \lim_{n \to \infty} \| q_n - y_n \| = 0, \]

\[(56) \lim_{n \to \infty} \| v_n - y_n \| = 0. \]

It follows from (21), (26), (28) and (50) that
\[
\| x_n + 1 - x \|^2 \leq \| x_n - x \|^2 + 2\gamma_n \| Ax_n - Ax \| \| Ax_n - By_n \| - \| p_n - x_n \|^2 \\
+ 2\lambda_n \alpha \| p_n - u_n \| \| c_n - u_n \| + \sum_{i=1}^{\infty} \alpha_i k_i d^2 (c_n, T_i c_n),
\]
which, in turn, implies that

\[
\| u_n - c_n \|^2 \leq (\| x_n - x \| + \| x_n + 1 - x \|) \| x_n + 1 - x_n \| + 2\gamma_n \| Ax_n - Ax \| \| Ax_n - By_n \| \\
+ 2\gamma_n \| Ap_n - Ax_n \| \| Ax_n - By_n \| + \sum_{i=1}^{\infty} \alpha_i k_i d^2 (c_n, T_i c_n) \\
+ 2\lambda_n \alpha \| p_n - u_n \| \| c_n - u_n \|.
\]

(57)

Since \(\{c_n\}, \{u_n\} \) are bounded, using (45), (43) and (47) in (57), we have that

\[(58) \lim_{n \to \infty} \| u_n - c_n \| = 0. \]

Since

\[(59) \| c_n - x_n \| \leq \| c_n - u_n \| + \| u_n - x_n \|, \]

using (58), (54) in (59), we have

\[(60) \lim_{n \to \infty} \| c_n - x_n \| = 0. \]

Similarly, we obtain

\[(61) \lim_{n \to \infty} \| v_n - e_n \| = 0, \]

\[(62) \lim_{n \to \infty} \| e_n - y_n \| = 0. \]

Since every Hilbert space satisfies Opial’s condition, Opial’s condition guarantees that the weakly subsequential limit of \(\{x_n\} \) and \(\{y_n\} \) is unique. Since \(\{x_n\} \) is bounded, there exists
a subsequence \(\{x_{n_i}\} \) of \(\{x_n\} \) such that \(x_{n_i} \to \bar{x} \) and hence it follows from (60) that there is
a subsequence \(\{c_{n_i}\} \) of \(\{c_n\} \) such that \(c_{n_i} \to \bar{c} \). Further, demiclosedness of \(T_i \) at 0 for each
\(i \in \mathbb{N} \) and (43) imply that \(\bar{x} \in T_i \bar{x} \) for each \(i \in \mathbb{N} \). Hence \(\bar{x} \in \bigcap_{i=1}^{\infty} \text{Fix}(T_i) \). Also, it follows from
boundedness of \(\{y_n\} \) and (62) that there exist subsequences \(\{y_{n_i}\} \) of \(\{y_n\} \) and \(\{e_{n_i}\} \) of \(\{e_n\} \)
such that \(y_{n_i} \to \bar{y} \) and \(e_{n_i} \to \bar{y} \) and hence demiclosedness of \(S_i \) at 0 along with (44) yield that
\(\bar{y} \in S_i \bar{y} \) for each \(i \in \mathbb{N} \). Thus \(\bar{y} \in \bigcap_{i=1}^{\infty} \text{Fix}(S_i) \).

Now, we show that \(\bar{x} \in \text{Sol}(\text{VIP}(9)) \). Since \(\lim_{n \to \infty} \|p_n - u_n\| = 0 \) and \(\lim_{n \to \infty} \|p_n - x_n\| = 0 \), there
exist subsequences \(\{p_{n_i}\} \) and \(\{u_{n_i}\} \) of \(\{p_n\} \) and \(\{u_n\} \), respectively such that \(p_{n_i} \to \bar{x} \) and \(u_{n_i} \to \bar{x} \).
Let
\[
T_v = \begin{cases}
fv + N_C(v), & \text{if } v \in C; \\
\emptyset, & \text{if } v \notin C,
\end{cases}
\]
where \(N_C(v) \) is the normal cone to \(C \) at \(v \in H_1 \). In this case, the mapping \(T \) is maximal monotone
and hence \(0 \in Tv \) if and only if \(v \in \text{Sol}(\text{VIP}(9)) \). Let \((v, w) \in \text{graph}(T) \). Then, we have \(w \in
Tv = fv + N_C(v) \) and hence \(w - fv \in N_C(v) \). So, we have \(\langle v - u, w - fv \rangle \geq 0 \), for all \(u \in C \).
On the other hand, from \(u_n = P_C(I - \lambda_n f)p_n \) and \(v \in C \), we have
\[
\langle (I - \lambda_n f)p_n - u_n, u_n - v \rangle \geq 0.
\]
This implies that
\[
\langle v - u_n, \frac{u_n - p_n}{\lambda_n} + fp_n \rangle \geq 0.
\]
Since \(\langle v - u, w - fv \rangle \geq 0 \), for all \(u \in C \) and \(u_{n_i} \in C \), using monotonicity of \(f \), we have
\[
\langle v - u_{n_i}, w \rangle \geq \langle v - u_{n_i}, fv \rangle \\
\geq \langle v - u_{n_i}, fv \rangle - \left\langle v - u_{n_i}, \frac{u_{n_i} - p_{n_i}}{\lambda_n} + fp_{n_i} \right\rangle \\
= \langle v - u_{n_i}, fv - fu_{n_i} \rangle + \langle v - u_{n_i}, fu_{n_i} - fp_{n_i} \rangle - \left\langle v - u_{n_i}, \frac{u_{n_i} - p_{n_i}}{\lambda_n} \right\rangle \\
\geq \langle v - u_{n_i}, fu_{n_i} - fp_{n_i} \rangle - \left\langle v - u_{n_i}, \frac{u_{n_i} - p_{n_i}}{\lambda_n} \right\rangle.
\]
Since f is continuous, then on taking limit $i \to \infty$, we have $\langle \nu - \bar{x}, w \rangle \geq 0$. Since T is maximal monotone, we have $\bar{x} \in T^{-1}0$ and hence $\bar{x} \in \text{Sol}(\text{VIP}(9))$. Similarly, one can show that $\bar{y} \in \text{Sol}(\text{VIP}(10))$.

Again, since A and B are bounded linear operators, we have $Ax_n \rightharpoonup A\bar{x}$ and $By_n \rightharpoonup B\bar{y}$. Further, since $\| \cdot \|^2$ is weakly lower semicontinuous, we have

$$
\|A\bar{x} - B\bar{y}\|^2 = \liminf_{n_i \to \infty} \|Ax_{n_i} - By_{n_i}\|^2 = 0,
$$
i.e., $A\bar{x} = B\bar{y}$. Thus, $(\bar{x}, \bar{y}) \in \Gamma$ and hence $w_w(x_{n_i}, y_{n_i}) \subset \Gamma$. Now, it follows from Lemma 2.3 that the sequence $\{(x_n, y_n)\}$ generated by iterative Algorithm 3.1 converges weakly to $(\bar{x}, \bar{y}) \in \Gamma$.

Now, since T_i and S_i for each $i \in \mathbb{N}$, are hemi-compact, $\{x_n\}$ and $\{y_n\}$ are bounded and

$$
\lim_{n \to \infty} d(c_n, T_i c_n) = 0 \quad \text{and} \quad \lim_{n \to \infty} d(e_n, S_i e_n) = 0
$$
for each $i \in \mathbb{N}$, there exist (without loss of generality) subsequences $\{x_{n_i}\}$ of $\{x_n\}$ and $\{y_{n_i}\}$ of $\{y_n\}$ such that $\{x_{n_i}\}$ and $\{y_{n_i}\}$ converge strongly to some points \bar{u} and \bar{v}, respectively. It follows from the demiclosedness of T_i and S_i, for each $i \in \mathbb{N}$ that $\bar{u} \in \bigcap_{i=1}^{\infty} \text{Fix}(T_i)$ and $\bar{v} \in \bigcap_{i=1}^{\infty} \text{Fix}(S_i)$. Since $\{x_{n_i}\}$ and $\{y_{n_i}\}$ converge weakly to \bar{x} and \bar{y}, respectively, we then have $\bar{u} = \bar{x}$ and $\bar{v} = \bar{y}$. On the other hand, since $\rho_n(x, y) = \|x_n - x\|^2 + \|y_n - y\|^2$, for any $(x, y) \in \Gamma$ then $\lim_{n \to \infty} \rho_n(x, y) = 0$. Further, since $\lim_{n \to \infty} \rho_n(\bar{x}, \bar{y})$ exists then $\lim_{n \to \infty} \rho_n(\bar{x}, \bar{y}) = 0$ and hence $\lim_{n \to \infty} \|x_n - \bar{x}\| = 0$ and $\lim_{n \to \infty} \|y_n - \bar{y}\| = 0$. Thus, $\{(x_n, y_n)\}$ converges strongly to $(\bar{x}, \bar{y}) \in \Gamma$. This completes the proof.

Now, we present a consequence of Theorem 4.1.

For each $i \in \mathbb{N}$, if T_i and S_i are single-valued demicontractive mappings then we have the following result to approximate a common solution of S_p-EVIP(9)-(10) and S_p-EFPP (5) for two countable families of single-valued demicontractive mappings:

Corollary 4.1. Let H_1, H_2 and H_3 be real Hilbert spaces and $C \subset H_1$, $Q \subset H_2$ be nonempty, closed and convex sets. Let $A : H_1 \to H_3$, $B : H_2 \to H_3$ be bounded linear operators with their adjoint operators A^* and B^*, respectively. Let $f : C \to H_1$ be monotone and α-Lipschitz continuous mapping and let $g : Q \to H_2$ be monotone and β-Lipschitz continuous mapping. Let $\{T_i\}_{i=1}^{\infty} : H_1 \to H_1$ and $\{S_i\}_{i=1}^{\infty} : H_2 \to H_2$ be families of single-valued demicontractive mappings with demicontractive constants k_i and s_i, respectively and let $k_1 = \sup_{i \geq 1} \{k_i\} \in (0, 1)$
and \(k_2 = \sup_{i \geq 1} \{s_i\} \in (0, 1)\). For each \(i \in \mathbb{N}\), let \(T_i\) and \(S_i\) be demiclosed at 0. Assume that

\[
\Gamma := \text{Sol}(S_p\text{EVIP}(9) - (10)) \cap \left(\bigcap_{i=1}^{\infty} \text{Fix}(T_i) \times \bigcap_{i=1}^{\infty} \text{Fix}(S_i) \right) \neq \emptyset.
\]

If the sequence \(\{\lambda_n\}_{n \in \mathbb{N}} \subset [a, b]\), for some \(a\) and \(b\) with \(0 < a < b < \frac{1}{\min\{a, b\}}\) and \(k \in (0, 1)\) where \(k = \max\{k_1, k_2\}\), then the sequence \(\{(x_n, y_n)\}\) generated by Algorithm 3.2 converges weakly to \((\bar{x}, \bar{y}) \in \Gamma\). In addition, if for each \(i \in \mathbb{N}\), \(T_i\) and \(S_i\) are semicompact, then \(\{(x_n, y_n)\}\) converges strongly to \((\bar{x}, \bar{y}) \in \Gamma\).

We remark that it is of further research effort to extend the iterative method presented in this paper, to split equality mixed equilibrium problem and split equality monotone variational inclusion problem [14].

5. Numerical Example

Finally, we give a numerical example which justifies Theorem 4.1.

Example 5.1. Let \(H_1 = H_2 = H_3 = \mathbb{R}\) with the inner product defined by \(\langle x, y \rangle = xy, \forall x, y \in \mathbb{R}\), and induced usual norm \(|\cdot|\). Let \(C = [-10, 10]\) and \(Q = [-10, 10]\); let \(\{T_i\}_{i=1}^{\infty}, \{S_i\}_{i=1}^{\infty} : \mathbb{R} \rightarrow CB(\mathbb{R})\) by \(T_i(x) = \left\{ -\frac{1+i}{i}x \right\}, S_i(y) = \left\{ -\frac{1+2i}{2i}y \right\}\), for each \(i \in \mathbb{N}\); let \(f : C \rightarrow \mathbb{R}\) and \(g : Q \rightarrow \mathbb{R}\) be defined by \(f(x) = 2x, \forall x \in C\) and \(g(y) = 3y, \forall y \in Q\); let \(A, B : \mathbb{R} \rightarrow \mathbb{R}\) be defined by \(A(x) = 2x, \forall x \in \mathbb{R}\), \(B(y) = 4y, \forall y \in \mathbb{R}\). If we set \(\alpha_i = \frac{1}{2i+1}, \forall i \in \mathbb{N} \cup \{0\}\), then there is a unique sequence \(\{(x_n, y_n)\}\) generated by the iterative schemes:

\[
\begin{align*}
 p_n &= P_C(x_n - 4\gamma_n(x_n - 2y_n)), \\
 u_n &= P_C(p_n - 2\lambda_n p_n), \\
 c_n &= P_C(u_n - 2\lambda_n u_n), \\
 x_{n+1} &= \frac{1}{2}c_n + \sum_{i=1}^{\infty} \frac{1+i}{2i+1} c_n, \\
 q_n &= P_Q(y_n + 8\gamma_n(x_n - 2y_n)), \\
 v_n &= P_Q(q_n - 3\lambda_n q_n), \\
 e_n &= P_Q(q_n - 3\lambda_n v_n), \\
 y_{n+1} &= \frac{1}{2}e_n + \sum_{i=1}^{\infty} \frac{1+2i}{2i+1} e_n.
\end{align*}
\]

Then the sequence \(\{(x_n, y_n)\}\) converges to a point \((\bar{x}, \bar{y}) \in \Gamma\).
Proof. Evidently, A and B are bounded linear operators on \mathbb{R} with adjoint operators A^*, B^*, respectively with $\|A\| = \|A^*\| = 2$, $\|B\| = \|B^*\| = 4$, and hence $\gamma_n \in \left(\varepsilon, \frac{1}{10} - \varepsilon\right)$. Therefore, for $\varepsilon = \frac{1}{100}$, we choose $\gamma_n = \frac{1}{20}$. We also assume $\lambda_n = \frac{2}{3}$. Furthermore, we observe that for each $i \in \mathbb{N}$, T_i is demicontractive with $k_i = \frac{1}{1 + 2i}$, Fix(T_i) = $\{0\}$ and $(T_i - I)$ is demiclosed at 0, and S_i is demicontractive with $s_i = \frac{1}{1 + 4i}$, Fix(S_i) = $\{0\}$ and $(S_i - I)$ is demiclosed at 0. Since $k_1 = \sup_{i \geq 1} \{k_i\} = \frac{1}{3}$ and $k_2 = \sup_{i \geq 1} \{s_i\} = \frac{1}{5}$ then $k = \max\{k_1, k_2\} = \frac{1}{3}$. Next, we observe that $\Gamma := \text{Sol}(S_p\text{EVIP}(9) - (10)) \cap \left(\bigcap_{i=1}^{\infty} \text{Fix}(T_i) \times \bigcap_{i=1}^{\infty} \text{Fix}(S_i)\right) = \{(0, 0)\} \neq \emptyset$.

After simplification, iterative schemes (64) are reduced to the following:

$$
\begin{align*}
p_n &= \frac{4}{5}x_n + \frac{2}{5}y_n; \quad u_n = -\frac{p_n}{3}; \quad c_n = p_n - \frac{4}{3}u_n; \\
q_n &= -\frac{2}{5}x_n + \frac{9}{5}y_n; \quad v_n = -q_n; \quad e_n = q_n - 2v_n; \\
x_{n+1} &= \frac{1}{2}c_n - \sum_{i=1}^{\infty} \frac{1 + i}{1 + 2i}c_n; \quad y_{n+1} = \frac{1}{2}e_n - \sum_{i=1}^{\infty} \frac{1 + 2i}{1 + 2i}e_n.
\end{align*}
$$

Next, using the software Matlab 7.8.0, we have following figure and table which shows that $\{(x_n, y_n)\}$ converges to the point $(\bar{x}, \bar{y}) = (0, 0)$.

![Convergence for initial values $x_0 = 8, y_0 = -13$](image-url)
This completes the proof.

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

