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Abstract. We prove the existence and the uniqueness of common fixed point for theorems for a new type of

contractive mappings in S-metric spaces. Our results generalize, extend and enrich recently fixed point results in

existing literature.
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1. INTRODUCTION AND PRELIMINARIES

Fixed point theory plays a major role in many applications, including variational and linear

inequalities, optimization and applications in the field of approximation theory and minimum

norm problem. In 1922, S. Banach proved the famous and well known Banach contraction

principle concerning the fixed of contraction mappings defined on a complete metric space. In

recent years, Gahler [1, 2] introduced the notion of 2-metric spaces, while Dhage [3] introduced

the concept of D-metric spaces. Later on, Mustafa and Sims [12] introduced a new notion of

generalized metric space, called G-metric spaces. After then many authors studied fixed and

common fixed points in generalized metric spaces see [11, 12, 13, 4, 14, 9, 15, 16, 17]. In [10],
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S. Sedghi, N. shobe and A. Aliouche have introduced the notion of an S-metric space. Moreover

in [13, 4] we find some properties of S−metric spaces were represented. In the present paper,

we going to prove the existence and the uniqueness of some common fixed point theorems by

using a new contractive mappings on S−metric space.

Definition 1. [5] Let X be a nonempty set. An S-metric on X is a function S : X×X×X→ [0,∞)

that satisfies the following conditions, for each x,y,z,a ∈ X

(S1): S(x,y,z)≥ 0

(S2): S(x,y,z) = 0 if and only if x = y = z

(S3): S(x,y,z)≤ S(x,x,a)+S(y,y,a)+S(z,z,a) for all x,y,z,a ∈ X .

The pair (X ,S) is called an S−metric space.

Some examples of such S-metric spaces are:

(1) Let X =Rn and ‖·‖ a norm on X , then S(x,y,z) = ‖y+ z−2x‖+‖y− z‖ is an S−metric

on X .

(2) Let X =Rn and ‖·‖ a norm on X , then S(x,y,z) = ‖x− z‖+‖y− z‖ is an S−metric on X .

(3) Let X be a nonempty set, d is ordinary metric space on X , then S(x,y,z) = d(x,y)+

d(y,z) is an S−metric on X .

Lemma 2. [5], [6] Let (X ,S) be an S−metric space. Then

S(x,x,y)≤ 2S(x,x,y)+S(y,y,z) and S(x,x,z)≤ 2S(x,x,y)+S(z,z,y) for all x,y,z ∈ X.

Definition 3. [5] Let (X ,S) be an S−metric space. For r > 0 and x ∈ X we define the open ball

BS(x,r) and closed ball BS[x,r] with center x and radius r as follows respectively

BS(x,r) = {y ∈ X : S(y,y,x)< r}

BS[x,r] = {y ∈ X : S(y,y,x)≤ r}

Example 4. [5] Let X = R. Denote S(x,y,z) = |y+ z−2x|+ |y− z| for all x,y,z ∈ R. Thus

BS(1,2) = {y ∈ X : S(y,y,1)< 2}= (0,2).
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Definition 5. [5] Let (X ,S) be an S−metric space and A⊂ X.

(1) If for every x ∈ A there exists r > 0 such that BS(x,r) ⊂ A then the subset A is called open

subset of X.

(2) Subset A of X is said to be S−bounded if there exists r > 0 such that S(x,x,y) < r for all

x,y ∈ A.

(3) A sequence {xn} in X converges to x if and only if S(xn,xn,x)→ 0 as n→ ∞. That is or

each ε > 0 there exists n0 ∈ N such that S(xn,xn,x) < ε whenever n ≥ n0 and we denote this

lim
n→∞

xn = x.

(4) A sequence {xn} is called Cauchy sequence if for each ε > 0, then the sequence is conver-

gent.

(6) Let τ be the set of all A ⊂ X . with x ∈ A if and only if there exists r > 0 such that

BS(x,r)⊂ A. Then τ is a topology on X ( induced by the S−metric space).

Example 6. Any open ball BS(x,r) , x ∈ X , r > 0 is an open set. Indeed, using lemma

2,S(z,z,x)≤ 2S(z,z,a)+S(a,a,x)< r. then we have S(z,z,x)< r, so z ∈ BS(x,r).

Example 7. Let x0, y0 ∈ X, considering the sets B1 = {x ∈ X : S(x,x,x0) < S(x,x,y0)} and

B2 = {x ∈ X : S(x,x,x0)> S(x,x,y0)}. B1and B2 are two open disjoint sets. Indeed, Let z ∈ B1

then S(z,z,x0)< S(z,z,y0) which implies S(z,z,y0)−S(z,z,x0)> 0. Setting ρ = S(z,z,y0)−S(z,z,x0)
4 .

We show that BS(z,ρ)⊂ B1. Let a ∈ BS(z,ρ) then

S(a,a,z)< ρ =
S(z,z,y0)−S(z,z,x0)

4

therefore 2S(a,a,z)+S(z,z,x0)< S(z,z,y0)−2S(a,a,z) by lemma 2 we have S(a,a,x0)≤ 2S(a,a,z)+

S(z,z,x0)< S(z,z,y0)−2S(a,a,z)≤ S(a,a,y0) this means that S(a,a,x0)< S(a,a,y0); the de-

sired result follows. With the same way , we prove that B2 is also an open set. Now, we prove

that B1∩ B2 = φ . Assume that B1∩ B2 6= φ , there exists y ∈ B1∩ B2 then S(y,y,x0)< S(y,y,y0)

and S(y,y,x0)> S(y,y,y0) which implies that S(y,y,y0)< S(y,y,y0) which is a contradiction.

Theorem 8. The S−metric space is a T2 space.

Proof. It is enaugh to use example7. �
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Definition 9. [9] Let f and g be singled-valued self mappings on a set X. If ω = f x = gx for

some x ∈ X, then x is called a coincidence point of f and g .

Definition 10. [9] Let f and g be singled-valued self mappings on a set X. Mappings f and g

are said to be weakly compatible if f x = gx implies f gx = g f x, x ∈ X.

Proposition 11. [9] Let f and g be weakly compatible self mappings on a set X. If f and g have

a unique point of coincidence ω = f x = gx, then ω is the unique common fixed point of f and

g.

2. MAIN RESULTS

Let Ψ denotes the class of the functions ψ : [0,∞) −→ [0,∞) which satisfies the following

conditions:

(1) ψ is nondecreasing

(2) ψ is continuous

(3) ψ(t) = 0 ⇐⇒ t = 0

The elements of Ψ are called altering distance functions.

Remark 12. If ψ ∈ Ψ and if ϕ : [0,∞) −→ [0,∞) is a continuous function with the condition

ψ(t)> ϕ(t) for all t > 0, then ϕ(0) = 0.

Lemma 13. [7], [8] Let (X ,S) be a S−metric space and let {xn} be a sequence in it such that

lim
n→∞

S(xn+1,xn+1,xn) = 0

If {xn} is not a Cauchy sequence, then there exist an ε > 0 and two sequences {mk} and {nk},

nk > mk > k of positive integers such that the following sequences tend to ε when k→ ∞:

S(xmk ,xmk ,xnk),S(xmk ,xmk ,xnk+1),S(xmk−1,xmk−1,xnk),

S(xmk−1,xmk−1,xnk+1),S(xmk−1,xmk−1,xnk+1), ...

Theorem 14. Let (X ,S) be an S−metric space. Suppose that the mapping f ,g : X → X satisfy

(1) ψ(S( f x, f y, f z))≤ ϕ(max{S(gx,gx, f x),S(gy,gy, f y),S(gz,gz, f z)})
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for all x,y,z ∈ X . Where the function ϕ : [0,∞) −→ [0,∞) is a continuous function which

satisfies the condition ψ(t)> ϕ(t) for all t > 0 and ψ ∈Ψ. If the range of g contains the range

of f and one of f (X) or g(X) is a complete subspace of X . Then f and g have a unique point

of coincidence in X . Moreover, if f and g are weakly compatible, then f and g have a unique

fixed common point.

Proof. Assume that f and g satisfy the condition (1). Let x0 be an arbitrary point in X . Since

the range of g contains the range of f , there is x1 such that gx1 = f x0. By continuing the process

as before, we can construct a sequence {gxn} such that gxn−1 = f xn for all n ∈ N. If there is

n ∈ N such that gxn−1 = gxn, then f and g have a point of coincidence. Thus we can suppose

that gxn+1 6= gxn for all n ∈ N. Therefore for each n ∈ N, we obtain that

ψ(S(gxn,gxn,gxn+1)) = ψ(S( f xn−1, f xn−1, f xn))

≤ ϕ(max{S(gxn−1,gxn−1, f xn−1),

S(gxn−1,gxn−1, f xn−1),S(gxn,gxn, f xn)})

≤ ϕ(max{S(gxn−1,gxn−1, f xn−1),S(gxn,gxn, f xn)})

= ϕ(max{S(gxn−1,gxn−1,gxn),S(gxn,gxn,gxn+1)})

If max{S(gxn−1,gxn−1,gxn),S(gxn,gxn,gxn+1)}= S(gxn,gxn,gxn+1),

then

ψ(S(gxn,gxn,gxn+1))≤ ϕ(S(gxn,gxn,gxn+1))

Since gxn 6=,gxn+1, then S(gxn,gxn,gxn+1)> 0, so by the condition of the theorem, we have

ψ(S(gxn,gxn,gxn+1))> ϕ(S(gxn,gxn,gxn+1))

which leads to a contraduction. Therefore

(2) ψ(S(gxn,gxn,gxn+1))≤ ϕ(S(gxn−1,gxn−1,gxn)) for all n≥ 1

and from (2) , it follows that

(3) S(gxn,gxn,gxn+1)≤ S(gxn−1,gxn−1,gxn) for all n≥ 1.
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Indeed, if there exists n0 ∈ N, such that S(gxn0 ,gxn0,gxn0+1)> S(gxn0−1,gxn0−1,gxn0), since

ψ is nondecreasing, we have ψ(S(gxn0,gxn0 ,gxn0+1)) ≥ ψ(S(gxn0−1,gxn0−1,gxn0)) and since

from (2) we have ψ(S(gxn0,gxn0,gxn0+1)) ≤ ϕ(S(gxn0−1,gxn0−1,gxn0)), then

ψ(S(gxn0−1,gxn0−1,gxn0))≤ ϕ(S(gxn0−1,gxn0−1,gxn0)), since S(gxn0−1,gxn0−1,gxn0)> 0, then

we have a contradiction by the condition of the theorem. Now, setting rn = S(gxn,gxn,gxn+1),

the sequence {rn} is nonincreasing rn ≥ 0, then, there exists r ≥ 0 such that lim
n→∞

rn = r. We

assume that r > 0, by going to the limit in (2), we get ψ(r) ≤ ϕ(r), by using the condition of

the theorem, we obtain r = 0. Now we prove that {gxn} = { f xn−1} is Cauchy sequence. If

{gxn} = { f xn−1} is not Cauchy sequence in the S−metric space (X ,S), there exist an ε > 0

and two sequences {mk} and {nk}, nk > mk > k of positive integers such that the following

sequences tend to ε when k→ ∞:

(4) S(gxmk+1,gxmk+1,gxnk+1) and S(gxmk ,gxmk ,gxnk)

Putting now in (1) x = y = xmk ,z = xnk we obtain

ψ(S(gxmk+1,gxmk+1,gxnk+1)) = ψ(S( f xmk , f xmk , f xnk))

≤ ϕ(maxS(gxmk ,gxmk , f xmk),

S(gxmk ,gxmk , f xmk),S(gxnk ,gxnk , f xnk)})

≤ ϕ(max

 S(gxn−1,gxn−1, f xn−1),

S(gxn,gxn, f xn)

)

= ϕ(max

 S(gxmk ,gxmk ,gxmk+1),

S(gxnk ,gxnk ,gxnk+1)

)

If

max
{

S(gxmk ,gxmk ,gxmk+1),S(gxnk ,gxnk ,gxnk+1)
}
= S(gxmk ,gxmk ,gxmk+1)

and since S(gxmk ,gxmk ,gxmk+1)> 0 we have

ψ(S(gxmk+1,gxmk+1,gxnk+1))≤ ϕ(S(gxmk ,gxmk ,gxmk+1))
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Letting k→ ∞, we obtain

ψ(ε)≤ lim
k→∞

ϕ(S(gxmk ,gxmk ,gxmk+1)) = ϕ(0) = 0

which implies that ψ(ε) = 0, so ε = 0 which is a contradiction.

Analogous, if

max
{

S(gxmk ,gxmk ,gxmk+1),S(gxnk ,gxnk ,gxnk+1)
}
= S(gxnk ,gxnk ,gxnk+1)

we got a contraduction.

So, it follows that {gxn} = { f xn−1} is Cauchy sequence in the S−metric space (X ,S). By the

completeness of g(X) (or f (X)), we obtain that {gxn} is convergent to some q∈ g(X). So there

exists p ∈ X such that gp = q. We will show that gp = f p. Suppose that gp 6= f p. By (1), we

have

ψ(S(gxn,gxn, f p)) = ψ(S( f xn−1, f xn−1, f p))

≤ ϕ(max{S(gxn−1,gxn−1,gxn),S(gxn−1,gxn−1,gxn),

S(gp,gp, f p)})

= ϕ(max{S(gxn−1,gxn−1,gxn), S(gp,gp, f p)})

Now we study the following cases:

•max{S(gxn−1,gxn−1,gxn), S(gp,gp, f p)}= S(gxn−1,gxn−1,gxn)

we obtain that

ψ(S(gxn,gxn, f p))≤ ϕ(S(gxn−1,gxn−1,gxn))

By taking n→∞, we have ψ(S(gp,gp, f p))≤ ϕ(S(gp,gp,gp)) = ϕ(0) = 0 which implies that

ψ(S(gp,gp, f p)) = 0, so S(gp,gp, f p) = 0 and we have gp = f p.

•max{S(gxn−1,gxn−1,gxn),S(gp,gp, f p))}= S(gp,gp, f p)

we obtain

ψ(S(gxn,gxn, f p))≤ ϕ(S(gp,gp, f p))
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By taking n→∞, we have ψ(S(gp,gp, f p))≤ ϕ(S(gp,gp, f p)) = ϕ(0) = 0 which implies that

ψ(S(gp,gp, f p)) = 0, so S(gp,gp, f p) = 0 and we have gp = f p. Indeed, if S(gp,gp, f p)> 0

the condition of the theorem gives a contraduction. Therefore gp = f p. We now show that f

and g have a unique point of coincidence. Suppose that f l = gl for some l ∈ X . By applying

the condition (1), it follows that,

ψ(S(gp,gp,gl)) = ψ(S( f p, f p, f l))

≤ ϕ(max{S(gp,gp, f p),S(gp,gp, f p),

S(gl,gl, f l)})

= ϕ(0) = 0

Therefore gp= gl. This implies that f and g have a unique point of coincidence. By proposition10,

we can conclude that f and g have a unique common fixed point. �

Example 15. Let X = [0,2] , S(x,y,z) = max{|x− y|, |y− z|, |x− z|}and ψ ∈Ψ. Define f x = 1

and gx= 2−x, we obtain that f and g satisfy (1) in theorem 14 . Indeed, we have S( f x, f y, f z)=

0, and ψ( S( f x, f y, f z)) = ψ(0) = 0

ϕ(max{S(gx,gx, f x),S(gy,gy, f y),(gz,gz, f z)}) = ϕ(max{|x− y| |y− z| , |x− z|})

Hence

0≤ ϕ(max{|x− y| , |y− z| , |x− z|}) for all x,y,z ∈ X

It is obvious that the range of g contains the range of f and g(X) is a complete subspace of

(X ,S). Furthermore, f and g are weakly compatible. Thus all assumptions in Theorem14 are

satisfied. This implies that f and g have a unique common fixed point which is x = 1.

Corollary 16. Let (X ,S) be a S−metric space. Suppose that the mapping f ,g : X → X satisfy

ψ(S( f x, f y, f z)) ≤ β (ψ(max{S(gx,gx, f x),S(gy,gy, f y),S(gz,gz, f z)}))(5)

ψ(max{S(gx,gx, f x),S(gy,gy, f y),S(gz,gz, f z)})

for all x,y,z ∈ X. Where the function β : [0,∞) −→ [0,1) is a continuous function which

satisfies the condition β (tn)→ 1 implies tn→ 0 and ψ ∈Ψ. If the range of g contains the range
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of f and one of f (X) or g(X) is a complete subspace of X. Then f and g have a unique point

of coincidence in X. Moreover, if f and g are weakly compatible, then f and g have a unique

fixed common point.

Proof. It follows from theorem 14, by choosing ϕ(x) = β (ψ(x))ψ(x). �

Corollary 17. Let (X ,S) be a S−metric space. Suppose that the mapping f ,g : X → X satisfy

S( f x, f y, f z) ≤ max{S(gx,gx, f x),S(gy,gy, f y),S(gz,gz, f z)}

−ψ(max{S(gx,gx, f x),S(gy,gy, f y),S(gz,gz, f z)})

for all x,y,z ∈ X. Where ψ ∈ Ψ. If the range of g contains the range of f and one of f (X)

or g(X) is a complete subspace of X. Then f and g have a unique point of coincidence in X.

Moreover, if f and g are weakly compatible, then f and g have a unique fixed common point.

Proof. is a particular case of Theorem 14, for ψ , the identity function and ϕ(x) = x−ψ(x) �

Corollary 18. Let (X ,S) be a S−metric space. Suppose that the mapping f ,g : X → X satisfy

ψ(S( f x, f y, f z)) ≤ ψ(max{S(gx,gx, f x),S(gy,gy, f y),S(gz,gz, f z)})

−ϕ(max{S(gx,gx, f x),S(gy,gy, f y),S(gz,gz, f z)})

for all x,y,z ∈ X. Where ψ ∈ Ψ. If the range of g contains the range of f and one of f (X)

or g(X) is a complete subspace of X. Then f and g have a unique point of coincidence in X.

Moreover, if f and g are weakly compatible, then f and g have a unique fixed common point.

Proof. Is a particular case for ϕ(x) = ψ(x)− ϕ1,2(x), ϕ1,2 is an altering function in Theorem

14. �

Corollary 19. Let (X ,S) be a S−metric space. Suppose that the mapping f ,g : X → X satisfy

S( f x, f y, f z) ≤ β (max{S(gx,gx, f x),S(gy,gy, f y),S(gz,gz, f z)})(6)

max{S(gx,gx, f x),S(gy,gy, f y),S(gz,gz, f z)}

for all x,y,z ∈ X. Where the function β : [0,∞) −→ [0,1) is a continuous function which

satisfies the condition β (tn)→ 1 implies tn → 0 and . If the range of g contains the range of
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f and one of f (X) or g(X) is a complete subspace of X. Then f and g have a unique point of

coincidence in X. Moreover, if f and g are weakly compatible, then f and g have a unique fixed

common point.

Proof. It follows from theorem 14, by choosing ϕ(x) = β (x)x and ψ(x) = x. �

Theorem 20. Let (X ,S) be a complete S−metric space. Suppose that the mapping f : X → X

satisfy

ψ(S( f x, f y, f z)≤max{ϕ(S(x,x, f x)),ϕ(S(y,y, f y)),ϕ(S(z,z, f z))}

for all x,y,z ∈ X. Where the function ϕ : [0,∞) −→ [0,∞) is a continuous function with the

condition ψ(t)> ϕ(t) for all t > 0 and ψ ∈Ψ. then f has a unique fixed point

Proof. The result follows by setting g the identity function on X . �

Theorem 21. Let (X ,S) be a S−metric space. Suppose that the mapping f ,g : X → X satisfy

(7) ψ(S( f x, f y, f z))≤ ϕ(k1S(gx,gx, f x)+ k2S(gy,gy, f y))

for all x,y,z ∈ X , ki ≥ 0, i = 1,2 and k1 + k2 < 1. Where the function ϕ : [0,∞) −→ [0,∞) is a

continuous function with the condition ψ(t) > ϕ(t) for all t > 0 and ψ ∈ Ψ. If the range of g

contains the range of f and one of f (X) or g(X) is a complete subspace of X. Then f and g

have a unique point of coincidence in X. Moreover, if f and g are weakly compatible, then f

and g have a unique fixed common point.

Proof. Assume that f and g satisfy the condition (1). Let x0 be an arbitrary point in X . Since

the range of g contains the range of f , there is x1 such that gx1 = f x0. By continuing the process

as before, we can construct a sequence {gxn} such that gxn−1 = f xn for all n ∈ N. If there is

n ∈ N such that gxn−1 = gxn, then f and g have a point of coincidence. Thus we can suppose
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that gxn+1 6= gxn for all n ∈ N. Therefore for each n ∈ N, we obtain that

ψ(S(gxn,gxn,gxn+1)) = ψ(S( f xn−1, f xn−1, f xn))

≤ ϕ(k1S(gxn−1,gxn−1, f xn−1)+

k2S(gxn−1,gxn−1,gxn))

≤ ϕ((k1 + k2)S(gxn−1,gxn−1,gxn))

which implies that S(gxn,gxn,gxn+1)≤ (k1+k2)S(gxn−1,gxn−1,gxn). Let r = k1+k2 < 1. Then

S(gxn,gxn,gxn+1)≤ rnS(gx0,gx0,gx1)

This implies that lim
n→∞

S(gxn,gxn,gxn+1) = 0. If {gxn}= { f xn−1} is not Cauchy sequence in the

S−metric space (X ,S), there exist an ε > 0 and two sequences {mk} and {nk}, nk > mk > k of

positive integers such that the following sequences tend to ε when k→ ∞:

(8) S(gxmk+1,gxmk+1,gxnk+1) and S(gxmk ,gxmk ,gxnk)

Putting now in (7) x = y = xmk and z = xnk , and using the fact that S(gxmk ,gxmk ,gxmk+1) > 0

and S(gxnk ,gxnk ,gxnk+1)> 0 we obtain

ψ(S(gxmk+1,gxmk+1,gxnk+1)) = ψ(S( f xmk , f xmk , f xnk))

≤ ϕ(k1S(gxmk ,gxmk , f xmk)

+k2S(gxmk ,gxmk , f xmk))

≤ ϕ((k1 + k2)S(gxmk ,gxmk ,gxmk+1)

Letting k→∞ we obtain ψ(ε)≤ ϕ(0) = 0 which implies ε = 0. Contradiction. So the sequence

{gxn} = { f xn−1} is Cauchy sequence in the S−metric space (X ,S), By the completeness of

g(X) or f (X), we obtain that {gxn} is convergent to some q∈ g(X). So there exists p∈ X such
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that gp = q. we will show that gp = f p. By (7), we have

ψ(S(gxn,gxn, f p)) = ψ(S( f xn−1, f xn−1, f p))

≤ ϕ(k1S(gxn−1,gxn−1,gxn)

+k2S(gxn−1,gxn−1,gxn))

≤ ϕ((k1 + k2)S(gxn−1,gxn−1,gxn)

Letting n→ ∞ we have ψ(S(gp,gp, f p))≤ ϕ(0) = 0. So S(gp,gp, f p) = 0 and gp,= f p. The

proof of f and g have a unique point of coincidence is as in Theorem 14.So we omitted it. �

Later, from the previous obtained results, we deduce some coincidence point results for map-

pings satisfying a contraction of an integral type as an application of Theorem 14 above. For

this purpose, let

Y =


χ , χ : R+→ R+, satisfies that χ is a Lebesgue integrable,

summable on each compact of subset of R+

and
∫

ε

0 χ(t)dt > 0 for each ε > 0


Theorem 22. Let (X ,S) be an S−metric space. Suppose that the mapping f ,g : X → X satisfy

(9)
∫

ψ(S( f x, f y, f z))

0
χ(t)dt ≤

∫
ϕ(max{S(gx,gx, f x),S(gy,gy, f y),S(gz,gz, f z)})

0
χ(t)dt

for all x,y,z ∈ X and for all χ ∈ Y . Where the function ϕ : [0,∞) −→ [0,∞) is a continuous

function which satisfies the condition ψ(t) > ϕ(t) for all t > 0 and ψ ∈ Ψ. If the range of g

contains the range of f and one of f (X) or g(X) is a complete subspace of X. Then f and g

have a unique point of coincidence in X. Moreover, if f and g are weakly compatible, then f

and g have a unique fixed common point.

Proof. For χ ∈Y , We consider the function Λ : R+→R+defined by Λ(x) =
∫ x

0 χ(t)dt. we note

that Λ ∈Ψ. Thus the inequality (9)becomes

(10) Λ(ψ(S( f x, f y, f z)))≤ Λ(ϕ(max{S(gx,gx, f x),S(gy,gy, f y),S(gz,gz, f z)}))

Setting in (10), Λ◦ψ = ψ1 and Λ◦ϕ = ϕ1 , we obtain

Λ(ψ(S( f x, f y, f z)))≤ Λ(ϕ(max{S(gx,gx, f x),S(gy,gy, f y),S(gz,gz, f z)}))
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therefore from Theorem 14, the desired result follows. �
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