COMMON FIXED POINT THEOREM IN Menger SPACES USING T-NORM T OF HADŽIĆ-TYPE

ASHA RANI¹*, SANJAY KUMAR²

¹Department of Applied Sciences, B. M. I. E. T., Raipur, Sonepat, Haryana, India
²DCRUST, Murthal(Sonepat)-131039

Abstract. In this paper, we prove a common fixed point theorem using t-norm T of Hadžić-type (H-type). In fact our result is a generalization of the result of Choudhury and Das [1] under more general condition, that answer to the open problem of Choudhury and Das [1].

Keywords: Menger spaces; φ - contraction; weakly compatible mappings; t-norm T of Hadžić-type.

1. Introduction

In 1922, Banach proved an important result which is the mile stone in the fixed point theory and its applications. A new class of fixed point problems in metric spaces was addressed by Khan et al. [4]. They proved fixed point theorem for mappings satisfying certain inequalities involving the altering distances function.

In 1942, Menger [5] introduced the notion of probabilistic metric space or statistical metric space, which is in fact, a generalization of metric space. The idea in probabilistic metric space is to associate a distribution function with a point pairs, say (p,q), denoted by F(p,q;t) where t > 0 and identify this function as the probability that distance between p and q is less than t. Sehgal and Reid A.T.Bharucha [12] initiated the study of contraction mapping theorems in PM-spaces. Subsequently, several contraction mapping theorems for different variants of

*Corresponding author
Received July 3, 2012
commuting and compatible mappings have been proved in PM-spaces. Various aspects of this theory have been elaborately discussed in the book of Hadžić and Pap [3].

Recently Choudhury et. al. [1] extended the idea of altering distances in probabilistic metric spaces and proved a contraction principle in Menger spaces using t-norm T_M given by $T_M(a, b) = \min\{a, b\}$ and put an open problem that whether contraction Principle is valid for any other choice of the t-norm.

Now in this paper, we prove a common fixed point theorem using t-norm T of Hadžić-type (H-type for short) that answer to the open problem of Choudhury and Das [1].

2. Preliminaries

First, we recall that a real valued function defined on the set of real numbers is known as a distribution function if it is non-decreasing, left continuous and $\inf f(x) = 0$, $\sup f(x) = 1$.

An example of a distribution function is the Heavy side function $H(x)$, defined by

$H(x) = 0$ if $x \leq 0$ and $H(x) = 1$ if $x > 0$.

Definition 2.1.[3] A mapping $T : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is called a continuous t-norm if the following conditions are satisfied:

- $T(a, 1) = a$ for every $a \in [0, 1]$;
- $T(a, b) = T(b, a)$ for every $a, b \in [0, 1]$;
- $T(T(a, b), c) = T(a, T(b, c))$;
- $T(a, b) \leq T(c, d)$, for $a \leq c, b \leq d$.

Basic examples of t-norm are the Lukasiewicz t-norm T_L, $T_L(a, b) = \max(a + b - 1, 0)$, t-norm T_P, $T_P(a, b) = ab$, and t-norm T_M, $T_M(a, b) = \min\{a, b\}$, $T_D(x, y) = \begin{cases} \min(x, y) \text{ if } \max(x, y) = 1, \\ 0 \text{ otherwise.} \end{cases}$

Definition 2.2.[3] A Menger space is a triplet (X, F, T), where X is a non-empty set, F is a function defined on $X \times X$ to L_+ (set of all distribution functions) which satisfies the following conditions:

(i) $F_{xy}(0) = 0$,

(ii) $F_{xy}(s) = 1$ for all $s > 0$ iff $x = y$,

(iii) $F_{xy}(s) = F_{yx}(s)$,

(iv) $F_{xy}(u + v) \geq T(F_{xz}(u), F_{zy}(v))$ for all $u, v \geq 0$ and $x, y, z \in X$ where T is a t-norm.

For a given metric space (X, d) with usual metric d, one can put $F_{xy}(t) = H(t - d(x, y))$, where H is defined as:
\[H(s) = \begin{cases} 1 & \text{if } s > 0, \\ 0 & \text{if } s \leq 0 \end{cases} \]

and t-norm \(T \) is defined as \(T(a, b) = \min\{a, b\} \).

If \((X, F, T)\) is a Menger space with continuous t-norm then the topology induced by the family \(\{S_{\epsilon, \lambda}(p) : p \in X, \epsilon > 0, \lambda > 0\} \) is called the \((\epsilon, \lambda)\) - topology, where \(S_{\epsilon, \lambda}(p) = \{q \in X : F_{pq}(\epsilon) > 1 - \lambda\} \) is called the \((\epsilon, \lambda)\) - neighborhood of \(p \).

A sequence \(\{x_n\} \subset X \) is said to be

(i) converge to some point \(x \in X \) in the \((\epsilon, \lambda)\) - topology if and only if given \(\epsilon > 0, \lambda > 0 \) we can find a positive integer \(N_{\epsilon, \lambda} \) such that, for all \(n > N_{\epsilon, \lambda} \), \(F_{x_n x}(\epsilon) \geq 1 - \lambda \).

(ii) a Cauchy sequence in \(X \) if given \(\epsilon > 0, \lambda > 0 \) there exists a positive integer \(N_{\epsilon, \lambda} \) such that \(F_{x_n x_m}(\epsilon) \geq 1 - \lambda \) for all \(m, n > N_{\epsilon, \lambda} \).

A Menger space \((X, F, T)\) is said to be complete if every Cauchy sequence is convergent.

In 1979, Hadžić [2] introduced a special class of t-norms (called as a Hadžić-type norm) as follows:

Definition 2.3. [2] Let \(T \) be a t-norm and let \(T_n : [0, 1] \to [0, 1] \) \((n \in \mathbb{N})\) be defined in the following way,

\[T_1(x) = T(x, x), \quad T_{n+1}(x) = T(T_n(x), x) \quad (n \in \mathbb{N}, \ x \in [0, 1]). \]

We say that the t-norm \(T \) is of H-type if \(T \) is continuous and the family \(\{T_n(x), n \in \mathbb{N}\} \) is equicontinuous at \(x = 1 \).

The family \(\{T_n(x), n \in \mathbb{N}\} \) is equicontinuous at \(x = 1 \), if for every \(\lambda \in (0, 1) \) there exists \(\delta(\lambda) \in (0, 1) \) such that the following implication holds:

\[x > 1 - \delta(\lambda) \text{ implies } T_n(x) > 1 - \lambda \text{ for all } n \in \mathbb{N}. \]

A trivial example of t-norm of H-type is \(T = T_M \) \((T_M(a, b) = \min\{a, b\})\).

Remark 2.4. Every t-norm \(T_M \) is of Hadžić-type but converse need not be true, see [3].

There is a nice characterization of continuous t-norm \(T \) of H-type[8] as given below:

(i) If there exists a strictly increasing sequence \(\{b_n\}_{n \in \mathbb{N}} \) in \([0, 1]\) such that \(\lim_{n \to \infty} b_n = 1 \) and \(T(b_n, b_n) = b_n \forall n \in \mathbb{N} \), then \(T \) is of Hadžić-type.

(ii) If \(T \) is continuous and \(T \) is of Hadžić-type, then there exists a sequence \(\{b_n\}_{n \in \mathbb{N}} \) as in (i).

Definition 2.5. [3] If \(T \) is a t-norm and \((x_1, x_2, ..., x_n) \in [0, 1]^n \) \((n \in \mathbb{N})\), then \(T_{i=1}^n x_i \) is defined recurrently by 1, if \(n = 0 \) and \(T_{i=1}^n x_i = T(T_{i=1}^{n-1} x_i, x_n) \) for all \(n \geq 1 \). If \(\{x_i\}_{i \in \mathbb{N}} \) is a sequence of numbers from \([0, 1]\), then \(T_{i=1}^\infty x_i \) is defined as \(\lim_{n \to \infty} T_{i=1}^n x_i \) (this limit always exists) and \(T_{i=1}^\infty x_i \)
as $T^\infty_{i=1} x_{n+i}$. In fixed point theory in probabilistic metric spaces there are of particular interest t-norms T and sequences $\{x_n\} \subseteq [0,1]$ such that $\lim_{n \to \infty} x_n = 1$ and $\lim_{n \to \infty} T^\infty_{i=1} x_{n+i} = 1$.

In 1972, Sehgal and Bharucha-Reid [12] introduced the idea of contraction in PM space.

Definition 2.6. Probabilistic q-contraction [3] Let (X, F) be a probabilistic metric space. A mapping $f : X \to X$ is a probabilistic q-contraction ($q \in (0, 1)$) if $F_{f u f v}(x) \geq F_{u v}(x/q)$ for every $u, v \in X$ and every $x \in R$.

The following Theorem was proved by Sehgal and Bharucha-Reid [12].

Theorem 2.7. Let (X, F_{T_M}) be a complete Menger space where $T_M(a, b) = \min\{a, b\}$ and $f : X \to X$ is a probabilistic q-contraction. Then there exist a unique fixed point x of the mapping f and $x = \lim_{n \to \infty} f^n p$ for every $p \in X$.

In 1984, Khan et al. [4] introduced a new category of contractive fixed point problems using a control function (altering distance function) that alters the distance between two points in a metric space.

Definition 2.8. [4] An altering distance function is a function $\psi : [0,\infty) \to [0,\infty)$ such that

(i) which is monotone increasing and continuous and

(ii) $\psi(t) = 0$ if and only if $t = 0$.

Khan et al. [4] proved the following result using altering distance function.

Theorem 2.9. [4] Let (X, d) be a complete metric space and ψ be an altering distance function. Let $f : X \to X$ be a self mapping which satisfies the following inequality:

$\psi(d(fx, fy)) \leq c\psi(d(x, y))$, for all $x, y \in X$ and for some $0 < c < 1$.

Then f has a unique fixed point.

In fact, Khan et al. [4] proved a more general fixed point theorem (Theorem 2 in [4]) of which the above result is a corollary. This result was further generalized in a different direction by various authors. One can refer to [7], [9] and [10].

Recently, Choudhury et al. [1] extended the idea of altering distance function in Menger spaces and obtained fixed point results for self-mapping using ϕ function.

Definition 2.10. A function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ is said to satisfy the condition (ϕ) if it satisfies the following conditions:

(i) $\phi(t) = 0$ if and only if $t = 0$,

(ii) $\phi(t)$ is increasing and $\phi(t) \to \infty$ as $t \to \infty$,

(iii) ϕ is left continuous in $(0, \infty)$,
(iv) \(\varphi \) is continuous at 0,
(v) \(\varphi \) is superadditive, that is, \(\varphi(x + y) \geq \varphi(x) + \varphi(y) \), for all \(x, y \geq 0 \).

Definition 2.11. Let \((X, F, T)\) be a Menger space. A self map \(f : X \to X \) is said to be \(\varphi \)-contractive if

\[(*) \quad F_{fx} \geq T \left(\varphi \left(\frac{t}{c} \right) \right), \]

where \(0 < c < 1, x, y \in X \) and \(t > 0 \) and the function \(\varphi \) satisfy the condition \((\varphi) \).

Definition 2.12. Two maps \(f \) and \(g \) are said to be weakly compatible if they commute at their coincidence points.

Example 2.13. Let \(X = [0, 1] \) be equipped with the usual metric \(d(x, y) = |x - y| \).

Define \(f, g : [0, 1] \to [0, 1] \) by

\[
\begin{align*}
 f(x) &= \begin{cases}
 0 & \text{if } x = 0, \\
 0.15 & \text{if } x > 0
 \end{cases} \\
 g(x) &= \begin{cases}
 0 & \text{if } x = 0, \\
 0.35 & \text{if } x > 0
 \end{cases}
\end{align*}
\]

Then, 0 is a coincidence point and \(fg \) 0 = \(gf \) 0, showing that \(f, g \) are weakly compatible maps on \([0, 1] \).

Proposition 2.14. Let \((x_n, n \in \mathbb{N}) \) be a sequence of numbers in \([0, 1]\) such that \(\lim_{n \to \infty} x_n = 1 \) and the t-norm T is of H-type, then

\[
\lim_{n \to \infty} T_{\{1\}} = \lim_{n \to \infty} T_{\{\infty\}} = 1.
\]

Throughout this paper, \((X, F, T)\) will denote a Menger space which satisfies the condition \(\lim_{t \to \infty} F_{xy}(t) = 1 \) for all \(x, y \in X \) and \(t > 0 \).

3. **Main Result**

Recently, Choudhury et al. [1] proved the following fixed point theorem using continuous t-norm \(T_M \), which is strongest t-norm.

Theorem 3.1. Let \((X, F, T_M)\) be a Menger space with continuous t-norm \(T_M \) and \(f : X \to X \) be \(\varphi \)-contractive satisfying \((*) \). Then \(f \) has a fixed point.

Now we prove our main result for a pair of weakly compatible maps using continuous t-norm \(T \) of H-type.

Theorem 3.2. Let \((X, F, T)\) be a complete Menger space with continuous t-norm \(T \) of H-type and let \(f, g \) be two self-mappings on \(X \) satisfy the following inequality:

\[
\begin{align*}
 (3.1) & \quad f(X) \subseteq g(X), \\
 (3.2) & \quad \text{any one of } f(X) \text{ and } g(X) \text{ is complete},
\end{align*}
\]
(3.3) $F_{f \times f \times y}(\varphi(t)) \geq F_{g \times g \times y}(\varphi(\frac{t}{c}))$, where $0 < c < 1$, $x, y \in X$ and $t > 0$ and the function φ satisfy the condition (φ).

For any $x_0 \in X$, the sequence $\{y_n\}$ in X be constructed as follows: $y_n = f_{x_n} = g_{x_{n+1}}$, $n = 0, 1, 2, 3, \ldots$ and for $\mu \in (c, 1)$ the following condition holds:

$$\lim_{n \to \infty} T^{(\frac{1}{\mu})} F_{y_0 y_1} = 1.$$

Then f and g have a unique common fixed point provided f and g are weakly compatible on X.

Proof: In view of the properties of (φ)-function, for $u > 0$ we can find a positive number r such that $u > \varphi(r)$. For $u > 0$, we have

$$F_{y_n y_{n+1}}(u) \geq F_{f_{x_n} f_{x_{n+1}}} (\varphi(r))$$

$$\geq F_{g_{x_n} g_{x_{n+1}}} (\varphi(\frac{r}{c}))$$

$$= F_{y_{n-1} y_n} (\varphi(\frac{r}{c}))$$

$$= F_{f_{x_{n-1}} f_{x_n}} (\varphi(\frac{r}{c}))$$

$$\geq F_{g_{x_{n-1}} g_{x_n}} (\varphi(\frac{r}{c^2}))$$

$$= F_{y_{n-2} y_{n-1}} (\varphi(\frac{r}{c^2}))$$

$$\ldots$$

$$\geq F_{y_0 y_1} (\varphi(\frac{r}{c^n})).$$

Therefore,

$$F_{y_n y_{n+1}} (u) \geq F_{y_0 y_1} (\varphi(\frac{r}{c^n})).$$

Proceeding limit as $n \to \infty$, we have $\lim_{n \to \infty} F_{y_n y_{n+1}} (u) = 1$.

We claim that the sequence $\{y_n\}$ is a Cauchy sequence.

Let, $\sigma = \frac{c}{\mu}$, where $\mu \in (c, 1)$ and $c \in (0, 1)$, then $0 < \sigma < 1$, therefore the series $\sum_{i=1}^{\infty} \sigma^i$ is convergent and there exists $m_0 \in N$ such that $\sum_{i=m_0}^{\infty} \sigma^i < 1$. Now for every $m > m_0$ and for every $s \in N$ and in view of (φ),

$$u > \varphi(r) > \varphi \left(r \sum_{i=m_0}^{\infty} \sigma^i \right) > \varphi \left(r \sum_{i=m_0}^{m+s} \sigma^i \right)$$

which implies that

$$F_{y_{m+s+1} y_0} (u) > F_{y_{m+s+1} y_{m+s+1}} (\varphi(r))$$

$$\geq F_{y_{m+s+1} y_{m+s+1}} (\varphi \left(r \sum_{i=m}^{m+s} \sigma^i \right))$$

$$\geq T \left(T \ldots T \left(F_{y_{m+s+1} y_{m+s+1}} (\varphi \left(r \sigma^{m+s} \right), F_{y_{m+s} y_{m+s-1}} (\varphi \left(r \sigma^{m+s-1} \right) \right) \right) s-times$$
\[\ldots, F_{y_{m+1}y_m} \varphi(r \sigma^m)) \]
\[\geq T(T \ldots T(F_{y_0y_1} \varphi(r \sigma^{m+s})) \ldots, F_{y_0y_1} \varphi(r \sigma^m))) \]
\[\geq T_{i=m}^{m+s} F_{y_0y_1} \varphi(\frac{r}{\mu^i}) \]
\[= T_{i=m}^{\infty} F_{y_0y_1} \varphi(\frac{r}{\mu^i}). \]

It is obvious that,
\[\lim_{n \to \infty} T_{i=n}^{\infty} F_{y_0y_1} \varphi(\frac{1}{\mu^i}) = 1, \] implies that \(\lim_{n \to \infty} T_{i=n}^{\infty} F_{y_0y_1} \varphi(\frac{1}{\mu^i}) = 1, \) and this implies that,
\[\lim_{n \to \infty} T_{i=n}^{\infty} F_{y_0y_1} \varphi(\frac{r}{\mu^i}) = 1, \] for every \(r > 0. \)

Now for every \(u > 0, \) there exists \(r > 0 \) such that \(u > \varphi(r) > 0, \) there exist \(m_t(\varphi(r), \lambda) \) such that
\[F_{y_{m+s+1}y_m}(u) > 1 - \lambda, \] for every \(m \geq m_t(\varphi(r), \lambda) \) and every \(s \in \mathbb{N}. \)

This means that the sequence \(\{y_n\} \) is Cauchy sequence. Since either \(f(X) \) or \(g(X) \) is complete, for definiteness assume that \(g(X) \) is complete subspace of \(X \) then the subsequence of \(\{y_n\} \) must get a limit in \(g(X). \) Call it be \(z. \) Let \(p \in g^{-1}z. \) Then \(g \circ p = z \) as \(\{y_n\} \) is a Cauchy sequence containing a convergent subsequence, therefore the sequence \(\{y_n\} \) also convergent implying thereby the convergence of subsequence of the convergent sequence.

Which gives,
\[\lim_{n \to \infty} y_n = \lim_{n \to \infty} g x_n = \lim_{n \to \infty} f x_n = z. \]

Now we claim that \(fp = z. \)

From the property of \((\varphi) \), it follows that given \(\varepsilon > 0, \) we can find \(\varepsilon_1 > 0 \) such that \(\varepsilon > \varphi(\varepsilon_1) > 0. \)

Then for all \(n = 0, 1, 2, 3, \ldots, \)
\[F_{fpz}(\varepsilon) \geq T(F_{fpyn} \varphi(\varepsilon(1)), F_{ynz}(\varepsilon - \varphi(\varepsilon(1)))) \]
\[= T(F_{fpfx_n} \varphi(\varepsilon(1)), F_{ynz}(\varepsilon - \varphi(\varepsilon(1)))) \]
\[\geq T(F_{gpgx_n}(\varphi(\frac{\varepsilon_1}{c})), F_{ynz}(\varepsilon - \varphi(\varepsilon(1)))) \]
\[= T(F_{zyn^{-1}}(\varphi(\frac{\varepsilon_1}{c})), F_{ynz}(\varepsilon - \varphi(\varepsilon(1))). \]

Since \(T \) is continuous, taking limit as \(n \to \infty \) in the above inequality, we have for all \(\varepsilon > 0, \) \(F_{fpz}(\varepsilon) = 1, i.e., fp = z, \) we get \(fp = gp = z, \) since \(f \) and \(g \) are weakly compatible therefore we have \(fg \circ p = gf \circ p, i.e., fz = gz. \)

We claim that \(fz = z, \) from (3.3), we have
\[F_{fzz}(\varphi(t)) = F_{fzfp}(\varphi(t)) \geq F_{gzz}(\varphi(\frac{t}{c})) = F_{fzfp}(\varphi(\frac{t}{c})) \geq F_{gzz}(\varphi(\frac{t}{c}). \)
Proceeding as above, for any \(t > 0 \), \(F_{fz}(\varphi(t)) \geq F_{fz}(\varphi(\frac{\epsilon_1}{cn})) \rightarrow 1 \) as \(n \rightarrow \infty \), which gives \(fz = z = gz \). Thus \(z \) is a common fixed point of \(f \) and \(g \).

Uniqueness.

If possible let \(w \) and \(v \) be two fixed points of \(f \) and \(g \), then in view of \((\varphi) \) for given \(\epsilon > 0 \), we can find \(\epsilon_1 > 0 \) such that \(\epsilon > \varphi(\epsilon_1) > 0 \). Then one can see that

\[
F_{wv}(\epsilon) = F_{wfv}(\epsilon)
\geq F_{wfv}(\varphi(\epsilon_1))
\geq F_{gwgv}(\varphi(\frac{\epsilon_1}{c}))
= F_{fwfv}(\varphi(\frac{\epsilon_1}{c}))
\geq F_{gwgv}(\varphi(\frac{\epsilon_1}{c^2}))
= F_{wv}(\varphi(\frac{\epsilon_1}{c^2})).
\]

Proceeding as above, for any \(\epsilon > 0 \), \(F_{wv}(\epsilon) \geq F_{wv}(\varphi(\frac{\epsilon_1}{cn})) \rightarrow 1 \) as \(n \rightarrow \infty \), which gives \(w = v \).

Next we give the following example to validate our result

Example 3.3. Let \(X \{a, b, c, d\} \), \(T_M \) is the \(t \)-norm and \(F \) be defined as

\[
F_{ab}(t) = F_{ac}(t) = F_{ad}(t) = \begin{cases}
0 & \text{if } t \leq 0, \\
0.4 & \text{if } 0 < t < 4, \\
1 & \text{if } t \geq 4.
\end{cases}
\]

Then \(X, F, T_M \) is a complete Menger space.

If we define \(f, g : X \rightarrow X \) as follows:

\(f(a) = d, f(b) = c, f(c) = c, f(d) = d, \) and \(g(a) = d, g(b) = c, g(c) = c, g(d) = c, \) where \(\varphi(t) = t \) and \(c \) is the unique common fixed point of \(f \) and \(g \), then the mappings \(f \) and \(g \) satisfy all the conditions of the Theorem 3.2.

Acknowledgement: Second author is highly thankful to UGC for providing financial help in form providing Major Research Project under Ref. No. 39-41/2010(SR).
REFERENCES

