
Available online at http://scik.org

Adv. Fixed Point Theory, 2023, 13:2

https://doi.org/10.28919/afpt/6778

ISSN: 1927-6303

AN ITERATIVE METHOD FOR SOLUTIONS OF A GENERALIZED
VARIATIONAL INEQUALITY IN REAL HILBERT SPACES

J. ZHANG1,∗, Q. YUAN2

1School of Civil Engineering and Architecture, Linyi University, Shandong, China

2School of Mathematics and Statistics, Linyi University, Shandong, China

Copyright © 2023 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this article, we investigate an iterative algorithm for solutions of generalized variational inequalities.

A strong convergence theorem is established in the framework of Hilbert spaces.

Keywords: iterative algorithm; generalized variational inequality; monotone operator.

2020 AMS Subject Classification: 47H05, 47H09, 47H10

1. INTRODUCTION

Throughout this paper, we always assume that H is a real Hilbert space, whose inner product

and norm are denoted by 〈·, ·〉 and ‖ · ‖. Let C be a nonempty closed and convex subset of H

and A : C→ H a nonlinear mapping. Recall the following definitions:

(1) A is said to be monotone if

〈Ax−Ay,x− y〉 ≥ 0, ∀x,y ∈C.

(2) A is said to be ρ-strongly monotone if there exists a positive real number ρ > 0 such

that

〈Ax−Ay,x− y〉 ≥ ρ‖x− y‖2, ∀x,y ∈C.
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(3) A is said to be η-cocoercive if there exists a positive real number η > 0 such that

〈Ax−Ay,x− y〉 ≥ η‖Ax−Ay‖2, ∀x,y ∈C.

(4) A is said to be relaxed η-cocoercive if there exists a positive real number η > 0 such

that

〈Ax−Ay,x− y〉 ≥ (−η)‖Ax−Ay‖2, ∀x,y ∈C.

(5) A is said to be relaxed (η ,ρ)-cocoercive if there exist positive real numbers η ,ρ > 0

such that

〈Ax−Ay,x− y〉 ≥ (−η)‖Ax−Ay‖2 +ρ‖x− y‖2, ∀x,y ∈C.

Given nonlinear mappings A : C→ H and B : C→ H, find an u ∈C such that

〈u− τBu+λAu,v−u〉 ≥ 0, ∀v ∈C,

where λ and τ are two positive constants. In this paper, we use GV I(C,B,A) to denote the set

of solutions of the generalized variational inequality.

It is easy to see that an element u ∈ C is a solution to the variational inequality if and only

if u ∈C is a fixed point of the mapping PC(τB−λA), where PC denotes the metric projection

from H onto C. Indeed, we have the following relations:

u = PC(τB−λA)u⇐⇒ 〈u− τBu+λAu,v−u〉 ≥ 0, ∀v ∈C.

Next, we consider a special case of the inequality. If B = I, the identity mapping and τ = 1,

then the generalized variational inequality is reduced to the following. Find u ∈C such that

〈λAu,v−u〉 ≥ 0, ∀v ∈C.

The variational inequality emerging as a fascinating and interesting branch of mathematical and

engineering sciences with a wide range of applications in industry, finance, economics, social,

ecology, regional, pure and applied sciences was introduced by Stampacchia [1] in 1964. In this

paper, we use V I(C,A) to denote the set of solutions of the variational inequality.
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Let S : C→C be a mapping. We use F(S) to denote the set of fixed points of the mapping S.

Recall that S is said to be nonexpansive if

‖Sx−Sy‖ ≤ ‖x− y‖, ∀x,y ∈C.

Recall that S is said to be demi-closed at the origin if for each sequence {xn} in C, xn ⇀ x0 and

Sxn→ 0 imply Sx0 = 0, where ⇀ and→ stand for weak convergence and strong convergence.

Iterative methods recently have been investigated for treating fixed point problems; which

include variational inequalities, saddle problems and optimization problems as special case;

see [2-5] and the references therein. In this article, we investigate an viscosity iteration for

solutions of generalized variational inequalities. Strong convergence theorems are established

in the framework of Hilbert spaces.

Lemma 1.1 Let {xn} and {yn} be bounded sequences in a Hilbert space H and {βn} a sequence

in (0,1) with

0 < liminf
n→∞

βn ≤ limsup
n→∞

βn < 1.

Suppose that xn+1 = (1−βn)yn +βnxn for all integers n≥ 0 and

limsup
n→∞

(‖yn+1− yn‖−‖xn+1− xn‖)≤ 0.

Then limn→∞ ‖yn− xn‖= 0.

Lemma 1.2 Let C be a nonempty closed and convex subset of a real Hilbert space H. Let

S1 : C→ C and S2 : C→ C be nonexpansive mappings on C. Suppose that F(S1)∩F(S2) is

nonempty. Define a mapping S : C→C by

Sx = aS1x+(1−a)S2x, ∀x ∈C.

Then S is nonexpansive with F(S) = F(S1)∩F(S2).

Lemma 1.3 Let C be a nonempty closed and convex subset of a real Hilbert space H and

S : C→C a nonexpansive mapping. Then I−S is demi-closed at zero.

Lemma 1.4 Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤ (1− γn)αn +δn,

where {γn} is a sequence in (0,1) and {δn} is a sequence such that



4 J. ZHANG, Q. YUAN

(a) ∑
∞
n=1 γn = ∞;

(b) limsupn→∞ δn/γn ≤ 0 or ∑
∞
n=1 |δn|< ∞.

Then limn→∞ αn = 0.

2. MAIN RESULTS

Theorem 2.1. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let Am :

C→H be a relaxed (ηm,ρm)-cocoercive and µm-Lipschitz continuous mapping and Bm : C→H

a relaxed (η̂m, ρ̂m)-cocoercive and µ̂m-Lipschitz continuous mapping for each m ≥ 1. Assume

that ∩∞
m=1GV I(C,Bm,Am) 6= /0. Let {xn} be a sequence generated in the following manner:

x1 ∈C, xn+1 = αn f (xn)+βnxn + γn

∞

∑
m=1

δ(m,n)PC(τmBmxn−λmAmxn), n≥ 1,

where f : C→C is a fixed point, {αn}, {βn}, {γn}, {δ(1,n)}, . . . , and {δ(r,n)} are sequences in

(0,1) satisfying the following restrictions:

(a) αn +βn + γn = ∑
r
m=1 δ(m,n) = 1,∀n≥ 1;

(b) 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1;

(c) limn→∞ αn = 0 and ∑
∞
n=1 α = ∞;

(d) limn→∞ δ(m,n) = δm ∈ (0,1),

and {τm}∞
m=1, {λm}∞

m=1 are two positive sequences such that

(e)
√

1−2λmρm +λ 2
mµ2

m +2λmηmµ2
m +

√
1−2λ̂mρ̂m + λ̂ 2

mµ̂2
m +2λ̂mη̂mµ̂2

m ≤ 1.

Then the sequence {xn} converges strongly to a common element x̄ ∈ ∩∞
m=1GV I(C,Bm,Am).

Proof. First, we prove that the mapping PC(τmBm−λmAm) is nonexpansive for each 1≤m≤ r.

For each x,y ∈C, we have

‖PC(τmBm−λmAm)x−PC(τmBm−λmAm)y‖

≤ ‖(τmBm−λmAm)x− (τmBm−λmAm)y‖

≤ ‖(x− y)−λm(Amx−Amy)‖+‖(x− y)− τm(Bmx−Bmy)‖.

(2.1)
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It follows from the assumption that each Am is relaxed (ηm,ρm)-cocoercive and µm-Lipschitz

continuous that

‖x− y−λm(Amx−Amy)‖2

= ‖x− y‖2−2λm〈Amx−Amy,x− y〉+λ
2
m‖Amx−Amy‖2

≤ ‖x− y‖2−2λm[(−ηm)‖Amx−Amy‖2 +ρm‖x− y‖2]+λ
2
mµ

2
m‖x− y‖2

= (1−2λmρm +λ
2
mµ

2
m)‖x− y‖2 +2λmηm‖Amx−Amy‖2

≤ ξ
2
m‖x− y‖2,

where ξm =
√

1−2λmρm +λ 2
mµ2

m +2λmηmµ2
m. This shows that

‖x− y−λm(Amx−Amy)‖ ≤ ξm‖x− y‖. (2.2)

In a similar way, we can obtain that

‖x− y− τm(Bmx−Bmy)‖ ≤ ζm‖x− y‖, (2.3)

where ζm =

√
1−2λ̂mρ̂m + λ̂ 2

mµ̂2
m +2λ̂mη̂mµ̂2

m. Substituting (2.2) and (2.3) into (2.1), we

from the condition (e) see that PC(τmBm− λmAm) is nonexpansive for each 1 ≤ m ≤ r. Put

yn = ∑
r
m=1 δ(m,n)PC(τmBmxn− λmAmxn), ∀n ≥ 1. Fixing p ∈ ∩r

m=1GV I(C,Bm,Am), we see

that ‖yn− p‖ ≤ ‖xn− p‖. It follows that

‖xn+1− p‖= ‖αn f (xn)+βnxn + γnyn− p‖

≤ (1−αn(1−α))‖ f (p)− p‖+(1−αn)‖xn− p‖.

By mathematical inductions, we find that {xn} is bounded. Since the mapping PC(τmBm−

λmAm) is nonexpansive for each 1≤ m≤ r, we see that

‖yn+1− yn‖

= ‖
r

∑
m=1

δ(m,(n+1))PC(τmBmxn+1−λmAmxn+1)−
r

∑
m=1

δ(m,n)PC(τmBmxn−λmAmxn)‖

≤ ‖xn+1− xn‖+M
r

∑
m=1
|δ(m,(n+1))−δ(m,n)|,

(2.4)

where M is an appropriate constant such that

M = max{sup
n≥1
‖PC(τmBmxn−λmAmxn)‖,∀1≤ m≤ r}.
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Put ln =
xn+1−βnxn

1−βn
, for all n≥ 1. That is, xn+1 = (1−βn)ln +βnxn, ∀n≥ 1. Now, we estimate

‖ln+1− ln‖. Note that

ln+1− ln =
αn+1 f (xn+1)+ γn+1yn+1

1−βn+1
− αn f (xn)+ γnyn

1−βn

=
αn+1

1−βn+1
( f (xn+1)− yn+1)+

αn

1−βn
(yn− f (xn))+ yn+1− yn,

which yields that

‖ln+1− ln‖−‖xn+1− xn‖

≤ αn+1

1−βn+1
‖ f (xn+1)−Syn+1‖+

αn

1−βn
‖Syn− f (xn)‖+M

r

∑
m=1
|δ(m,(n+1))−δ(m,n)|.

It follows from the conditions (b), (c) and (d) that

limsup
n→∞

(
‖ln+1− ln‖−‖xn+1− xn+1‖

)
≤ 0.

It follows from Lemma 1.1 that limn→∞ ‖ln−xn‖= 0. We see that xn+1−xn = (1−βn)(ln−xn).

It follows that

lim
n→∞
‖xn+1− xn‖= 0. (2.5)

On the other hand, from the iterative algorithm (ϒ), we see that xn+1−xn =αn(u−xn)+γn(yn−

xn). It follows from (2.5) and the conditions (b), (c) that

lim
n→∞
‖yn− xn‖= 0. (2.6)

Next, we show that limsupn→∞〈 f (x̄)− x̄,xn− x̄〉 ≤ 0. To show it, we can choose a subse-

quence {xni} of {xn} such that

limsup
n→∞

〈 f (x̄)− x̄,xn− x̄〉= lim
i→∞
〈u− x̄,xni− x̄〉. (2.7)

Since {xni} is bounded, we obtain that there exists a subsequence {xni j
} of {xni} which con-

verges weakly to q. Without loss of generality, we may assume that xni ⇀ q. Next, we show

that q ∈ ∩r
m=1GV I(C,Bm,Am). Define a mapping R : C→C by

Rx =
∞

∑
m=1

δmPC(τmBm−λmAm)x, ∀x ∈C,



SOLUTIONS OF A GENERALIZED VARIATIONAL INEQUALITY 7

where δm = limn→∞ δ(m,n). From Lemma 1.2, we see that R is nonexpansive with

F(R) =
∞⋂

m=1

F(PC(τmBm−λmAm)) =
∞⋂

m=1

GV I(C,Bm,Am).

Now, we show that Rxn− xn→ 0 as n→ ∞. Note that

‖Rxn− xn‖

= ‖
∞

∑
m=1

δmPC(τmBm−λmAm)xn−
r

∑
m=1

δ(m,n)PC(τmBmxn−λmAmxn)‖+‖yn− xn‖

≤M
∞

∑
m=1
|δ(m,n)−δm|+‖yn− xn‖.

From the condition (d) and (2.7), we obtain that limn→∞ ‖Rxn− xn‖= 0. From Lemma 1.3, we

see that

q ∈ F(R) =
∞⋂

m=1

F(PC(τmBm−λmAm)) =
∞⋂

m=1

GV I(C,Bm,Am).

It follows that

limsup
n→∞

〈u− x̄,xn− x̄〉= 〈u− x̄,q− x̄〉 ≤ 0.

Finally, we show that xn→ x̄ as n→ ∞. Note that

‖xn+1− x̄‖2

= 〈αn f (xn)+βnxn + γnyn− x̄,xn+1− x̄〉

≤ 1−αn

2
(‖xn− x̄‖2 +‖xn+1− x̄‖2)+αn〈 f (x̄)− x̄,xn+1− x̄〉,

which implies that

‖xn+1− x̄‖2 ≤ (1−αn)‖xn− x̄‖2 +2αn〈 f (x̄)− x̄,xn+1− x̄〉.

It follows that

lim
n→∞
‖xn− x̄‖= 0.

This completes the proof.
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