AN ITERATIVE METHOD FOR SOLUTIONS OF A GENERALIZED VARIATIONAL INEQUALITY IN REAL HILBERT SPACES

J. ZHANG ${ }^{1, *}$, Q. YUAN ${ }^{2}$
${ }^{1}$ School of Civil Engineering and Architecture, Linyi University, Shandong, China
${ }^{2}$ School of Mathematics and Statistics, Linyi University, Shandong, China

Copyright © 2023 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this article, we investigate an iterative algorithm for solutions of generalized variational inequalities. A strong convergence theorem is established in the framework of Hilbert spaces.

Keywords: iterative algorithm; generalized variational inequality; monotone operator.
2020 AMS Subject Classification: 47H05, 47H09, 47H10

1. Introduction

Throughout this paper, we always assume that H is a real Hilbert space, whose inner product and norm are denoted by $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$. Let C be a nonempty closed and convex subset of H and $A: C \rightarrow H$ a nonlinear mapping. Recall the following definitions:
(1) A is said to be monotone if

$$
\langle A x-A y, x-y\rangle \geq 0, \quad \forall x, y \in C
$$

(2) A is said to be ρ-strongly monotone if there exists a positive real number $\rho>0$ such that

$$
\langle A x-A y, x-y\rangle \geq \rho\|x-y\|^{2}, \quad \forall x, y \in C .
$$

[^0]E-mail address: 1513309941 @qq.com
Received November 25, 2022
(3) A is said to be η-cocoercive if there exists a positive real number $\eta>0$ such that

$$
\langle A x-A y, x-y\rangle \geq \eta\|A x-A y\|^{2}, \quad \forall x, y \in C
$$

(4) A is said to be relaxed η-cocoercive if there exists a positive real number $\eta>0$ such that

$$
\langle A x-A y, x-y\rangle \geq(-\eta)\|A x-A y\|^{2}, \quad \forall x, y \in C
$$

(5) A is said to be relaxed (η, ρ)-cocoercive if there exist positive real numbers $\eta, \rho>0$ such that

$$
\langle A x-A y, x-y\rangle \geq(-\eta)\|A x-A y\|^{2}+\rho\|x-y\|^{2}, \quad \forall x, y \in C
$$

Given nonlinear mappings $A: C \rightarrow H$ and $B: C \rightarrow H$, find an $u \in C$ such that

$$
\langle u-\tau B u+\lambda A u, v-u\rangle \geq 0, \quad \forall v \in C
$$

where λ and τ are two positive constants. In this paper, we use $G V I(C, B, A)$ to denote the set of solutions of the generalized variational inequality.

It is easy to see that an element $u \in C$ is a solution to the variational inequality if and only if $u \in C$ is a fixed point of the mapping $P_{C}(\tau B-\lambda A)$, where P_{C} denotes the metric projection from H onto C. Indeed, we have the following relations:

$$
u=P_{C}(\tau B-\lambda A) u \Longleftrightarrow\langle u-\tau B u+\lambda A u, v-u\rangle \geq 0, \quad \forall v \in C
$$

Next, we consider a special case of the inequality. If $B=I$, the identity mapping and $\tau=1$, then the generalized variational inequality is reduced to the following. Find $u \in C$ such that

$$
\langle\lambda A u, v-u\rangle \geq 0, \quad \forall v \in C
$$

The variational inequality emerging as a fascinating and interesting branch of mathematical and engineering sciences with a wide range of applications in industry, finance, economics, social, ecology, regional, pure and applied sciences was introduced by Stampacchia [1] in 1964. In this paper, we use $V I(C, A)$ to denote the set of solutions of the variational inequality.

Let $S: C \rightarrow C$ be a mapping. We use $F(S)$ to denote the set of fixed points of the mapping S. Recall that S is said to be nonexpansive if

$$
\|S x-S y\| \leq\|x-y\|, \quad \forall x, y \in C
$$

Recall that S is said to be demi-closed at the origin if for each sequence $\left\{x_{n}\right\}$ in $C, x_{n} \rightharpoonup x_{0}$ and $S x_{n} \rightarrow 0$ imply $S x_{0}=0$, where \rightharpoonup and \rightarrow stand for weak convergence and strong convergence.

Iterative methods recently have been investigated for treating fixed point problems; which include variational inequalities, saddle problems and optimization problems as special case; see [2-5] and the references therein. In this article, we investigate an viscosity iteration for solutions of generalized variational inequalities. Strong convergence theorems are established in the framework of Hilbert spaces.

Lemma 1.1 Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Hilbert space H and $\left\{\beta_{n}\right\}$ a sequence in $(0,1)$ with

$$
0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1
$$

Suppose that $x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} x_{n}$ for all integers $n \geq 0$ and

$$
\limsup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Then $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.
Lemma 1.2 Let C be a nonempty closed and convex subset of a real Hilbert space H. Let $S_{1}: C \rightarrow C$ and $S_{2}: C \rightarrow C$ be nonexpansive mappings on C. Suppose that $F\left(S_{1}\right) \cap F\left(S_{2}\right)$ is nonempty. Define a mapping $S: C \rightarrow C$ by

$$
S x=a S_{1} x+(1-a) S_{2} x, \quad \forall x \in C
$$

Then S is nonexpansive with $F(S)=F\left(S_{1}\right) \cap F\left(S_{2}\right)$.
Lemma 1.3 Let C be a nonempty closed and convex subset of a real Hilbert space H and $S: C \rightarrow C$ a nonexpansive mapping. Then $I-S$ is demi-closed at zero.

Lemma 1.4 Assume that $\left\{\alpha_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
\alpha_{n+1} \leq\left(1-\gamma_{n}\right) \alpha_{n}+\delta_{n},
$$

where $\left\{\gamma_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{\delta_{n}\right\}$ is a sequence such that
(a) $\sum_{n=1}^{\infty} \gamma_{n}=\infty$;
(b) $\limsup { }_{n \rightarrow \infty} \delta_{n} / \gamma_{n} \leq 0$ or $\sum_{n=1}^{\infty}\left|\delta_{n}\right|<\infty$.

Then $\lim _{n \rightarrow \infty} \alpha_{n}=0$.

2. Main Results

Theorem 2.1. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let A_{m} : $C \rightarrow H$ be a relaxed $\left(\eta_{m}, \rho_{m}\right)$-cocoercive and μ_{m}-Lipschitz continuous mapping and $B_{m}: C \rightarrow H$ a relaxed $\left(\widehat{\eta}_{m}, \widehat{\rho}_{m}\right)$-cocoercive and $\widehat{\mu}_{m}$-Lipschitz continuous mapping for each $m \geq 1$. Assume that $\cap_{m=1}^{\infty} \operatorname{GVI}\left(C, B_{m}, A_{m}\right) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated in the following manner:

$$
x_{1} \in C, \quad x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} \sum_{m=1}^{\infty} \delta_{(m, n)} P_{C}\left(\tau_{m} B_{m} x_{n}-\lambda_{m} A_{m} x_{n}\right), \quad n \geq 1
$$

where $f: C \rightarrow C$ is a fixed point, $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\delta_{(1, n)}\right\}, \ldots$, and $\left\{\delta_{(r, n)}\right\}$ are sequences in $(0,1)$ satisfying the following restrictions:
(a) $\alpha_{n}+\beta_{n}+\gamma_{n}=\sum_{m=1}^{r} \delta_{(m, n)}=1, \forall n \geq 1$;
(b) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup \sup _{n \rightarrow \infty} \beta_{n}<1$;
(c) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha=\infty$;
(d) $\lim _{n \rightarrow \infty} \delta_{(m, n)}=\delta_{m} \in(0,1)$,
and $\left\{\tau_{m}\right\}_{m=1}^{\infty},\left\{\lambda_{m}\right\}_{m=1}^{\infty}$ are two positive sequences such that
(e) $\sqrt{1-2 \lambda_{m} \rho_{m}+\lambda_{m}^{2} \mu_{m}^{2}+2 \lambda_{m} \eta_{m} \mu_{m}^{2}}+\sqrt{1-2 \widehat{\lambda}_{m} \widehat{\rho}_{m}+\hat{\lambda}_{m}^{2} \widehat{\mu}_{m}^{2}+2 \widehat{\lambda}_{m} \widehat{\eta}_{m} \widehat{\mu}_{m}^{2}} \leq 1$.

Then the sequence $\left\{x_{n}\right\}$ converges strongly to a common element $\bar{x} \in \cap_{m=1}^{\infty} G V I\left(C, B_{m}, A_{m}\right)$.
Proof. First, we prove that the mapping $P_{C}\left(\tau_{m} B_{m}-\lambda_{m} A_{m}\right)$ is nonexpansive for each $1 \leq m \leq r$. For each $x, y \in C$, we have

$$
\begin{align*}
& \left\|P_{C}\left(\tau_{m} B_{m}-\lambda_{m} A_{m}\right) x-P_{C}\left(\tau_{m} B_{m}-\lambda_{m} A_{m}\right) y\right\| \\
& \leq\left\|\left(\tau_{m} B_{m}-\lambda_{m} A_{m}\right) x-\left(\tau_{m} B_{m}-\lambda_{m} A_{m}\right) y\right\| \tag{2.1}\\
& \leq\left\|(x-y)-\lambda_{m}\left(A_{m} x-A_{m} y\right)\right\|+\left\|(x-y)-\tau_{m}\left(B_{m} x-B_{m} y\right)\right\|
\end{align*}
$$

It follows from the assumption that each A_{m} is relaxed $\left(\eta_{m}, \rho_{m}\right)$-cocoercive and μ_{m}-Lipschitz continuous that

$$
\begin{aligned}
& \left\|x-y-\lambda_{m}\left(A_{m} x-A_{m} y\right)\right\|^{2} \\
& =\|x-y\|^{2}-2 \lambda_{m}\left\langle A_{m} x-A_{m} y, x-y\right\rangle+\lambda_{m}^{2}\left\|A_{m} x-A_{m} y\right\|^{2} \\
& \leq\|x-y\|^{2}-2 \lambda_{m}\left[\left(-\eta_{m}\right)\left\|A_{m} x-A_{m} y\right\|^{2}+\rho_{m}\|x-y\|^{2}\right]+\lambda_{m}^{2} \mu_{m}^{2}\|x-y\|^{2} \\
& =\left(1-2 \lambda_{m} \rho_{m}+\lambda_{m}^{2} \mu_{m}^{2}\right)\|x-y\|^{2}+2 \lambda_{m} \eta_{m}\left\|A_{m} x-A_{m} y\right\|^{2} \\
& \leq \xi_{m}^{2}\|x-y\|^{2}
\end{aligned}
$$

where $\xi_{m}=\sqrt{1-2 \lambda_{m} \rho_{m}+\lambda_{m}^{2} \mu_{m}^{2}+2 \lambda_{m} \eta_{m} \mu_{m}^{2}}$. This shows that

$$
\begin{equation*}
\left\|x-y-\lambda_{m}\left(A_{m} x-A_{m} y\right)\right\| \leq \xi_{m}\|x-y\| . \tag{2.2}
\end{equation*}
$$

In a similar way, we can obtain that

$$
\begin{equation*}
\left\|x-y-\tau_{m}\left(B_{m} x-B_{m} y\right)\right\| \leq \zeta_{m}\|x-y\|, \tag{2.3}
\end{equation*}
$$

where $\zeta_{m}=\sqrt{1-2 \widehat{\lambda}_{m} \widehat{\rho}_{m}+\widehat{\lambda}_{m}^{2} \widehat{\mu}_{m}^{2}+2 \widehat{\lambda}_{m} \widehat{\eta}_{m} \widehat{\mu}_{m}^{2}}$. Substituting (2.2) and (2.3) into (2.1), we from the condition (e) see that $P_{C}\left(\tau_{m} B_{m}-\lambda_{m} A_{m}\right)$ is nonexpansive for each $1 \leq m \leq r$. Put $y_{n}=\sum_{m=1}^{r} \delta_{(m, n)} P_{C}\left(\tau_{m} B_{m} x_{n}-\lambda_{m} A_{m} x_{n}\right), \quad \forall n \geq 1$. Fixing $p \in \cap_{m=1}^{r} G V I\left(C, B_{m}, A_{m}\right)$, we see that $\left\|y_{n}-p\right\| \leq\left\|x_{n}-p\right\|$. It follows that

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} y_{n}-p\right\| \\
& \leq\left(1-\alpha_{n}(1-\alpha)\right)\|f(p)-p\|+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\| .
\end{aligned}
$$

By mathematical inductions, we find that $\left\{x_{n}\right\}$ is bounded. Since the mapping $P_{C}\left(\tau_{m} B_{m}-\right.$ $\left.\lambda_{m} A_{m}\right)$ is nonexpansive for each $1 \leq m \leq r$, we see that

$$
\begin{align*}
& \left\|y_{n+1}-y_{n}\right\| \\
& =\left\|\sum_{m=1}^{r} \delta_{(m,(n+1))} P_{C}\left(\tau_{m} B_{m} x_{n+1}-\lambda_{m} A_{m} x_{n+1}\right)-\sum_{m=1}^{r} \delta_{(m, n)} P_{C}\left(\tau_{m} B_{m} x_{n}-\lambda_{m} A_{m} x_{n}\right)\right\| \tag{2.4}\\
& \leq\left\|x_{n+1}-x_{n}\right\|+M \sum_{m=1}^{r}\left|\delta_{(m,(n+1))}-\delta_{(m, n)}\right|
\end{align*}
$$

where M is an appropriate constant such that

$$
M=\max \left\{\sup _{n \geq 1}\left\|P_{C}\left(\tau_{m} B_{m} x_{n}-\lambda_{m} A_{m} x_{n}\right)\right\|, \forall 1 \leq m \leq r\right\}
$$

Put $l_{n}=\frac{x_{n+1}-\beta_{n} x_{n}}{1-\beta_{n}}$, for all $n \geq 1$. That is, $x_{n+1}=\left(1-\beta_{n}\right) l_{n}+\beta_{n} x_{n}, \quad \forall n \geq 1$. Now, we estimate $\left\|l_{n+1}-l_{n}\right\|$. Note that

$$
\begin{aligned}
l_{n+1}-l_{n} & =\frac{\alpha_{n+1} f\left(x_{n+1}\right)+\gamma_{n+1} y_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n} f\left(x_{n}\right)+\gamma_{n} y_{n}}{1-\beta_{n}} \\
& =\frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(f\left(x_{n+1}\right)-y_{n+1}\right)+\frac{\alpha_{n}}{1-\beta_{n}}\left(y_{n}-f\left(x_{n}\right)\right)+y_{n+1}-y_{n}
\end{aligned}
$$

which yields that

$$
\begin{aligned}
& \left\|l_{n+1}-l_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \\
& \leq \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left\|f\left(x_{n+1}\right)-S y_{n+1}\right\|+\frac{\alpha_{n}}{1-\beta_{n}}\left\|S y_{n}-f\left(x_{n}\right)\right\|+M \sum_{m=1}^{r}\left|\delta_{(m,(n+1))}-\delta_{(m, n)}\right|
\end{aligned}
$$

It follows from the conditions (b), (c) and (d) that

$$
\limsup _{n \rightarrow \infty}\left(\left\|l_{n+1}-l_{n}\right\|-\left\|x_{n+1}-x_{n+1}\right\|\right) \leq 0
$$

It follows from Lemma 1.1 that $\lim _{n \rightarrow \infty}\left\|l_{n}-x_{n}\right\|=0$. We see that $x_{n+1}-x_{n}=\left(1-\beta_{n}\right)\left(l_{n}-x_{n}\right)$. It follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{2.5}
\end{equation*}
$$

On the other hand, from the iterative algorithm (Υ), we see that $x_{n+1}-x_{n}=\alpha_{n}\left(u-x_{n}\right)+\gamma_{n}\left(y_{n}-\right.$ x_{n}). It follows from (2.5) and the conditions (b), (c) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0 \tag{2.6}
\end{equation*}
$$

Next, we show that $\limsup _{n \rightarrow \infty}\left\langle f(\bar{x})-\bar{x}, x_{n}-\bar{x}\right\rangle \leq 0$. To show it, we can choose a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle f(\bar{x})-\bar{x}, x_{n}-\bar{x}\right\rangle=\lim _{i \rightarrow \infty}\left\langle u-\bar{x}, x_{n_{i}}-\bar{x}\right\rangle . \tag{2.7}
\end{equation*}
$$

Since $\left\{x_{n_{i}}\right\}$ is bounded, we obtain that there exists a subsequence $\left\{x_{n_{i_{j}}}\right\}$ of $\left\{x_{n_{i}}\right\}$ which converges weakly to q. Without loss of generality, we may assume that $x_{n_{i}} \rightharpoonup q$. Next, we show that $q \in \cap_{m=1}^{r} G V I\left(C, B_{m}, A_{m}\right)$. Define a mapping $R: C \rightarrow C$ by

$$
R x=\sum_{m=1}^{\infty} \delta_{m} P_{C}\left(\tau_{m} B_{m}-\lambda_{m} A_{m}\right) x, \quad \forall x \in C
$$

where $\delta_{m}=\lim _{n \rightarrow \infty} \boldsymbol{\delta}_{(m, n)}$. From Lemma 1.2, we see that R is nonexpansive with

$$
F(R)=\bigcap_{m=1}^{\infty} F\left(P_{C}\left(\tau_{m} B_{m}-\lambda_{m} A_{m}\right)\right)=\bigcap_{m=1}^{\infty} G V I\left(C, B_{m}, A_{m}\right)
$$

Now, we show that $R x_{n}-x_{n} \rightarrow 0$ as $n \rightarrow \infty$. Note that

$$
\begin{aligned}
& \left\|R x_{n}-x_{n}\right\| \\
& =\left\|\sum_{m=1}^{\infty} \delta_{m} P_{C}\left(\tau_{m} B_{m}-\lambda_{m} A_{m}\right) x_{n}-\sum_{m=1}^{r} \delta_{(m, n)} P_{C}\left(\tau_{m} B_{m} x_{n}-\lambda_{m} A_{m} x_{n}\right)\right\|+\left\|y_{n}-x_{n}\right\| \\
& \leq M \sum_{m=1}^{\infty}\left|\delta_{(m, n)}-\delta_{m}\right|+\left\|y_{n}-x_{n}\right\| .
\end{aligned}
$$

From the condition (d) and (2.7), we obtain that $\lim _{n \rightarrow \infty}\left\|R x_{n}-x_{n}\right\|=0$. From Lemma 1.3, we see that

$$
q \in F(R)=\bigcap_{m=1}^{\infty} F\left(P_{C}\left(\tau_{m} B_{m}-\lambda_{m} A_{m}\right)\right)=\bigcap_{m=1}^{\infty} G V I\left(C, B_{m}, A_{m}\right) .
$$

It follows that

$$
\limsup _{n \rightarrow \infty}\left\langle u-\bar{x}, x_{n}-\bar{x}\right\rangle=\langle u-\bar{x}, q-\bar{x}\rangle \leq 0 .
$$

Finally, we show that $x_{n} \rightarrow \bar{x}$ as $n \rightarrow \infty$. Note that

$$
\begin{aligned}
& \left\|x_{n+1}-\bar{x}\right\|^{2} \\
& =\left\langle\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} y_{n}-\bar{x}, x_{n+1}-\bar{x}\right\rangle \\
& \leq \frac{1-\alpha_{n}}{2}\left(\left\|x_{n}-\bar{x}\right\|^{2}+\left\|x_{n+1}-\bar{x}\right\|^{2}\right)+\alpha_{n}\left\langle f(\bar{x})-\bar{x}, x_{n+1}-\bar{x}\right\rangle
\end{aligned}
$$

which implies that

$$
\left\|x_{n+1}-\bar{x}\right\|^{2} \leq\left(1-\alpha_{n}\right)\left\|x_{n}-\bar{x}\right\|^{2}+2 \alpha_{n}\left\langle f(\bar{x})-\bar{x}, x_{n+1}-\bar{x}\right\rangle .
$$

It follows that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-\bar{x}\right\|=0
$$

This completes the proof.

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C.R. Acad. Sci. Paris. 258 (1964), 4413-4416.
[2] F.E. Browder, W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228. https://core.ac.uk/display/81135918.
[3] R.R. Phelps, Convex Functions, Monotone Operators and Differentiability, Springer-Verlag, New York, 1989.
[4] S.P. Han, G. Lou, A parallel algorithm for a class of convex programs, SIAM J. Control Optim. 26 (1988), 345-355. https://doi.org/10.1137/0326019.
[5] P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and variational inequalities, SIAM J. Control Optim. 29 (1991), 119-138. https://doi.org/10.1137/0329006.

[^0]: *Corresponding author

