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Abstract. In this paper we introduce some Banach fixed point theorems in operators of Hilbert C∗-modules, based

on a definition of valued operator Hilbert C∗-modules normed space. Also We give some examples to clear our

definitions. Finally we discuss the existence and uniqueness of the solution of system of operators on Hilbert

C∗-modules.
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1. INTRODUCTION

In 1922, the Polish Mathematician Banach introduced the most well known fixed point theo-

rem so-called Banach contraction principle [1]. This theorem states that a contraction mapping

on a complete metric space into itself has a unique fixed point. This theorem is a very useful,

simple and classical tool in moderen analysis. It is consider an important tool for solving exis-

tance problems in many branches of mathmatics and physics.

Hilbert C∗-modules were first introduced in 1953 by Kaplansky [9]. Later, the theory was devel-

oped independently by Paschke [13] and Rieffel [15] where the research on HilbertC∗-modules
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began in the 70,s in the work of the induced representations of C∗-algebras by M. A. Rieffel

[15] also Kaplansky[9] used this object to prove that derivations of type IAW ∗-algebras are in-

ner where he was to generalise Hilbert space by allowing the inner product to take values in a

(commutative, unital) C∗-algebra rather than in the field of complex numbers, Kasparov [10]

introduced the definition of KK-theory by using HilbertC∗-modules.

Ma and et al [17], introduced the concept of C∗-algebra-valued metric spaces. The main idea

consists in using the set of all positive elements of a unital C∗-algebra instead of the set of real

numbers. They presented some fixed point results for mapping under contractive or expansive

conditions in these spaces.

An element x ∈A is a positive element, denote it by x� 0 , if x ∈Ah and σ(x)⊂ [0,+∞[, where

σ(x) is the spectrum of x and Ah = {x ∈ A : x∗ = x}. Using positive elements, one can define

a partial ordering � on Ah as follows: x � y if and only if y− x � 0. From now on, by A+ we

denote the set {x ∈ A : x� 0} and |x|= (x∗x)
1
2 .

2. PRELIMINARIES

In this section, we begin with some basic notations and definition C∗-algebra and fixed point

theory that will be very important and useful in the sequal.

Definition 2.1 [18] A Banach ∗-algebra is a ∗-algebra A together with a complete submulti-

plicative norm such that ‖ab‖ ≤ ‖a‖‖b‖ (for all a,b ∈ A). A C∗algebra is a Banach ∗-algebra

such that ‖a∗a‖= ‖a‖2 (for all a ∈ A).

Definition 2.2 [18] An element a ∈ A is positive element, if a = a∗ and σ(a) ⊆ R+ , where

σ(a) is the spectrum of a, we denote A+ the set of all positive element in A.

Definition 2.3 [12, 22] A pre-Hilbert C∗-module E over a C∗-algebra A , is a right A-module

together with an A-valued inner product < ., . >: E ×E −→ A satisfying the conditions:

(1) < x,x >� 0 for all x ∈ E ;

(2) < x,x >= 0 if and only if x = 0;

(3) < x,αy+β z >= α < x,y >+β < x,z > for all x,y,z ∈ E ,α,β ∈ C;

(4) < x,ya >=< x,y > a for all x,y ∈ E ,a ∈ A;

(5) < x,y >∗=< y,x > for all x,y ∈ E .
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Definition 2.4 [12] The norm of an element e ∈ E is defined as

‖x‖E :=
√
‖〈x,x〉‖R, where ‖.‖R is the R-valued norm.

If a pre-Hilbert A -module is complete with respect to its norm,it is said to be a Hilbert A -

module.

Example 2.1

(i) Every C∗-algebra A is a Hilbert A-module over itself when equipped with the A-valued

inner product given simply by

〈a,b〉= a∗b, (a,b ∈ A).

(ii) Let {Ei}1≤i≤n be a finite family of Hilbert A-modules. Then the direct sum ⊕Ei is a

Hilbert A-modules with the module action and inner product defined by

(x1,x2, · · · ,xn)a = (x1a,x2a, · · · ,xna)

< (x1,x2, · · · ,xn),(y1,y2, · · · ,yn)>= ∑
n
i=1 < xi,yi >E , xi,yi ∈ Ei.

Definition 2.5 [22] Let E be a Hilbert A-module. A map T : E −→ E is said to be adjointable

if there exists a map T ∗ : E −→ E satisfying

< x,Ty >=< T ∗x,y >

for all x,y ∈ E .

Definition 2.6 [7] An element T ∈ l(E ) is positive if for every x ∈ E we have < T x,x >A� 0

and we write it by T � 0 and we denote the set l(E )+ = {T ∈ E ; T � 0}, we define a

partial ordering relation on l(E )+ as

if T1,T2 ∈ l(E ),T1 �l(E ) T2 if and only if T2−T1 ∈ l(E )+

Definition 2.7 [7] l(E ) = {T : E −→ E } is the set of all adjiontable linear operators with ‖T‖

= sup{‖T x‖E ;‖x‖E ≤ 1} is a C∗-algebra.

3. MAIN RESULTS

Definition 3.1 [3] Let l(E )+ be a subset of l(E ). l(E )+ is called Cone of l(E ) if and only if:

(1) l(E )+∩ (−l(E )+) = {0l(E )}, (0l(E ) is the zero vector);

(2) l(E )+ is closed in l(E );

(3) Ta+Sb ∈ l(E )+ ; aT +bS ∈ l(E )+ a,b ∈ A , T λ +Sβ ∈ l(E )+ : λ ,β ∈ C ;
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(4) l(E )+ · l(E )+ ⊆ l(E )+ .

Definition 3.2 [3] An l(E )-valued metric on a set X is a function dl(E ) : X ×X −→ l(E ) such

that for all x,y and z in X the following conditions are hold:

(1) dl(E )(x,y)� 0;

(2) dl(E )(x,y) = 0 if and only if x = y;

(3) dl(E )(x,y) = dl(E )(y,x);

(4) dl(E )(x,y)� dl(E )(x,z)+dl(E )(z,y).

Then the triple (X , l(E ),dl(E )) is called an l(E )-valued metric space.

Definition 3.3[17] Let X be a nonempty set. Suppose the mapping d : X×X −→ A satisfies:

(1) 0A � d(x,y) for all x,y ∈ X and d(x,y) = 0A if and only if x = y.

(2) d(x,y) = d(y,x) for all x,y ∈ X .

(3) d(x,y)� d(x,z)+d(z,y) for all x,y,z ∈ X .

Then d is called a C∗-algebra-valued metric on X and (X ,A,d) is a C∗-algebra-valued metric

space.

Definition 3.4 [3] Let (X , l(E ),dl(E )) be an l(E )- valued metric spacs. Suppose that xn ⊂ X and

x ∈ X If for any εl(E ) � 0l(E ) (where 0l(E ) is the zero element in l(E ) ) there exists N ∈ N such

that for all n > N, dl(E )(xn,x)� εl(E ), then {xn} is said to be converge with respect to l(E ), and

{xn} converges to x and x is the limit of {xn}. We denote it by lim
n−→+∞

{xn}= x .

If for any εl(E ) � 0l(E ) there exists N ∈N such that for all n,m > N, d(xn,xm)� εl(E ), then {xn}

is said to be a Cauchy with respect to l(E ).

We say (X , l(E ),dl(E )) is a complete l(E )- valued metric spacs if every Cauchy sequence with

respect to l(E ) is convergent.

Lemma 3.1 [3] A sequence xn ⊂ X is convergence if ‖xn‖ −→ 0 ∀n > N such that N ∈ N.

Example 3.1 [3] Let X = A⊕n,E = A⊕n and L(E ) = {T : A⊕n −→ A⊕n : T (a1,a2, ...,an) =

(Ta1,Ta2, ...,Tan)}. Define

d((a1,a2, ...,an),(b1,b2, ...,bn)) = (‖Ta1−T b1‖R,‖Ta2−T b2‖R, ...,‖Tan−T bn‖R)IA,

where (a1,a2, ...,an),(b1,b2, ...,bn) ∈ A⊕n and IA is the identity element of A. It is easy to

verify that dl(E ) is an l(E ) -valued metric space and (X ,A⊕n,dl(E )) is a complete l(E ) -valued
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metric space, since A is complete.

Example 3.2 Let X = A⊕n,E = A and l(E ) = {T : A−→ A}. Define

d((a1,a2, ...,an),(b1,b2, ...,bn)) = ∑
n
i=1 ‖Tai−T bi‖RIA,

where (a1,a2, ...,an),(b1,b2, ...,bn) ∈A⊕n and IA is the identity element of A . It easy to verify

that (X ,A,dl(E )) is a complete l(E ) metric space.

Definition 3.5 [3] let (X , l(E )) is an l(E )-metric space, we define the open ball on X

Bl(E )(a,εl(E )) = {x ∈ X ;‖x−a‖ ≺ εl(E )}

Definition 3.6 [3] Suppose that (X ,dl(E )) is l(E )-metric space, let x ∈ X then a neighhborhood

of x is any set containing Bl(E )(x,εl(E )) for some εl(E ) � 0l(E ).

Definition 3.7 [3] Suppose that (X ,dl(E )) is l(E )-metric space, a subset U ⊂ X is open if for

every x ∈U there exist an open ball Bl(E )(a,εl(E )) such that x ∈ Bl(E )(x,εl(E ))⊂U .

Definition 3.8 The union of open set define a topology on X related to l(E ) .

Motivaied by the idea in [11],[16],[18], we give the following definations.

Definition 3.9 Let X be vector space, if the function ‖.‖l(E ) : X −→ l(E ) has the following

properties:

(1) ‖x‖l(E ) � 0 i.e ‖x‖l(E ) is a positive operator, ‖x‖l(E ) = 0⇔ x = 0;

(2) ‖λx‖l(E ) = |λ |‖x‖l(E ) ; λ ∈ C;

(3) ‖x+ y‖l(E ) � ‖x‖l(E )+‖y‖l(E ).

Then ‖.‖ is said to be l(E )-valued norm defined on X , and (X ,‖.‖) is said to be l(E )-valued

normed l(E ) space.

Also we will set the relation between l(E )-valued metric space and l(E )-valued normed space

as follow dl(E )(x,y) = ‖x− y‖l(E ).

Definition 3.10 Let X be a vector space over a field (F = C,R) we say that X is a right l(E )-

vector space if satisfy:

(1) (x+ y)T = xT + yT ;

(3) x(T1 +T2) = xT1 + xT2;

(3) (xS)T = x(ST ).
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Where x,y ∈ X and S,T ∈ l(E ).

Lemmae 3.2 Let X be a right l(E )-vector space then,

‖xT‖l(E ) � ‖x‖‖T‖l(E ).

Definition 3.11 Let A be C∗-algebra,and l(E ) be an l(E )-normed spac. We say that l(E ) is right

A-module if the mapping is right module multiplication (a,T ) 7−→ xa of A× l(E )−→ l(E ) such

that the following axioms are satisfied:

(1) For each fixed a ∈ A the map (a,T )−→ Ta is linear on l(E ): T ∈ l(E ) ;

(2) For each fixed T ∈ l(E ) the map (a,T )−→ Ta is linear on A;

(3) For all a1,a2 ∈ A and all T ∈ l(E ) we have that (Ta1)a2 = T (a1a2).

Example 3.3 If we define the norm ‖x‖l(E ) = ‖x‖Il(E ) (where Il(E ) is the identity operator of

l(E ) ) then we have that l(E ) with this norm is l(E )-norm.

Example 3.4 Let X = A⊕n and l(E ) = A. Define

‖(a1,a2, ...,an)‖= ∑
n
i=1 ‖ai‖IA,

where (a1,a2, ...,an) ∈ A⊕n and IA is the identity element of A . It is easy to verify that X is

l(E ) -valued normed space.

Lemma 3.3 If S is positive operator then for any operator T implies T ∗ST is positive operator.

Proof. Since S� 0, we can write S = R∗R, for any R∈ (lE ) implies T ∗(R∗R)T = (T ∗R∗)(RT ) =

(RT )∗(RT )� 0 �

Definition 3.12 A sequence {xn} in X is said to be convergent if for every ε > 0, there is a

natural number N such that for n > N we have

‖xn− x‖ �l(E ) εIl(E ) (where Il(E ) the identity operator of l(E ) ).

Definition 3.13 A sequence {xn} in X is said to be a Cuachy sequence if for every ε > 0, there

is a natural number N such that for n,m > N we have

‖xn− xm‖ �l(E ) εIl(E ).

Lemma 3.3 A sequence {xn} in X is convergence in X if ‖xn‖R −→ 0 at n−→+∞.

Lemma 3.4 [5, 18] Suppose that A is a unital C∗-algebra with a unit I:

(1) for any x ∈ A+ we have x� I if and only if ‖x‖ ≤ 1;
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(2) If a ∈ A+ with ‖a‖< 1
2 , then I−a is invertable and ‖a(I−a)−1‖< 1;

(3) suppose that a,b ∈ A with a,b� 0 and ab = ba,then ab� 0.

(4) by Á we denote the set {a∈A : ab= ba forall b∈A} Let a∈ Á, if b,c∈A with b� c� 0

(I−a)−1b� (I−a)−1c .

Definition 3.14 Let (X , l(E ),‖.‖l(E )) be an l(E ) normed space. We call a mapping T : X −→

X is l(E ) contractive mapping on X if there exists an M ∈ l(E ) with ‖M‖l(E ) ≤ 1 such that

‖T x−Ty‖l(E ) �M∗‖x− y‖l(E )M for all x,y ∈ X .

Definition 3.15 An l(E )- Banach space is a complete l(E )-normed space (X ,‖.‖l(E )).

Many results on fixed point theorems have been extended from metric spaces to C∗-algebra val-

ued metric spaces with different contraction conditions (see for example [17],[18],[19],[20],[21])

Theorem 3.1 Let (X , l(E ),‖.‖l(E )) be l(E ) complete normed space and T : X −→ X be a self

mapping satisfy the following contraction condition

‖T x−Ty‖l(E ) �M∗‖x− y‖l(E )M,

where M ∈ (l(E ))̀+ with ‖M‖l(E ) < 1, Then T has a unique fixed point.

Proof. Let x0 ∈ X be arbitrary point and construct a sequence {xn}+∞

n=0 ⊆ X by the way: x1 =

T x0,x2 = T x1, .....,xn+1 = T xn

‖xn+1− xn‖l(E ) = ‖T xn−T xn−1‖l(E )

�M∗‖xn− xn−1‖l(E )M

= M∗‖T xn−1−T xn−2‖l(E )M

� (M∗)2‖xn−1− xn−2‖l(E )(M)2

...

� (M∗)n‖x1− x0‖l(E )(M)n.

Let B = ‖x1− x0‖l(E ). Then ‖xn+1− xn‖l(E ) � (M∗)nB(M)n.

For any n,m ∈ N such that n≥ m the triangle inequality tells that

‖xn− xm‖l(E ) � ‖xn− xn−1‖l(E )+‖xn−1− xn−2‖l(E )+ ...+‖xm+1− xm‖l(E )

� (M∗)n−1B(M)n−1 +(M∗)n−2B(M)n−2 + ...+(M∗)mB(M)m
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= ∑
n−1
k=m(M

∗)kB(M)k

= ∑
n−1
k=m((M

∗)kB1/2)(B1/2(M)k)

= ∑
n−1
k=m(B

1/2Mk)∗(B1/2Mk)

= ∑
n−1
k=m |B

1/2Mk|2

� ∑
n−1
k=m ‖|B

1/2Mk|2‖l(E )Il(E )

� ∑
n−1
k=m ‖B

1/2‖2
l(E )‖M

k‖2
l(E )Il(E )

� ‖B‖l(E )∑
n−1
k=m ‖M‖

2k
l(E )Il(E )

� ‖B‖l(E )

‖M‖2m
l(E )

1−‖M‖l(E )
Il(E ) −→ 0l(E )(m−→+∞),

where Il(E ) the unite element in l(E ), Therefore {xn} is a Cauchy sequence with respect to

l(E ). By the completeness of (X , l(E ),‖.‖l(E )), there exists an x ∈ X such that lim
n−→+∞

xn =

lim
n−→+∞

T xn−1 = x.

Since

0≤ ‖T x− x‖l(E ) � ‖T x−T xn‖l(E )+‖T xn− x‖l(E )

�M∗‖x− xn‖l(E )M+‖T xn− x‖l(E ) −→ 0l(E ) at n−→ ∞

Implies ‖T x− x‖l(E ) = 0⇒ T x = x. Hence T hase a fixed point .

To prove the uniquness suppose that y(6= x) is another fixed point of T, since

0� ‖x− y‖l(E ) = ‖T x−Ty‖l(E ) �M∗‖x− y‖l(E )M,

then we have

0≤ ‖‖x− y‖l(E )‖= ‖‖T x−Ty‖l(E )‖

≤ ‖M∗‖‖‖x− y‖l(E )‖‖M‖

≤ ‖M∗‖‖‖x− y‖l(E )‖‖M‖

≤ ‖M‖2‖‖x− y‖l(E )‖

< ‖‖x− y‖l(E )‖.

It is impossible. So ‖x− y‖l(E ) = 0 and x = y, which implies that the fixed point is unique. �

Next, we introduce a version of kannan fixed point in the case of operator on Hilbert C∗-

modules
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Theorem 3.2 (Kannan Type Theorem [8]) Let (X , l(E ),‖.‖l(E )) be an l(E ) complete normed

space and T : X −→ X be a self mapping satisfy the following contraction condition

‖T x−Ty‖l(E )
� M

2 [‖T x− x‖l(E )
+‖Ty− y‖l(E )

],

where M ∈ (l(E ))̀+ with ‖M‖l(E ) < 1, Then T has a unique fixed point.

Proof. Let x0 ∈ X be arbitrary point and construct a sequence {xn}+∞

n=0 ⊆ X by the way: x1 =

T x0,x2 = T x1, .....,xn+1 = T xn

‖xn+1− xn‖l(E )
= ‖T xn−T xn−1‖l(E )

� M
2 [ ‖T xn− xn‖l(E )

+‖T xn−1− xn−1‖l(E )
]

= M
2 [ ‖xn+1− xn‖l(E )

+‖xn− xn−1‖l(E )
]

� M
2 ‖xn+1− xn‖l(E )

+ M
2 ‖xn− xn−1‖l(E )

.

Thus,

(Il(E )− M
2 )‖xn+1− xn‖l(E )

� M
2 ‖xn− xn−1‖l(E )

.

Since M ∈ (l(E ))̀+ with ‖M
2 ‖l(E ) <

1
2 , one have (Il(E ) − M

2 )
−1 ∈ (l(E ))̀+, and furthermore

M
2 (Il(E )− M

2 )
−1 ∈ (l(E ))̀+ with ‖M

2 (Il(E )− M
2 )
−1‖l(E ) < 1 . Therefore,

‖xn+1− xn‖l(E )
� (

M
2

Il(E )−M
2
)‖xn− xn−1‖l(E )

� (
M
2

Il(E )−M
2
)2‖xn−1− xn−2‖l(E )

...

� (
M
2

Il(E )−M
2
)n‖x1− x0‖l(E )

.

Let t = M
2 (Il(E )− M

2 )
−1,B = ‖x1− x0‖l(E )

.

Implies ‖xn+1− xn‖l(E )
� tnB.

For n+1 > m

‖xn+1− xm‖l(E ) � ‖xn+1− xn‖l(E )+‖xn− xn−1‖l(E )+ · · ·+‖xm+1− xm‖l(E )

� tnB+ tn−1B+ · · ·+ tmB

� (tn + tn−1 + · · ·+ tm)B

= ∑
n
k=m tkB

= ∑
n
k=m t

k
2 t

k
2 B

1
2 B

1
2

= ∑
n
k=m B

1
2 t

k
2 t

k
2 B

1
2
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= ∑
n
k=m(t

k
2 B

1
2 )∗(t

k
2 B

1
2 )

= ∑
n
k=m |t

k
2 B

1
2 |2

� ‖∑
n
k=m |t

k
2 B

1
2 |2‖l(E )Il(E )

� ∑
n
k=m ‖B

1
2‖2

l(E )‖t
k
2‖2

l(E )Il(E )

= ‖B‖l(E )∑
n
k=m ‖t‖k

l(E )Il(E )

� ‖B‖l(E )

‖t‖m
l(E )

1−‖t‖m
l(E )

Il(E ) −→ 0l(E )(m−→+∞),

where Il(E ) the unite element in l(E ), Therefore {xn} is a Cauchy sequence with respect to

l(E ). By the completeness of (X , l(E ),‖.‖l(E )), there exists an x ∈ X such that lim
n−→+∞

xn=

lim
n−→+∞

T xn−1 = x.

Since

‖T x− x‖l(E ) � ‖T x−T xn‖l(E )+‖T xn− x‖l(E )

� M
2 (‖T x− x‖l(E )+‖T xn− xn‖l(E ))+‖T xn− x‖l(E )

= M
2 ‖T x− x‖l(E )+

M
2 ‖T xn− xn‖l(E )+‖T xn− x‖l(E ).

Implies ‖T x− x‖l(E ) �
M
2

Il(E )−M
2
‖T xn− xn‖l(E )+

1
Il(E )−M

2
‖T xn− x‖l(E )

‖T x− x‖l(E ) �
M
2

Il(E )−M
2
‖xn+1− xn‖l(E )+

1
Il(E )−M

2
‖xn+1− x‖l(E ) −→ 0(n−→+∞),

Implies ‖T x− x‖l(E ) = 0⇒ T x = x.

To prove the uniquness suppose that y(6= x) is another fixed point of T, then

0� ‖x− y‖l(E ) = ‖T x−Ty‖l(E )

� M
2 (‖T x− x‖l(E )+‖Ty− y‖l(E ))

� 0

This means that

‖x− y‖l(E ) = 0 implies x = y .

Therefore the fixed point is unique. �

Theorem 3.3 (Extension of Kannan Type Theorem ) Let (X , l(E ),‖.‖l(E )) be an l(E ) com-

plete normed space and T : X −→ X be a self mapping satisfy the following contraction condi-

tion

‖T x−Ty‖l(E ) �M[
‖x−y‖l(E )

2 +
‖T x−x‖l(E )+‖Ty−y‖l(E )

2 ],
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where M ∈ (l(E ))̀+ with ‖M‖l(E ) <
1
2 , Then T has a unique fixed point.

Proof. Le x0 ∈ X be arbitrary point and construct a sequence {xn}+∞

n=0 ⊆ X by the way: x1 =

T x0,x2 = T x1, .....,xn+1 = T xn.

‖xn+1− xn‖l(E ) = ‖T xn−T xn−1‖l(E )

�M[
‖xn−xn−1‖l(E )

2 +
‖T xn−xn‖l(E )+‖T xn−1−xn−1‖l(E )

2 ]

=M[
‖xn−xn−1‖l(E )

2 +
‖xn+1−xn‖l(E )+‖xn−xn−1‖l(E )

2 ]

= M[ ‖xn− xn−1‖l(E )+
‖xn+1−xn‖l(E )

2 ]

= M ‖xn− xn−1‖l(E )+
M
2 ‖xn+1− xn‖l(E ) ].

Thus,

(Il(E )− M
2 )‖xn+1− xn‖l(E ) �M‖xn− xn−1‖l(E ).

Since M ∈ (l(E ))̀+ with ‖M‖l(E ) ≤ 1
2 , one have (Il(E )−M)−1 ∈ (l(E ))̀+, and furthermore

M(I−M)−1 ∈ (l(E ))̀+ with ‖M(Il(E )−M)−1‖l(E ) ≤ 1 . Therefore,

‖xn+1− xn‖l(E ) � ( M
Il(E )−M

2
)‖xn− xn−1‖l(E ) = t‖xn− xn−1‖l(E )

� t2‖xn−1− xn−2‖l(E )

...

� tn‖x1− x0‖l(E ),

where t = M(Il(E )− M
2 )
−1.

For n+1 > m .

‖xn+1− xm‖l(E ) � ‖xn+1− xn‖l(E )+‖xn− xn−1‖l(E )+ · · ·+‖xm+1− xm‖l(E )

� (tn + tn−1 + · · ·+ tm)‖x1− x0‖l(E ).

Let B = ‖x1− x0‖l(E ), implies

‖xn+1− xm‖l(E ) = ∑
n
k=m tkB

= ∑
n
k=m t

k
2 t

k
2 B

1
2 B

1
2

= ∑
n
k=m B

1
2 t

k
2 t

k
2 B

1
2

= ∑
n
k=m(t

k
2 B

1
2 )∗(t

k
2 B

1
2 )

= ∑
n
k=m |t

k
2 B

1
2 |2

� ‖∑
n
k=m |t

k
2 B

1
2 |2‖l(E )Il(E )
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� ∑
n
k=m ‖B

1
2‖2

l(E )‖t
k
2‖2

l(E )Il(E )

= ‖B‖l(E )∑
n
k=m ‖t‖k

l(E )Il(E )

� ‖B‖l(E )

‖t‖m
l(E )

1−‖t‖m
l(E )

Il(E ) −→ 0l(E )(m−→+∞),

where Il(E ) the unite element in l(E ), Therefore {xn} is a Cauchy sequence with respect to

l(E ). By the completeness of(X , l(E ),‖.‖l(E )), there exists an x ∈ X such that lim
n−→+∞

xn =

lim
n−→+∞

T xn−1 = x.

Since

‖T x− x‖l(E ) � ‖T x−T xn‖l(E )+‖T xn− x‖l(E )

�M(
‖x−xn‖l(E )

2 +
‖T x−x‖l(E )+‖T xn−xn‖l(E )

2 )+‖T xn− x‖l(E )

�M(
‖x−xn‖l(E )

2 +
‖T x−x‖l(E )

2 +
‖xn+1−xn‖l(E )

2 )+‖T xn− x‖l(E ).

Implies ‖T x−x‖l(E )� M
Il(E )−M

2
(
‖x−xn−1‖l(E )

2 +
‖xn+1−xn‖l(E )

2 )+ 1
Il(E )−M

2
‖xn+1−x‖l(E )−→ 0(at n−→

+∞).

Then This implies that T x = x i.e., x is fixed point of T .

To prove the uniquencess suppose that y(6= x) is another fixed point of T, then

0≤ ‖x− y‖l(E ) = ‖T x−Ty‖l(E )

�M(
‖x−y‖l(E )

2 +
‖T x−x‖l(E )+‖Ty−y‖l(E )

2 )

� M
2 ‖x− y‖l(E ),

This is contradiction, implies x = y.

Therefore the fixed point is unique. �

4. APPLICATION

The soluation of operator on Hilbert C∗-module is important and studied by many authers see

([6], [4]). Hence we give the existance and uniquness of such solution of operator equations by

using fixed point theorem.

example Suppose that E is a Hilbert space, l(E ) is the set of linear bounded operatoes on E .

Let T1,T2, · · · ∈ l(E ), which satisfy ∑
+∞

n=1 ‖Tn‖2 < 1 and S ∈ l(E ),R ∈ l(E )+ .

Then the operator equation
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S−∑
∞
n=1 T ∗n STn = R

has a unique solution in l(E ).

Proof. Set B = ∑
+∞

n=1 ‖Tn‖2Il(E ). Clear if α = 0, then Tn = θ(n ∈ N), and the equation has a

unique solution in l(E ). Without loss of generality, one can suppose that B > 0.

For S,Q ∈ l(E ), set

‖S−Q‖l(E ) = ‖S−Q‖Il(E ).

It is easy to verify tha ‖S−Q‖l(E ) is an l(E )-valued metric space and (l(E ),‖.‖) is complete

since l(E ) is a Banach space.

Consider the map F : l(E )−→ l(E ) defined by

(1) F(S) =
∞

∑
n=1

T ∗n STn +R.

Then

‖F(S)−F(Q)‖= ‖F(S)−F(Q)‖Il(E ) = ‖∑
+∞

n=1 T ∗n (S−Q)Tn‖Il(E )

≤ ∑
∞
n=1 ‖Tn‖2‖S−Q‖Il(E )

= B‖S−Q‖

= (B
1
2 Il(E ))

∗‖S−Q‖(B 1
2 Il(E )).

Using Theorem 3.1 there exists a unique fixed point S∈ l(E ). Furthermore, since ∑
+∞

n=1 T ∗n STn+

R is positive operator, then the operator equation (1) has a unique solution.

�

5. CONCLUSIONS

In this paper, we introduced the notions of metric space valued-operator of Hilbert C∗-

module. We define some contraction mapping and prove some Banach fixed point theorems

for a self mappings T on the Banach space l(E ). Finally we give an application to study the

existence and uniqueness soluation of systems of operators on Hilbert C∗-module.
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